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Abstract

In this paper we propose a novel nonparametric ap-
proach for object recognition and scene parsing using dense
scene alignment. Given an input image, we retrieve its best
matches from a large database with annotated images us: |
ing our modified, coarse-to-fine SIFT flow algorithm that
aligns the structures within two images. Based on the dense

(e)

scene correspondence obtained from the SIFT flow, our sys —joa
tem warps the existing annotations, and integrates multi- 5?:1,
ple cues in a Markov random field framework to segment =g;‘f
and recognize the query image. Promising experimental re- =3::;21d

sults have been achieved by our nonparametric scene pars- )
ing system on a challenging database. Compared to exist-

ing object recognition approaches that require training fo ~ Figure 1. For a query image (a), our system finds the top matche
each object category, our system is easy to implement, hadb) (three are shown here) using a modified, corse-to-find SIF

few parameters, and embeds contextual information naty-low matching algorithm. The annotations of the top matclugs (
rally in the retrie;/allalignment procedure are transferred and integrated to parse the input imagecassh

in (d). For comparison, the ground-truth user annotatio(apfs
shown in (e).

©

1. Introduction expands.

Scene parsing, or recognizing and segmenting objects in  Recently, the emergence of large databases of images
an image, is one of the core problems of computer vision. has opened the door to a new family of methods in com-
Traditional approaches to object recognition begin by spec puter vision. Large database-driven approaches have shown
ifying an object model, such as template matching [28, 5], the potential for nonparametric methods in several applica
constellations [9, 7], bags of features [24, 14, 10, 25], or tions. Instead of training sophisticated parametric madel
shape models [2, 3, 6], etc. These approaches typicallythese methods try to reduce the inference problem for an
work with a fixed-number of object categories and require unknown image to that of matching to an existing set of an-
training generative or discriminative models for each cate notated images. In [21], the authors estimate the pose of a
gory given training data. In the parsing stage, these system human relying on 0.5 million training examples. In [12], the
try to align the learned models to the input image and asso-proposed algorithm can fill holes on an input image by in-
ciate object category labels with pixels, windows, edges or troducing elements that are likely to be semantically adrre
other image representations. Recently, context infoonati  through searching a large image database. In [19], a sys-
has also been carefully modeled to capture the relationshipiem is designed to infer the possible object categories that
between objects at the semantic level [11, 13]. Encourag-may appear in an image by retrieving similar images in a
ing progress has been made by these models on a variety dfrge database [20]. Moreover, the authors in [27] showed
object recognition and scene parsing tasks. that with a database of 80 million images, even simple SSD

However, these learning-based methods do not, in gen-match can give semantically meaningful parsingox 32
eral, scale well with the number of object categories. For images.
example, to expand an existing system to include more ob- Motivated by the recent advances in large database-
ject categories, we need to train new models for these cat-driven approaches, we designed a nonparametric scene
egories and, typically adjust system parameters. Trainingparsing system to transfer the labels from existing samples
can be a tedious job if we want to include thousands of to annotate an image through dense scene alignment, as il-
object categories for a scene parsing system. In additionJustrated in Figure 1. For a query image (a), our system
the complexity of contextual relationships amongst olgject first retrieves the top matches in the LabelMe database [20]
also increases rapidly as the quantity of object categoriesusing a combination of GIST matching [18] and SIFT flow



ands, as the per-pixel SIFT feature [17] for two images
ande contains all the spatial neighborhood (a four-neighbor

B P system is used). Our modified energy function is defined as:
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Figure 2. An illustration of our coarse-to-fine pyramid SIffGw
matching. The green square is the searching windowpfoat
each pyramid levek. For simplicity only one image is shown Z min (a|v(p) — v(q)|, d)_ 1)
here, whergpy, is on images:, andc, andw(py) are on image
S2.
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[16]. Since these top matches are labeled, we transfer theln this objective function, truncated L1 norms are used
o P ' : in both the data and the smoothness terms to account for
annotation (c) of the top matches to the query image and

obtain the scene parsing result in (d). For comparison, thematchlng outliers and flow discontinuities, wittandd as

round-truth user annotation of the query is displayed)in (e the threshold, respectively. An L1 norm is also imposed on
9 query play the magnitude of the flow vector as a bias towards smaller

gulftrssi)flsitrﬁg] :essa:‘?cl)?ntct)hgeegaer[r?éespc);@Iii:tge ngngrgar';'ﬁgvf(ijisplacement when no other information is available. No-
9 gory ice that in [16] only an L1 norm is used for the data term

) t:gxg\r/lgrtaiﬁg gg;?ﬁ\iztlaio build an efficient and reliable and the small displacement biased is formulated as an L2
! norm. This energy function is optimized by running sequen-

scene parsing system using dense scene alignment. Th : . i
SIFT flow algorithm proposed in [16] does not scale well F;ZI]Behef Propagation (BP-S) [26] on a dual plane setup

with image dimensions. Therefore, we propose a flexible,
coarse-to-fine matching scheme to find dense COIrespons, 5 ~yarse-to-fine matching scheme
dences between two images. To account for the multiple
annotation suggestions from the top matches, a Markovran- While SIFT flow has demonstrated the potential for
dom field model is used to merge multiple cuegy(like- aligning images across scenes [16], its performance scales
lihood, prior and spatial smoothness) into reliable arnota poorly with respect to the image size. In SIFT flow, a pixel
tion. Promising experimental results are achieved on im-in one image can literally match to any other pixel in an-
ages from the LabelMe database [20]. other image. Suppose the image hdspixels, then the
Our goal is to explore the performance of scene pars-time and space complexity of the BP algorithm to estimate
ing through the transfer of labels from existing annotated the SIFT flow isO(h*). As reported in [16], the computa-
images, rather than building a comprehensive object recog-tion time for 145 x 105 images with ar80 x 80 searching
nition system. We show, however, that the performance of neighborhood is 50 seconds. The original implementation
our system outperforms existing approaches [5, 23] on ourof SIFT flow would require more than two hours to process

dataset. a pair of256 x 256 images in our database with a memory
usage of 16GB to store the data term.
2. SIFT Flow for Dense Scene Alignment To address the performance drawback, we designed a

_ o coarse-to-fine SIFT flow matching scheme that significantly

As our goal is to transfer the labels of existing samples jmproves the performance. The procedure is illustrated in
to parse an input image, it is essential to find the densefigure 2. For simplicity, we useto represent botk; and
correspondence for images across scenes. etial. [16] so. A SIFT pyramid{s*)} is established, wherg!) = s
have demonstrated that SIFT flow is able to establish se-5,,4s(k+1) is smoothed and downsampled froft). At
mantically meaningful correspondences between two im- g5 pyramid levet, let p, be the coordinate of the pixel
ages through matching local SIFT structures. In this sectio match,c;, be the offset or centroid of the searching win-
we extend the SIFT flow algorithm [16] to be more robust dow, andw(py,) be the best match from BP. At the top
to matching outliers by modifying the objective functiom fo pyramid levels®, the searching window is centereda
matching, and more efficient for aligning large-scale ingage (c5 = ps) with sizémxm, wherem is the width (height) of

using a coarse-to-fine approach. 53, The complexity of BP at this level 8(m*). After BP

2.1. Modified matChmg objectlve ISIFT descriptors are computed at each pixel usihg a& 16 window.
. . . . The window is divided intat x 4 cells, and image gradients within each
Let p = (z,y) contain the spatial coordinate of a pixel, cell are quantized into a 8-bin histogram. Therefore, thelpivise SIFT
andw(p) = (u(p), v(p)) be the flow vector gp. Denotes; feature is a28-D vector.
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Figure 4. For a query image, we first findsdnearest neighbor set
i ¢ P in the database using GIST matching [18]. The nearest neighb
—— IR are re-ranked using SIFT flow matching scores, and form a top
A S O] M-voting candidate set. The annotations are transferred fhe
Figure 3. We generalized distance transform function fon¢ated ~ Vvoting candidates to the query image.
L1 norm [8] to pass message between neighboring nodes that ha
different offsets (centroids) of the searching window. the optical flow community: coarse-to-fine search not only
speeds up computation but also leads to lower energy. This
£an be caused by the inherent self-similarity nature of SIFT
features across scales: the correspondence at a coarder lev
is a good prediction for the correspondence at a finer level.

(b)

converges, the system propagates the optimized flow vecto
w(ps) to the next (finer) level to be, where the search-
ing window of p, is centered. The size of this searching
window is fixed to ben x n with n = 11. This procedure .
iterates froms® to s(!) until the flow vectorw(py) is es- 3. Scene Parsing through Label Transfer

timated. Since: is fixed at all levels except for the top, the

complexity of this coarse-to-fine algi)rlthm@(hQ logh), ages and a technigue of establishing dense correspondences
a significant speed up compared¢h”). across scenes, we can transfer the existing annotations to a
When the matching is propagated from an coarser levelguery image through dense scene alignment. For a given
to the finer level, the searching windows for two neighbor- query image, we retrieve a set Knearest neighborn
ing pixels may have different offsets (centroids). We mpdif  oyr database using GIST matching [18]. We then compute
the the distance transform function developed for trurttate the S|FT flow from the query to each nearest neighbor, and
L1 norm [8] to cope with this situation, with the idea illus-  yse the achieved minimum energy (defined in Eqn. 1) to re-
trated in Figure 3. To compute the message passing fromyank the K-nearest neighbors. We further select theltbp
pixel p to its neighboky, we first gather all other messages re-ranked retrievals to create our voting candidate seis Th
and data term, and apply the routine in [8] to compute the oting set will be used to transfer its contained annotation
message fronp to q assuming that) andp have the same  jnto the query image. This procedure is illustrated in Fegur
offset and range. The function is then extended to be out-4.
side the range by increasimgper step, as shown in Figure  ynder this setup, scene parsing can be formulated as the
3 (a). We take the function in the range tigis relative to  fo|lowing label transfer problem. For a query imafwith
p as the message. For example, if the offset of the searchingig corresponding SIFT image we have a set of voting
window for p is 0, and the offset fog is 5, then the mes- candidates{s;, ¢;, w; }i—1.a7, Wheres;, ¢; andw; are the
sage fromp to q is plotted in Figure 3 (c). If the offset of  5|FT image, annotation, and SIFT flow field (fronto s;)
the searching window faq is —2 otherwise, the message is  of the jth voting candidate.c; is an integer image where
shown in Figure 3 (b). ci(p)e{1,---, L} is the index of object category for pixel
Using the proposed coarse-to-fine matching scheme and. We want to obtain the annotatierfor the query image
modified distance transform function, the matching be- by transferring:; to the query image according to the dense
tween two256 x 256 images takes 31 seconds on a work- correspondence;.
station with two quad-core 2.67 GHz Intel Xeon CPUs and ~ We build a probabilistic Markov random field model to
32 GB memory, in a C++ implementation. Further speedup integrate multiple labels, prior information of object eat
(up to 50x) can be achieved through GPU implementation gory, and spatial smoothness of the annotation to parse im-
[4] of the BP-S algorithm since this algorithm can be paral- agel. Similar to that of [23], the posterior probability is
lelized. We leave this as future work. defined as:
A natural question is whether the coarse-to-fine match- ,
ing scheme can achieve the same minimum energy as the— log P(c|I, s, {si, ci, wi}) :Zw(c(p)§ s, {si})+
ordinary matching scheme (only one level without coarse- p
to-fine) [16]. An experiment is conducted to compare these O‘Z /\(c(p))+g Z ¢(C(p)’ c(q); [) +log Z, (2)
two algorithms (refer to Section 4.1 for more details). In o (palee
general, we found that the coarse-to-fine matching outper-
forms the ordinary matching in terms of obtaining lower where Z is the normalization constant of the probability.
energy. This is consistent with what has been discovered inThis posterior contains three components, likelihood,

Now that we have a large database of annotated im-
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prior and spatial smoothness.
Thelikelihoodterm is defined as

W (elp)=1) = { 2, P 8w, O #9
T Qp,l - @

3)
whereQ,; = {i;c;(p + w(p)) = [} is the index set of
the voting candidates whose label isfter being warped to
pixel p. 7 is set to be the value of the maximum difference
of SIFT feature:r =max;, s,.p ||51(P) — s2(P)|-

The prior term isA(c(p) =1) indicates the prior proba-
bility that object category appears at pixgb. This is ob-
tained from counting the occurrence of each object category

o
N

o
o

Frequency of occurrence

s
Guipiing
ubis

)
1)
n
1
s
4
sseib[]]
u
d
)
S
2
S
IM
bipsans

urejunow
Ppajageul
N[eMSS01d
Bulume
aseouels

road

a1

at each location in the training set. i 01
A(e(p)=1) = —loghist;(p) (4) “‘"35 ‘
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wherehist;(p) is the spatial histogram of object category mw Mfmdow =
The smoothnesterm is defined to bias the neighboring u’mﬁ
pixels into having the same label if no other information is : E e
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available, and the probability depends on the edge of the| bridge
image: the stronger luminance edge, the more likely that

the neighboring pixels may have different labels. %{%z
e, | el '
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wherey = (2 < [|1(p) — I(q)[* >)" [23]. wn | |

Notice that the energy function is controlled by four pa- Figure 5. Above: the per-pixel frequency counts of the dfxped-
rameters,K and M that decide the mode of the model, egories inl our dataset (sorted in descending orpler). Thor obl
anda and 3 that control the influence of spatial prior and each bar is the average RGB value of each object category from
smoothness. Once the parameters are fixed, we again ustl%e training data with saturation and brightness boostedifu-
BP-S algorithm to minimize the energy. The aléorithm con- alization. Bottom: the spatial priors of the object catég®in the

: Jy- 11 database. White means zero and the saturated color medms hig
verges in two seconds on a workstation with two quad-core probability.
2.67 GHz Intel Xeon CPUs.

_ A significant difference between our model and that satration and brightness boosted for visualization. The t
in [23] is that we have fewer parameters because of thep object categories agky, building, mountain tree, unla-
nonparametric nature of our approach, whereas classifiergyg|eq road, seg field, grass andriver. The spatial priors of
where trained in [23]. In addition, color information is not  these object categories are displayed at the bottom of &igur
included in our model at the present as the color distriloutio 5 \y/hite means zero probability and saturated color means

for each object category is diverse in our database. the highest probability. We observe that sky occupies the
_ upper part of image grid and field occupies the lower part.
4. Experiments Notice that there are only limited numbers of samples for

We used a subset of the LabelMe database [20] to testthe objects such &un cow, bird, andmoon

our system. This d_ataset contains 2688 fuII_y annptated im-4.1_ Evaluation of the dense scene alignment
ages, most of which are outdoor scenes including street,
beach, mountains, fields and buildings. From these images We first evaluate our coarse-to-fine SIFT flow matching
we randomly selected 2488 for training and 200 for test- for dense scene alignment. We randomly selected 10 im-
ing. We chose the top 33 object categories with the mostages from the test set as the query, and check the minimum
labeled pixels. The pixels that are not labeled, or labeled energy obtained between the query and the best SIFT flow
as other object categories, are treated as the 34th categorynatch using coarse-to-fine scheme and ordinary scheme
“unlabeled”. The per pixel frequency count of these object (non coarse-to-fine), respectively. For th@sé x 256 im-
categories in the training set is shown at the top of Figure ages, the average running time coarse-to-fine SIFT flow is
5. The color of each bar is the average RGB value of the 31 seconds, whereas it takes 127 minutes in average for the
corresponding object category from the training data with ordinary matching. The coarse-to-fine scheme not only runs



unlabeled

Figure 6. System overview. Our algorithm computes the Strdge (b) of an query image (a), and uses GIST [18] to finditsearest
neighbors in our database. We apply coarse-to-fine SIFT 8i@align the query image to the nearest neighbors, and olmaiitas voting
candidates{/ = 3 here). (c) to (e): the RGB image, SIFT image and user anootati the voting candidates. (f): the inferred SIFT
flow. From (g) to (i) are the warped version of (c) to (e) witkpect to the SIFT flow in (f). Notice the similarity betweef &ad (g), (b)
and (h). Our system combines the voting from multiple caaidisl and generates scene parsing in (j) by optimizing thepors (k): the
ground-truth annotation of (a).
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Figure 7. Coarse-to-fine SIFT flow not only runs significantly
faster, but also achieves lower energies most of the timehi$n
experiment, we randomly selected 10 samples in the tesnset a
computed the lowest energy of the best match with the neares
neighbors. We tested both the coarse-to-fine algorithmqseg

in this paper and the ordinary matching scheme in [16]. Exizep
sample #8, coarse-to-fine matching achieves lower eneagyttie
ordinary matching algorithm.

Figure 8. The evaluation of SIFT flow using human annotation.
Left: the probability of one human annotated flow lies within
distance to the SIFT flow as a functionsofred curve). For com-
parison, we plot the same probability for direct minimummdrm
matching (blue curve). Clearly SIFT flow matches human per-
ception better. Right: the histogram of the standard dieviaf
human annotation. Human perception of scene correspoadenc
varies from subject to subject.

to evaluate SIFT flow: for a pixgd, we have several human
annotationg; as its flow vector, anev(p) as the estimated
SIFT flow vector. We comput®r(3z;,[|z; — w(p)|| <
r|r), namely the probability of one human annotated flow
is within distance- to SIFT floww (p). This function (orr

is plotted on the left of Figure 8 (red curve). For compari-
son, we plot the same probability function (blue curve) for
minimum L1-norm SIFT matching.e. SIFT flow matching
without spatial terms. Clearly SIFT flow matches better to
human annotation than minimum L1-norm SIFT matching.

significantly faster, but also achieves lower energies st
the time compared to the ordinary matching algorithm [16]
as shown in Figure 7.

Before evaluating the performance our system on object
recognition, we want to evaluate how well SIFT flow per-
forms in matching structures across different images and
how it compares with human selected matches. Traditional
optical flow is a well-defined problem and it is straightfor-
ward for humans to annotate motion for evaluation [15]. In
the case of SIFT flow, however, there may not be obvious or
unigue best pixel-to-pixel matching as the two images may
contain different objects, or the same object categoriéds wi
very different instances. Our scene parsing system is illustrated in Figure 6. The

To evaluate the matching obtained by SIFT flow, we per- system retrieves a K-nearest neighbor set for the query im-
formed a user study where we showed 11 users image pairaige (a), and further selecid voting candidates with the
with preselected sparse points in the first image and askedninimum SIFT matching score. For the purpose of illustra-
the users to select the corresponding points in the secondion we setM = 3 here. The RGB image, SIFT image, and
image. As shown on the right of Figure 8, user annotation annotation of the voting candidates are shown in (c) to (e),
can be ambiguous. Therefore, we use the following metric respectively. The SIFT flow field is visualized in (f) using

4.2. Results of scene parsing



(a) Pixel-wise recognition rate: 74.75% | (b) Pixel-wise recognition rate: 66.24% (c) Pixel-wise recognition rate: 51.67%

Per-class recognition rate

Figure 9. The per-class recognition rate of our system amomie in [23]. (a) Our system with the the parameters optidiiaepixel-wise
recognition rate. (b) Our system with= 5 = 0, namely, with the Markov random field model turned off. (c)eTerformance of the
system in [23] also with the conditional random field turnéfgdtoained and tested on the same data sets as (a) and (b).

the same visualization scheme as in [16]. After we warfo.7 0.74
the voting candidates into the query with respect to the flow ' /\/\/\
field, the warped RGB (g) and SIFT image (h) are very close ;4 07

to the query (a) and (b). Combining the warped annotation

in (i), the system outputs the parsing of the query in (), | —weg|
. . . . 8 -—M=3 8
which is close to the ground-truth annotation in (k). —M-=5
. . . . —=—M=7| —e-without prior and spatial terT S
Some label transferring results are displayed in Figure e [ ——with prior and spatial terms
12. The inputimage from the test set is displayed in columr *  Rumbat of noarest néighborsk  ° * Rumbar of nearest neighbors K
(a). We show the best match, its corresponding annotation, @ o)

and the warped best match in (b), (c) and (d), respectively,Figure 10. (a): Recognition rate as a function of the numiier o
to hint the annotation for the query, even though our sys- nearest neighbot&” and the number of voting candidat&s. (b):
tem takes the top/ matches as voting candidates. Again, recognition rate as a function of the number of nearest ibeigh
the warped image (d) looks similar to the input, indicating K. Clearly, prior and spatial smoothness help improve thegec
that SIFT flow successfully matches image structures. Thenition rate.

scene parsing results output from our system are listed in
column (e) with parameter setting = 50, M =5, a =
0.1, 8 = 70. The ground-truth user annotation is listed in

The recognition rate for the top 7 object categories (all are
“stuff”) is 82.72%. This is because in our current system we
only allow one labeling for each pixel, and smaller objects

(f). Notice that the gray pixels in (f) are “unlabeled”, but : /
our system does not generate “unlabeled” output. For sam-1€Nd o be overwhelmed by the labeling of larger objects.
We plan to build a recursive system in our future work to

ple 1, 5, 6, 8 and 9, our system generates reasonable pref h . hi based he inferred stuff
dictions for the pixels annotated as “unlabeled”. The pixel TUrther retrieve things based on the inferred stuff. _
wise recognition rate of our systemid.75%by excluding We investigate the performance of our system by varying
the “unlabeled” class [23]. A failure example for our sys- € parameter&’, M, a andgj. First, we fixa=0.1, 5="70

tem is shown in Figure 13 when the system fails to retrieve and p_Iot t_he recognition rate as a functi(_)dﬁin Figure 10
images with similar object categories to the query. (a) with different) . Overall, the recognition rate increases

. as more nearest neighbors are retriev&df] and more
For comparison, we downloaded and ran the code from\qting candidates are used/(}) since, obviously, multi-
[23] using the same training and test data with the condi- e candidates are needed to transfer labels to the query.
tional random field turned off. The overall pixel-wise reeog However, the recognition drops &and)M continue to in-
nition rate of their system on our data se$1567%, andthe  (rease as more candidates may include noise to label trans-
per-class rates are displayed in Figure 9 (c). For fairn@ss w o;  The maximum performance is obtained when= 50
also turned off the Markov random field modelin our frame- 54417 = 5. Second, we fixi = 5, and plot the recogni-
work by settinga = § = 0, and plotted the corresponding o, rate as a function ok by turning on prior and spatial
results in Figure 9 (b). Clearly, our system outperform$ [23 orms (=0.1, 3= 70) and turning them off¢ = 3 = 0)
in terms of both overall and per-class recognition rate. in Figure 10 (b). Prior and spatial smoothness increase the
Overall, our system is able to predict the right object cat- performance of our system by about 7 percentage.
egories in the input image with a segmentation fit to image  Lastly, we compared the performance of our system with
boundary, even though the best match may look differenta classifier-based system [5]. We downloaded their code
from the inpute.g 2, 11, 12 and 17. If we divide the object and trained a classifier for each object category using the
categories intatuff (e.g sky, mountains, tree, sea and field) same training data. We converted our system into a binary
andthings(e.g cars, sign, boat and bus) [1, 13], our sys- object detector for each class by only using the per-class
tem generates much better results for stuff than for things.likelihood term. The per-class ROC curves of our system
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Figure 11. The ROC curve of each individual pixel-wise bynelassifier. Red curve: our system after being convertedhtary classifiers;
blue curve: the system in [5]. We used convex hull to make A€ Rurves strictly concave. The number, m) underneath the name of
each plot is the quantity of the object instances in the tedttaining set, respectively. For example, (170, 2124)eufisky” means that
there are 170 test images containing sky, and 2124 traimiagés containing sky. Our system obtains reasonable pafme for objects
with sufficient samples in both training and test setg, sky, building, mountain and tree. We observe truncatiachéROC curves where
there are not enough test sampleg field, sea, river, grass, plant, car and sand. The perfarenenpoor for objects without enough
training samplese.g crosswalk, sign, boat, pole, sun and bird. The ROC doesxisttfer objects without any test samplesg desert,
cow and moon. In comparison, our system outperforms or eq&hfor all object categories except for grass, plant, ppatson and bus.
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The performance of [5] on our database is low because thetshijave drastically different poses and appearances.
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Figure 12. Some scene parsing results output from our systejn query image; (b): the best match from nearest neighl{oj:

annotation of the best match; (d): the warped version of ¢opaling to the SIFT flow field; (e): the inferred per-pixelrgiag after
combining multiple voting candidates; (f): the ground trannotation of (a). The dark gray pixels in (f) are “unlaloéleNotice how our

system generates a reasonable parsing even for theseéledabpixels.
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