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Abstract
Indoor localization — a device’s ability to determine its

location within an extended indoor environment — is a fun-
damental enabling capability for mobile context-aware ap-
plications. Many proposed applications assume localization
information from GPS, or from WiFi access points. However,
GPS fails indoors and in urban canyons, and current WiFi-
based methods require an expensive, and manually intensive,
mapping, calibration, and configuration process performed by
skilled technicians to bring the system online for end users.

We describe a method that estimates indoor location with
respect to a prior map consisting of a set of 2D floorplans
linked through horizontal and vertical adjacencies. Our main
contribution is the notion of “path compatibility,” in which
the sequential output of a classifier of inertial data producing
low-level motion estimates (standing still, walking straight,
going upstairs, turning left etc.) is examined for agreement
with the prior map. Path compatibility is encoded in an HMM-
based matching model, from which the method recovers the
user’s location trajectory from the low-level motion estimates.
To recognize user motions, we present a motion labeling algo-
rithm, extracting fine-grained user motions from sensor data
of handheld mobile devices. We propose “feature templates,”
which allows the motion classifier to learn the optimal win-
dow size for a specific combination of a motion and a sensor
feature function.

We show that, using only proprioceptive data of the quality
typically available on a modern smartphone, our motion la-
beling algorithm classifies user motions with 94.5% accuracy,
and our trajectory matching algorithm can recover the user’s
location to within 5 meters on average after one minute of
movements from an unknown starting location. Prior infor-
mation, such as a known starting floor, further decreases the
time required to obtain precise location estimate.
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C.2.m [Computer-Communication Networks]: Miscel-
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General Terms
Algorithms, Design, Experimentation

Keywords
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1 Introduction
An inexpensive, accurate location discovery capability

would enable a broad class of context- and location-aware
applications. Many indoor localization methods [1, 6, 40] rely
on existing wireless infrastructure, such as 802.11. These
methods require technicians to survey the deployment area
while measuring RF signal strength “fingerprints” and inter-
actively associating them with manually-specified location
information. Devices later estimate location by matching ob-
served fingerprints to the acquired map.

To mitigate the mapping burden, researchers have proposed
localization systems that either use contributions from end-
users by crowdsourcing [21], or algorithms that infer the RF
fingerprint map from fewer or no location labels [27, 39].
Although these improvements can reduce the initial deploy-
ment burden, RF-based methods have other restrictions: they
typically construct a fingerprint map only over a short time in-
terval, which will have limited utility at other times due to the
time-varying nature of RF signals; and the high-frequency RF
scanning required for location updates (especially continuous
updates) can be energetically costly [26].

Recently, localization algorithms which use sensors found
in off-the-shelf mobile devices have been proposed [29,38].
Such methods extract distance and heading measurement from
MEMS IMUs, and estimate user position and attitude through
dead reckoning. Since MEMS IMUs tend to drift quickly over
time, these methods require sensors to be placed in specific po-
sitions (e.g. on the feet), or rely on frequent external position
fixes from another source (e.g. WiFi-based localization sys-
tems). Others use Kalman filters or particle filters to account
for measurement uncertainty [12, 27, 38]. However, these
still depend directly on low-level sensor measurements. Also,
these “forward-filtering” based methods are often formulated
to update only the latest location given new measurements;
they do not recover the user’s recent path history.

In contrast, our work attempts to recover the entire user tra-
jectory from a sequence of discrete motion descriptions. This
approach is inspired from the way that humans describe indoor
routes in abstract terms, including motion descriptions (e.g.
“walk” or “turn left”) and motion-related actions (e.g. “open the
door”) rather than precise distance and angle specifications.
(Human motion descriptions can include absolute directions
(e.g. “north”) or durations (e.g. “for 5 seconds”), but these are
typically interpreted qualitatively as detailed annotations of
more abstract navigation guidance.)
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Humans can also perform the inverse process — inferring
a route given a motion sequence and an indoor map. Given
a sufficiently long motion sequence, we can narrow our idea
of the route taken using various kinds of motion-related infor-
mation: implied walking lengths and turn angles (geometric
constraints); spatial layout and path continuity (topological
constraints); and agreement of the space type and motion type
(semantic constraints). In other words, one can view location
estimation as a decoding process in which the originating route
is inferred from an observed sequence of motions, combined
with spatial constraints imposed by the prior map.

Realizing this intuition for indoor localization could bring
significant advantages in terms of energy and localization
capability, over existing methods. As recent mobile platforms
provide activity recognition as their core functionality (e.g.
recent additions of activity recognition APIs in Android and
iOS), we envision that our approach can take advantage of such
platform-level support. For example, a trace of user motions
computed and buffered by a dedicated, low-power motion co-
processor (e.g. AppleM7) could be used to compute the user’s
current position on demand. This scheme also could recover
the user’s recent path without continuous RF scanning, whose
energy cost is prohibitive. (Our approach does not exclude the
possibility of using absolute position fixes, if doing so would
speed acquisition of the current location.)

This paper describes an algorithm that codifies this intu-
ition, using a Hidden Markov Model (HMM) to find the most
likely path given a motion sequence (§5). The method takes
as input a sequence of motion labels, automatically generated
by a low-level motion labeling algorithm that takes raw sensor
measurements from a handheld mobile device as input (§4).
It assumes a route “map” extracted automatically from legacy
floorplan data (§3.3). The matching model (§5.4–5.6) defines
a compatibility measure between the input motion and can-
didate paths, among which the best path is found by Viterbi
decoding (§6.1). We also show how to determine the model
parameters from unannotated data (§6.2).

2 Related Work
We review prior work on indoor localization and relevant

areas.
RF-Fingerprint Localization Some localization meth-

ods associate ambient RF “fingerprints” with physical loca-
tions, enabling devices to estimate location by finding the
stored fingerprint most similar to the current RF observa-
tion [1, 6, 40]. These methods exploit ubiquitous wifi infras-
tructure, unlike approaches which required dedicated local-
ization infrastructure [23,36]. Since constructing the RF map
is an expensive process that requires intensive human labor,
there have been a number of attempts to reduce or even re-
move the burden of manual location labeling, by spatial re-
gression [14], joint mapping of the RF map and access point
locations [3], crowdsourcing [21], or by incorporating inertial
sensors [27, 39] to achieve “calibration-free” WiFi localiza-
tion.

Inertial Matching and Robot SLAM Algorithms Re-
cent advances in small, lightweight MEMS sensors have made
indoor pedestrian navigation with handheld devices practi-
cal. However, the low-cost inertial sensors in mobile devices

are usually inaccurate, having high bias and drift character-
istics and preventing naïve dead-reckoning from working in
practice. To circumvent this problem, prior work has relied
on foot-mounting of sensors [29,38], position fixes from ex-
ternal measurements [12], or the use of Kalman or particle
filters [18, 38].

The use of filtering algorithms for state-space models has
been widely explored in the robot localization and mapping
community. Recent work on simultaneous localization and
mapping (SLAM) uses diverse sources of metric/semantic
information from a rich set of sensors, including LIDARs and
depth-enabled cameras, equipped on a robot or as a wearable
device [5, 24]. Since such active, exteroceptive sensors are
unlikely to be incorporated into smartphones in the near fu-
ture, our work addresses the challenges of accurate location
discovery from the cheaper sensors available today.

Trajectory Matching Map matching on a road network
is usually formulated as a trajectory matching problem, to
exploit known vehicle dynamics and handle inaccurate GPS
observations [13, 33]. Sensor measurements from user mo-
biles are often combined to enhance matching accuracy [7,32].
Just as the state model for outdoor map matching is naturally
given by a road network, we derive an analogous “route net-
work” from a legacy floorplan. We do not assume any external
position infrastructure (e.g. Loran, GPS).

Activity Recognition There is substantial prior work on
recognizing human activity from low-cost sensors. In par-
ticular, acceleration data from MEMS accelerometers have
been used as the primary input for different classification algo-
rithms, including meta-classifiers [16], temporal models [28],
and topic models for high-level activities [9].

Human Navigation in Indoor Environments Our use
of low-level motions to recover high-level trajectories is moti-
vated by human perception of indoor route navigation. Studies
suggest that humans rely on geometric (i.e. space layout) as
well as non-geometric cues (e.g. landmarks) when learning
and navigating spaces [11]. Based on this idea, Brush et al.
performed a user experience study for activity-based naviga-
tion systems that present a trail of activities to the destina-
tion [2]. Also, there have been recent attempts to make an
automated agent “ground” spoken natural language to support
navigation and mobile manipulation [17, 20, 31].

Recently, there has been some prior work augmenting hu-
man actions with indoor localization. For example, Action-
SLAM used (simulated) actions as observed landmarks in
addition to inertial measurements provided by body-mounted
sensors [8]; HiMLoc recognized certain salient activities
(e.g. in elevator/stair/door) and combined them with WiFi
fingerprinting-based localization [26]. In contrast, our work
extracts rich low-level user activities from a handheld device
using a motion classifier (§4) and perform map-matching
solely from a sequence of those descriptive activities. (How-
ever, our work does not exclude the use of such absolute posi-
tioning information.) Similarly to our method, UnLoc system
recognized sensor measurements as distinct signatures identi-
fying spaces, using them to reset dead-reckoning errors [35].
Our method advances this idea by proposing a probabilistic
matching framework to interpret such sensor observations
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into a user trajectory systematically, enabling “future” obser-
vations to correct the “past” user path.
3 Problem Statement

We formulate location discovery from motion traces as
a sequence labeling problem. We model the user’s indoor
walking motion as a series of discrete motions consisting of
straight-line walking segments, stops, turns, vertical move-
ments, and actions to gain access (such as opening doors),
which is estimated using a conditional random field (CRF)
based motion classifier (§3.2&4). Given a sequence of user
motions, we compute the probabilistic path compatibility be-
tween trajectory hypotheses on the map and the hypothesized
user path that gave rise to the input motion sequence. Solving
this problem amounts to labeling each input motion with a
map location, while maximizing compatibility: the likelihood
of the output trajectory given the input data (§3.4). Given
an input motion sequence, our method finds the most likely
trajectory of location labels (§5).

We assume that each user carries a sensor-instrumented
mobile device in his/her hand, held roughly level and pointed
roughly forward. The device captures and time-stamps sensor
data, which is then input to a classifier which produces as
output a sequence of low-level motion types and durations.
3.1 User Motion Models

We model user motion traces as a series of discrete actions
parameterized by properties associated for each motion. A
property can be either a discrete or a continuous value, rep-
resenting the characteristics of the associated motion (e.g.
duration, velocity or direction). Continuous values may be
quantized to facilitate the matching process. In indoor naviga-
tion scenarios, most walking paths can be modeled well with
the following set of actions:
Rest Periods of little or no net motion, for example, while

seated in an office, classroom, cafe, library, etc. Detec-
tion of user resting can be used to favor certain place
types over others.

Sitting and Rising These motions separate Rest from non-
Rest activities in time.

Standing Standing with little horizontal or vertical motion,
after Rising or between other motions.

Straight Walk The user walks approximately along a straight
line. Total distance traveled can be estimated by integrat-
ing longitudinal acceleration, by detecting and counting
user strides, or (assuming constant walking speed) from
duration.

Turn Change of walking or standing direction over a short
period of time. We quantize egocentric turns to eight
values.

Walking Ascent and Descent Walking on ramps and stairs
(on spiral or multi-stage stairwells, often accompanied
by successive Turns).

Elevator Periods of vertical ascent or descent in an elevator.
Elevator motions typically do not involve Walk or Turn
motions.

Access Auxiliary actions required to move within typical in-

door environments, including opening doors (Door Open)
and pressing elevator buttons (Button Press).

We assume that user paths have these properties:
1. Smoothness: The user maintains each motion for a cer-

tain characteristic duration, and does not change it too
frequently.

2. Continuity: Consecutive motion segments agree at their
endpoints (i.e. the user cannot “teleport” from one place
to another).

3. Monotonicity: Users will tend not to travel a distance
longer than necessary, or change floors more often than
necessary, to reach any goal location.

We use these assumptions to precondition imperfect in-
put motion sequences, as well as to formulate an efficient
matching algorithm without redundancy. If a certain detected
motion does not last for its normally expected duration (e.g.,
an elevator ride that lasts only two seconds), it is deemed
erroneous, and either corrected or removed before matching
(smoothness). When considering transitions from a certain
place, the matching algorithm considers only nearby places
for the next segment, resulting in physically plausible paths
(continuity). Finally, the method excludes inefficient motion
patterns (monotonicity).

The present paper focuses on finding the location trajectory
for a single user path. We anticipate that our method can
be generalized to handle multiple paths from different users
jointly, by taking interactions between paths into account. We
discuss this possibility in Section 8.
3.2 Automatic Motion Sequence Labeling

The user motions described in Section 3.1 are estimated
from data produced by low-level sensors: a tri-axial accelerom-
eter, a tri-axial gyroscope, a tri-axial magnetometer, and a
barometer, all of which are available in current-generation
smartphones.

Our CRF–based motion labeling algorithm takes time-
stamped sensor data as input, and outputs fine-grained user
motion states at 3Hz, concatenating successive frames with
the same motion type. Each motion in a produced motion
sequence is annotated with its duration, which is used by
trajectory matching algorithm to infer coarse-grained metric
information for some types of motions (e.g. walking distance
for Walking). While it is possible to extract more precise met-
ric information from the underlying sensor signals [22], we
found that the duration was sufficient for our evaluation of the
map matching algorithm, because the best match was robust
to some deviations of the metric information from truth as it
was determined probabilistically. We describe the details of
the labeling algorithm in Section 4.
3.3 Route Networks

Our motion-based map-matching algorithm requires a
route network: a graph representation of all possible user paths
within the environment. We implemented an automatic graph
construction algorithm that analyzes and interprets floor plan
data to generate a generalized Voronoi graph based route net-
work for our test corpus. A Voronoi-based route network rep-
resentation has been used in prior work for robot or human nav-
igation and map matching in indoor environments [19,34,37].
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Figure 1: Route network (red, blue) automatically extracted from a legacy
floorplan

Our route network generation process builds upon prior
work byWhiting et al. [37], which uses a constrainedDelaunay
triangulation (the dual of the Voronoi diagram) to approxi-
mate the medial axis of each space. A graph is generated for
each space using its Delaunay triangulation, then combined
with graphs for spaces abutting via horizontal and vertical
“portals” to create a complete route network for the entire cor-
pus (Fig. 1). Spaces on the same floor are connected through
horizontal portals, which represent either explicit connections
(doors) or implicit connections (shared non-obstructed space
boundaries). Route graphs from different floors are joined
through vertical portals, i.e. stairs and elevators.

We use an automated process to generate route networks
from floorplans. However, manual authoring would also be
feasible in many settings. Since for most buildings only a
portion is occupied by end-users (e.g. in malls, hospitals and
airports), and interior structure tends to change slowly over
time, the maintenance burden to author and keep current the
building’s route network should be tolerable.

3.4 Path Compatibility
A sequence of observed motions, as described in Sec-

tion 3.1, implies a motion path (Figs. 2a & 2b). The motion
path from imperfect observations is not identical to the origi-
nal path from which motions were generated. Since motion
estimates inferred by an automatic motion recognition algo-
rithm are noisy, the properties attached to the motions can
also be noisy and coarse-grained.

In this setting, the trajectory matching process from a se-
quence of motion observations can be thought of as finding
the best (chain) subgraph in the route network whose path
compatibility is maximal to the conceived path from motions.
We say that a motion path is compatible with a subgraph if
the path can be embedded into the subgraph in a way that
observes (or weakly violates) the constraints inherent in the
path and subgraph. That is, compatibility holds if each motion
path segment can be assigned to some vertex or edge of the
subgraph. For example, in Figure 2, the subgraph a-b-d-e in
Figure 2a is compatible with the motion path of Figure 2b, be-
cause the path can be assigned to the subgraph with tolerable
geometric distortion and without violating continuity. Clearly,
the more components in the motion path, the more restricted
its compatibility.

We analyze path compatibility at three levels: geometric,

(a) (b) (c)

Figure 2: Path compatibility and matching: (a) path of a user moving from
a to e (green, dashed) within a route network (blue); (b) implied motion
path from motion observations with imperfect length and angle estimates; (c)
corresponding sequence labeling problem.

topological, or semantic compatibility. Geometric compati-
bility imposes metric constraints, such as length of walking
segments and turn angles. Topological compatibility con-
cerns about correspondence between space layouts and the
continuity of motions. Semantic compatibility states that a
certain class of motions can occur only in spaces with the
matching type. These notions of compatibility are encoded in
our trajectory matching model in Section 5.
4 Motion Sequence Labeling

In this section, we describe a motion labeling algorithm
that estimates fine-grained user motions from low-level sensor
data.
4.1 Factorized Representation of Motions

In designing the motion labels reflecting the motion model
described in Section 3.1, we introduce a factorized represen-
tation of motions.

The major parts of the motion descriptors in Section 3.1
are egocentric descriptions of navigational activities. A nav-
igational motion in a typical 2.5-dimensional indoor space
consists of three components: Principal mode of motion (e.g.
sitting or walking), Lateral component (e.g. left/right turn),
and Vertical component (e.g. stair or elevator ascent/descent).
Hence, a basic motion “clause” describing a navigation action
can be represented as a Cartesian product of three orthogonal
motion components:

Principal× Lateral×Vertical

where symbols in each component are:
Principal = {Sitting,SittingDown,StandingUp,Standing,Walking,Running}
Lateral = {Straight,LeftTurn,RightTurn,LeftUTurn,RightUTurn}
Vertical = {Flat,StairUp,StairDown,ElevatorUp,ElevatorDown}.
Most basic navigation actions can be described as a product

of the three motion components. For example:
Walking straight on a flat surface⇒ (Walking, Straight, Flat)

Turning right while walking up stairs⇒ (Walking, RightTurn, StairUp)

Riding an elevator down⇒ (Standing, Straight, ElevatorDown).

As some sensors measure physical quantities directly associ-
ated only with a specific motion component (e.g. barometric
measurements are related only directly to vertical motions.),
this decomposition reduces unnecessary modeling effort for
redundant combinations of features and motions.

Still, there exist cases in which a user motion can be com-
pactly described by a special descriptor outside of the basic
components. In particular, certain types of motions are bound
to occur only at certain types of places. To take advantage of
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such prior knowledge, we introduce the fourth component, the
Auxiliary axis, to explain auxiliary actions required to move
within indoor environments. In this work, we define two ad-
ditional actions that arise frequently when moving inside a
typical building, DoorOpen and ButtonPress.

Summarizing, a classification label is a product of the three
basic motion components, augmented with an auxiliary set of
actions.
4.2 Segmentation

We segment the input data consisting of multiple data
streams from the four sensors, and label each segment, or
frame, with one of the motion labels defined in Section 4.1.
After labeling process, a series of repeated labels over mul-
tiple frames is concatenated to a single motion before being
presented to the map matching algorithm. In this work, we
choose a base frame size as 333 ms (3 Hz).

One of the major challenges in finding a suitable segmen-
tation interval is that different motions can have very different
durations: short-term motions, such as turns or door-open
actions, last no more than one or two seconds, whereas longer
actions, such as walking or riding an elevator, can last for a
few tens of seconds or more. Therefore, a large window size
(e.g. 3 sec.) may include irrelevant signals around shorter
motions, whereas a short window size may fail to capture the
full characteristics of longer motions. For example, a single
frame of 333 ms cannot even include a full single walking
cycle at 1 Hz.

We solve this problem by computing multiple feature val-
ues from each feature function, by varying window widths.
Then, we utilize CRF model to determine the degree of associ-
ation between each window size and each feature function per
motion. This feature template allows the motion labeling algo-
rithm to adapt for an arbitrary association between a feature,
a motion and its duration. However, those features evaluated
from the same template are not independent from each other in
general, thus violating the independence assumption required
for certain classification models (e.g. hidden Markov models).
Therefore, we use conditional random fields, which allow the
use of such long-range and/or overlapping features. This idea
is further explained in Section 4.4.
4.3 Conditional Random Fields

With the motion labels in Section 4.1, our task is to infer
the most probable sequence of motion labels given time-series
sensor data from the user device. As described in the previ-
ous section, we use a linear-chain conditional random fields
(CRFs) [15], a class of probabilistic models for structured
predictions.

Let y be a sequence of motion states and z denote time-
series sensor data, segmented as described in Section 4.2.
yt and zt denote t-th frame of the label and the observation,
respectively. The CRFs model the conditional probability of
a label sequence given data, p(y|z), as follows [30]:

pλ(y|z) =
1

Zλ(z)
exp

(
∑

t
∑

i
λi fi(yt−1,yt ,z, t)

)
(1)

where fi(·) is the i-th feature function representing compati-
bility, or the desired configuration, between two successive
motion states yt−1, yt and sensor data z, and λi is the feature

weight for fi. Note that finding the most likely sequence of
states in linear-chain CRFs can be done efficiently with the
use of dynamic programming–based algorithms [30].
4.4 Motion Classification Features

Preprocessing We computed features from sensor mea-
surements of four sensors: tri-axial accelerometer, gyroscope,
magnetometer, and barometer. Before extracting features,
sensor measurements were smoothed by two independent low-
pass filters to remove noise as well as to capture slowly-varying
characteristics of the input signal.

Gyroscope and magnetometer measurements were aligned
to match the vertical axis (gravity direction) and the horizontal
plane (the orthogonal plane to the gravity direction) using a
tilt angle estimate from the accelerometer. In this way, lateral
features can be extracted regardless of the device orientation.
Also, magnetometer measurements were compensated for the
iron offset caused by external magnetic disturbance that orig-
inates from electronic devices and metal furniture in indoor
environment.

Feature Templates For labeling yt for a certain time
frame t, CRF models allow using evidences drawn from any
frames, not only the observation within the t-th frame. That
is, in computing feature functions, we can use observed sig-
nals from either a single frame ({yt}), adjacent frames (e.g.
{yt−3, ...,yt+3}), or even distant frames that do not include t
(e.g. {yt−5, ...,yt−3}).

However, as noted in Section 4.2, complications arise when
deciding how large a feature window should be used for each
feature type. In general, no precise prior knowledge on the
range of interactions between sensor measurements and a
specific motion is available. Rather, our approach is to learn
the degree of association for each feature type from data. To
this end, we define multiple feature functions for every feature
statistic with exponentially growing window sizes, allowing
the model to learn an individual weight for each combination
of a window size and a feature. For example, the variance
of the acceleration magnitude is computed for five different
window sizes: 1, 2, 4, 8 or 16 frames (1 frame = w = 333
ms), then the CRF learns the optimal weight for each feature
function parametrized with a different window size. For most
features, we use those five window sizes, resulting in five
observation windows [t− 0.5w, t + 0.5w] to [t− 8w, t + 8w].
We also quantize the range of feature values into five bins.

Consequently, we define feature templates such that each
feature function derived from a certain feature type c is evalu-
ated to one if and only if it is assigned a specific pair of labels
(for previous and current labels) and it has a specific quantized
feature value (one of five quantized values) computed from
the observation window size τ:

f (yt−1,yt ,z, t)|y′,y′′,z′τc = f τ
c (yt−1 = y′,yt = y′′,zτ

c = z′τc, t)

= δτ
c(yt−1,y′, t) δτ

c(y j,y′′, t) δτ
c(z

τ
c,z
′τ
c, t) (2)

where y′ and y′′ are motion label values at time t− 1 and t
respectively, z′τc is a quantized feature value for feature c with
window size τ, and δτ

c(z,z
′, j) is a delta function evaluated to

one only if z = z′ at time t. For some feature types, the feature
function does not depend on the previous motion label. (i.e.,
δτ

c(yt−1,y′, t) is always 1.)
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Primay sensor Feature

(Model prior) State/transition bias
Accelerometer Range/variance/median of magnitude

Frequency of significant acceleration
# of specific acceleration patterns
(up-down/down-up/up-down-up/down-up-down)
Peak frequency/magnitude of spectrum

Gyroscope Average/minimum/maximum yaw rate
Net change in yaw rate (from start to end of window)
Frequency of significnant angular velocity

Magnetometer Trend change in compass azimuth
Barometer Trend change in atmospheric pressure

Net change in pressure (from start to end of window)

Table 1: List of features for motion labeling

For example, the feature template for the variance of accel-
eration feature type (c = var. accel.), will generate 25 feature
functions per motion label, from all the combinations of five
feature window sizes (τ ∈ {1,2,4,8,16}w) and five quantized
feature values per window (z′τc). (Here we assumed that previ-
ous motion labels were not used for this feature type.)

List of Features From sensor measurements, we extract
features from 20 feature types using feature templates from
the preprocessed sensor measurements (Table 1). We design
the features to constitute a complementary set of sources of
information for motion classification. While some features
overlap and are not independent with each other, CRF models
can still benefit from having redundant features.

Ten features are extracted from the magnitude of the ac-
celeration. The magnitude of the acceleration captures the
overall energy of user motion. It is hence directly related to
the classification of the principal component of user motions
(Standing, Sitting, Walking, StairUp/Down, Running). Among
the acceleration magnitude–based features, the range and the
variance of the acceleration magnitude, in particular, reflects
the overall strength of motion. Also, we include some pre-
defined transient patterns in the acceleration magnitude as
features, as they often indicate abrupt vertical movements,
such as StandingUp, SittingDown, ElevatorUp/Down. For ex-
ample, when a user stands up or sits down, a pair of abrupt
changes, a quick increase in acceleration magnitude followed
by a rapid decrease (or vice versa) over a brief period was
observed.

The frequency-domain characteristics of user motions is
captured by the 128-point FFT of the acceleration magnitude.
The peak frequency and the corresponding magnitude conveys
the information on walking motions in different frequency
and strength (i.e. walking on flat surfaces vs. walking on
staircases).

The features relevant to turn motions are extracted from the
gyroscope and magnetometer. We characterize the angular
velocity captured by instantaneous yaw rates in multiple ways,
such as average yaw rate, or net change from the start to the
end of the feature window. This distinction helps the classi-
fier distinguish longer turns (e.g. U-turn) from shorter and
sharp turns. On the other hand, magnetic field measurements
themselves were inaccurate particularly in typical indoor en-
vironments, where there exist many sources of magnetic dis-
turbances. Hence, we use magnetic measurements only as a

supplementary source of information in addition to gyroscope
measurements.

A ceiling height of a typical building ranges from 7 to
15 feet. This brings a difference in atmospheric pressure
of about 50 Pa per floor. A barometer, which begins to be
equipped in the current generation smartphones, can measure
this difference precisely. The barometric features provide
essential information in classifying vertical motions, helping
the map matching algorithm identify salient places including
elevators and stairs.
5 Trajectory Matching Model

This section describes our matching model formulated
from the elements in Section 3. The model encodes the notion
of path compatibility (§3.4) as a form of sequence labeling
problem, in which each unit motion is assigned to some node
or edge, which represents user location and direction, of the
route network (Fig. 2c).
5.1 Hidden Markov Models

We represent the stated sequence labeling problem as an
instance of Hidden Markov Models (HMMs), a well-known
probabilistic sequential model [25]. Let xt ∈X denote the state
representing the “location,” and yt ∈Y denote the input motion
observation at time t, 1 ≤ t ≤ T , where T is the length (the
total number of unit motions) of the input motion sequence,
with index 0 used for the (possibly unknown) initial state. Our
goal is to assign “location labels”, i.e. direction-parameterized
nodes or edges in the route graph, to the state sequence x1:T =
{x1,x2, ...,xT}, while maximizing path compatibility with the
input motion sequence y1:T = {y1,y2, ...,yT}.

The HMM provides a scoring mechanism to determine the
compatibility between X and Y by defining the following joint
distribution for a sequence of T observations:

p(x0:T ,y1:T ) = p(x0)
T

∏
t=1

p(xt |xt−1)p(yt |xt) (3)

where the model consists of three components: transition
probabilities p(xt |xt−1); emission probabilities p(yt |xt); and
an initial distribution p(x0). With no knowledge about the
initial location, p(x0) is a uniform distribution over states.

HMMs achieve their computational efficiency by limiting
interaction between X and Y ; i.e, the current state xt depends
only on the previous state xt−1 (Markovian state evolution),
and the current observation yt is conditionally independent of
the other states given the current state xt . These restrictions,
as expressed in Equation (3), have important implications for
our case: user motions must be decomposed into a directional
and a non-directional component, where directional proper-
ties (e.g. heading change by a turn) relate two states in time,
while non-directional information (e.g. walk distance) defines
compatibility between the associated motion and a single state.
Hence, we rewrite Equation (3) to represent this factorization:

p(x0:T ,y1:T ) = p(x0:T ,c1:T ,z1:T )

= p(x0)
T

∏
t=1

p(xt |xt−1,ct)p(zt |xt) (4)

where c is the “control” component governing state transi-
tion according to the observed direction change, and z is the
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Figure 3: States for the route network of Fig. 2a. Edge b-d gives two edge-
states b->d and d->b, and node c gives 8 node-states c\0 to c\7.

“measurement” component that determines single-state com-
patibility. Sections 5.4 to 5.6 describe how each type ofmotion
y defines its own transition and emission model according to
Equation 4.
5.2 Input Model

An input is a sequence of motion descriptors, each of which
models a unit action performed by the user while traveling
indoors, as explained in Section 3.1. In this paper, we use
the following subset of natural motion descriptors: {Rest,
Standing, Walking, Turning, Stair Walking, Elevator Ride, Door
Open}. Other labels produced by the motion tagger (§3.2),
including Sitting, Rising, and Button Press, were removed,
since they add little information to the descriptors above.

The motion labeler associates a direction with Turning and
vertical motions: {Left, Right, Left U-Turn, Right U-Turn} or
{Up, Down} respectively. Also, every motion has a duration,
from which some important geometric quantities can be esti-
mated: walking distance or turning angle. We do not estimate
other physical quantities from sensor measurements, because
values from the low-cost sensors in off-the-shelf mobile de-
vices would require careful calibration to be usable. Instead,
we opt to infer physical values only from motion durations,
by assuming constant walking speed and discretizing heading
to eight (egocentric) cardinal directions. Even though the re-
sulting estimates have limited accuracy, our matching method
is flexible enough to handle the significant uncertainty arising
from estimation error. Moreover, our framework does not
exclude the use of direct measurements.
5.3 State Model

Our state model represents instantaneous location and head-
ing at the completion of each unit motion. The state model is
derived from the route network (§3.3). Straight-line walking
or vertical transitions are matched to route network edges,
while other actions are considered to occur at point locations,
so are matched to route network nodes.

Heading To represent instantaneous heading, we gen-
erate multiple states from each edge or node, one for each
discrete heading (Fig. 3). For edges, because a user can walk
from either direction, we derive two directional edge-states
for each. Vertical connections between different floors are
treated analogously, having two directional edge-states per
connection. For nodes, because the user states after different
rotation angles do not represent the same state in our problem
(suppose the user starts walking after a rotation, then the next
state will be dependent on the last heading angle), we quantize
relative heading to produce eight different node-states for each
graph node.

“Express” Edges A straight-line walk that spans more
than one edge in the route graph must be matched to a series

of edges, instead of one. For example, in Figure 3, walking
from node a to cmatches a series of two edge-states, a->b and
b->c. To deal with this problem, the state graph is augmented
with express edges. An express edge is generated from a
series of edges that together form a nearly-straight path (e.g.
a->c in Fig. 3). Express edges are computed by performing
breadth-first search from each network node, while testing
if a series of edges can be combined into a single straight
path via the Douglas-Peucker criterion: tangential deviation
from the approximated line below a threshold [4]. We call the
original non-express edges local edges, an analogy adopted
from subway networks. When generating edge-states, both
types of edges are treated in the same manner.

Properties Each derived node- and edge-state inherits
properties from the corresponding element in the route
network and parent space. For instance, edge-states have
a length property, the distance from one end to the other.
Node-states are annotated with the type of the map object
(e.g. room, door, stair, elevator) from which they arise. These
annotations are used later during compatibility determination.
5.4 Matching Model: Horizontal Motions

This section describes the matching models for horizontal
motions. The transition models, depending on the quantized
angle input, have an identical form for all horizontal motions.
We then give specifics for each class of horizontal motion.

TransitionModel The transition model p(xt |xt−1,ct) de-
termines possible current states from the previous state, based
on the directional component ct that the observed motion
indicates. Since a user path must be continuous, we allow
transitions only to nearby states that can be reached in one
action. A stationary user on a node-state may change direction
while staying in the same location (e.g. standing turn), or start
to walk along a connected edge in the route graph. A walk-
ing user on an edge-state, on the other hand, must arrive at a
node state; at one turn would be required to reach a different
edge. Hence, we design the transition probability to have non-
zero mass p(xt |xt−1,ct) 6= 0 (making the corresponding graph
element “reachable”), only under the following conditions:
• xt−1 = a node-state on node A
⇒ xt ∈ { all node-states on A or

edge-states starting from A }
• xt−1 = an edge-state from node A to node B
⇒ xt ∈ { all node-states on B }.

In the absence of directional information, every reachable
next state is assigned the same transition probability. However,
the HMM formulation requires the sum of transition proba-
bilities from each state to be one (∑xt p(xt |xt−1) = 1). Some
algorithms distribute one unit of probability over outgoing
transitions [19]. However, in complex indoor environments
where the number of outgoing edges differs significantly from
place to place, this formulation inappropriately assigns high
transition probabilities to low-degree connections. We over-
come this problem using the approach of VTrack [33], which
assigns a global constant for each transition probability, and
uses a dummy state to keep the summed probability equal to
one.

Specifically, let ζ be the maximum out-degree in the route
graph. Then the base transition probability for each state
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reachable from a given state is 1/ζ. We incorporate directional
information from a motion observation by discounting the
base probability by a Gaussian angle compatibility function
of the difference between the observed turn angle from the
motion, ψct , and the expected turn angle between two states,
ψxt−1→xt :

fangle(xt ,xt−1,ct) = exp

{
− (ψct −ψxt−1→xt )

2

σ2
a

}
(5)

where σa is the angle compatibility parameter controlling the
extent to which the matching algorithm allows angle mismatch
(a higher value allows more matching freedom).

Summarizing, the transition probability for a motion with
control component ct (having turn angle ψct ) is defined as:

p(xt |xt−1,ct)=


1
ζ · fangle(xt ,xt−1,ct) xt reachable from xt−1

1−ν xt = "dead-end" state
0 otherwise

(6)
where ν≤ 1 is the sum of transition probabilities to reachable
next states:

ν = ∑
xt :reachable

p(xt |xt−1,ct). (7)

As in VTrack, the remaining probability mass 1−ν flows to
the dead-end state, which has no further outgoing transitions
and is incompatible with any further input motion. Any trajec-
tory arriving at the dead-end state will have zero compatibility
during decoding, and thus no chance of selection.

Emission Probability The emission probability p(zt |xt)
is determined indirectly by setting the posterior probability of
a state given the observation, p(xt |zt), which is more natural
to consider in our framework. For a fixed, known input motion
zt , specifying the compatibility functions between xt and zt
in the posterior form p(zt |xt) is equivalent to setting them in
the original form p(zt |xt) under proper normalization. For
convenience, we refer to the posterior form as an “emission
probability.”

Rest and Standing Whenever a non-turning motion,
such as Rest (Sitting), Standing, or (straight-line) Walking is
observed, the turning angle observation is set to zero, ψct = 0.
This effectively penalizes path hypotheses having a non-zero
turn at that time with compatibility as determined by Equa-
tion (5).

Since neither Rest nor Standing involve any transitional
motions, the emission probability (posterior probability) sim-
ply ensures that the current state must have type node-state,
not edge-state:

p(xt |zt = stationary) ∝
{

1 xt = node-state
0 xt = edge-state

(8)

A more sophisticated model would distinguish ways of
being stationary from context, exhibiting a stronger preference
for certain space types when Rest (vs. Standing) is observed.

Straight-line Walking Like stationary motions, the tran-
sition probability for Walking follows the turn-angle-based
formula (Eq. 6) with zero observed turn angle ψct = 0.

For emission probability, unlike stationary motions, the
walking motion must be matched on a local or express edge-
state, not a node-state. We also incorporate walking dis-
tance compatibility here. We model human walking speed
as a normal distribution centered at a constant µs with vari-
ance σ2

s , i.e. as N (µs,σ2
s ). The distribution of a “projected”

walking distance for a straight-walk of duration ∆t is then
N (µs∆t,σ2

s ∆t2). However, we observed that for short walk-
ing motions, duration estimates derived from the motion la-
beler’s automatic segmentation were often inaccurate, causing
underestimation of true walking duration. Thus using the es-
timate as is will produce an inappropriately small variance
of the projected distance, leading to overly narrow regions
of compatibility compared to the granularity of the route net-
work map. Therefore, we set a minimum variance for the
projected walking distance, σmin

d , to prevent the variance from
collapsing. The distance compatibility function between a
straight-line walk motion with duration ∆t and an edge-state
xt is then defined as:

fdist(xt ,zt = walk) = exp
{
− (lxt −µs∆t)2

2σ2
d

}
(9)

σd = max(σs∆t,σmin
d ) (10)

where lxt is the length of the edge-state xt . We set σmin
d to 3 ft

(≈ 0.91m) for our corpus to match the approximate granular-
ity of the route network. Finally, the emission probability for
a straight-line walk is:

p(xt |zt = walk) ∝
{

fdist(xt ,zt) xt = edge-state
0 xt = node-state.

(11)

Turn We model turns as point motions in which the user
changes only heading direction while staying on one route
graph node (and experiencing no net translation). Each turn
observation is quantized to a multiple of π/4 to produce a
value ψct . The transition and emission models are identical
to those for stationary motions (Eqs. 6 & 8) except that each
turn involves a non-zero heading change.
5.5 Matching Model: Vertical Motions

Vertical motions, including stair and elevator transitions,
are associated with vertical edges that connect different floors
in the route graph.

Elevators Elevator ride motions provide three pieces of
information to be exploited during matching: type, direction,
and length. First, only vertical edges associated with an ele-
vator can be matched to an elevator ride motion. Second, the
ride direction (up or down) determines the direction of the
edge-state to be matched in the transition model. Last, the
number of floor transitions, which constrains the length of
the vertical edge, is determined from the ride duration. The
transition model for vertical motions (including elevator ride
and stair walk) is:

p(xt |xt−1,ct) =

{
1
η xt−1→ xt matches ct

0 otherwise
(12)

whereη is the maximum out-degree among vertical transitions
in the route graph (analogous to ζ for horizontal transitions).
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Essentially, the transition model determines next possible
states based on the space type (vertical) and direction.

For the emission probability, the number of floor transitions
or “vertical moving distance” is probabilistically determined
by a compatibility function analogous to the distance com-
patibility function (Eq. 9). The number of floor transitions
is estimated from the duration, and matched with the floor
difference implied by each vertical edge, using a Gaussian
compatibility function.

Stairwells Like elevator rides, stair ascents and descents
are matched by their associated type and properties. In princi-
ple, traversing a staircase could be treated in the same manner
as level walking, if the detailed shape of all staircases in the
corpus were known. For instance, if the precise shape of each
spiral stair including the number of treads and spiral direction
were known a priori, we could match every fine-grained sub-
motion of a stair walk to an individual stair segment. However,
our floorplans do not model stairwells with such precision,
representing them instead simply as rooms with type “stair.”

In light of this limitation, we instead summarize a series
of fine-grained stair motions into a single, abstract stair mo-
tion starting at one end of a stairwell and ending at the other.
Our system parameterizes stair transits by vertical direction
(up / down), spiral direction (clockwise / counter-clockwise
/ straight), and duration as in elevator rides. (We manually
annotated the spiral direction of each staircase in our corpus.)
These properties are used inmatching similarly to elevator ride
motions; vertical direction is incorporated in the transition
model, while length and spiral sense are used in the emis-
sion model. We model half-stairs differently from full-stairs,
because the shorter transition through a half-stair can be eas-
ily missed by the motion labeler, causing a missed detection.
We avoid this by allowing half-stairs to match straight-walk
motions.
5.6 Matching Model: Special Cases

Door Open We use detected door-open actions to con-
strain the user path when matching. Every door in the floor-
plan has an associated node in the route graph, from which
states are generated. The detection of a door-open action indi-
cates that the user is likely to be in one of these node-states.

However, we do not treat the door-open observation as a
hard constraint; as are half-stairs, door-open actions are often
confused with similar actions by the low-level motion labeler.
Instead, the matching algorithm has the flexibility to violate
the door constraint if necessary. To that end, we assign a
small non-zero probability to non-door states even when a
door-open action is detected:

p(xt |zt = door) ∝


α xt = door node-state
1 xt = non-door node-state
0 xt = edge-state

(13)

where α >> 1 is a ratio encoding a preference for door node-
states when a door-open action is detected. Larger values of
α make the matcher less likely to violate door constraints.

LongWalks Though we introduced express edges to han-
dle straight-line walks spanning multiple edges, very long
walks might not be handled well even with this mechanism.
Suppose for example that the user has walked for a minute,

traversing a 100-meter corridor. If the path is slightly curved,
the motion classifier would fail to detect the curvature. This
single straight-line Walking observation would have to be
matched to a long series of successive edges in the route
network. Automatically creating express edges for such long
edges would introduce many additional edges to the state
graph, increasing the computational complexity of matching.
A simple solution to this problem is to split lengthy walks
into smaller intervals, each of which can then be matched to
an express or local edge. Our method uses a threshold of 15
seconds (about 20 meters of walking).
6 Algorithms

In Section 5, we modeled the trajectory matching problem
from a user motion sequence using the HMM formulation.
In this section, we present algorithms for recovering user tra-
jectories and estimating model parameters from unannotated
user motion data.
6.1 Matching Algorithm

To decode a user trajectory in the HMM model with Equa-
tion (4), we use standard methods: forward-filtering to com-
pute the distribution of the most recent state xT (as in con-
ventional particle filters for localization), forward-backwards
algorithm to compute “smoothed” distributions of xt in the
past (1≤ t ≤ T ), and the Viterbi algorithm to find the “most
likely” trajectory x1:T [25].

In this paper, we use the Viterbi algorithm to compute
the most likely continuous trajectory. Smoothed estimates
computed by the forward-backward algorithm are similar to
those from Viterbi, but are not guaranteed to be spatially
continuous. Unlike conventional particle filters that update
only the last position estimate upon each new input, the most-
likely-trajectory approach updates the entire path. Also, the
Viterbi algorithm can easily be modified to yield the k-best
state sequences instead of the single best, along with matching
scores. The score gap between the best sequence and the rest
can be used to gauge uncertainty in the current estimates.

In practice, the algorithm should be implemented to exploit
sparsity of our state model rooted on route networks. Because
a user pathwithout a significant rest periodmust be continuous,
the number of possible transitions from a specific location is
physically bounded by the maximum out-degree in the state
graph. With N states and an input sequence of length T ,
sparsity yields a time complexity of O(NT ) for the matching
algorithm, rather than O(N2T ) for non-sparse models. The
complexity of computing transition and emission models is
O(N) per unit motion.
6.2 Parameter Learning

The matching models require specification of a few pa-
rameters. These include include physical parameters, such
as walking speed constant µs (Eq. 9), and other parameters
that determine association strength between motions and user
paths (σa, σd , and α in Eqns. 5, 9 and 13, resp.). Some of
these parameters have a physical interpretation, which provide
a basis for setting a value in the model. For example, from
prior knowledge of average human walking speed, we can
determine µs empirically.

In this section, however, we show how to determine these
parameters automatically from unannotated data – motion
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sequences with unknown location labels – using a variant of
the Expectation-Maximization (EM) algorithm. This process
can be used to learn individually-tuned parameters for a dataset
from a single user, or alternatively to learn good parameters
for a dataset captured from the motions of many users.

Intuitively, for a given motion dataset, some parameter
settings will produce better trajectories than others in terms
of explanatory power. For instance, the best path found by
setting the walking speed to 5 km/h (average human walking
speed) is more “plausible” than the path found by setting it to
1 km/h. Given n data sequences {yi

1:Ti
|1≤ i≤ n}, we search

for the parameters Θ∗ and paths xi
1:Ti

∗ that maximize joint
probability of the HMMs:

Θ∗,x1
1:T1

∗
, ...,xn

1:Tn
∗← argmax

Θ,x1
1:T1

,...,xn
1:Tn

n

∏
i=1

p(xi
1:T ,yi

1:T ;Θ). (14)

This optimization problem is solved by the hard-EM algo-
rithm (also known as Viterbi training or segmental K-means)
[10]. It finds the best parameters (along with the best paths)
in coordinate ascent manner. First, the parameters Θ are fixed,
and the best paths are found using the Viterbi algorithm. Next,
the estimated paths xi

1:Ti
are treated as ground truth, and new

parameters are estimated. This process is iterated until con-
vergence:
1. Initial parameters: Θ(0).
2. Step τ = 1,2, ..., repeat until convergence (Θτ−1 ≈Θτ):

(a) Given Θ(τ−1), find paths xi
1:T (τ) using the Viterbi

algorithm;
(b) Estimate new parameters Θ(τ) from inputs and de-

coded labels at τ: {xi
1:T (τ),yi

1:T |1≤ i≤ n}.
Since the optimization problem in Equation (14) is not

convex in general, and hard-EM does not guarantee identi-
fication of the global optimum, care must be taken in using
this approach. Therefore, it is helpful to guide the learning
process by providing a good set of initial parameters and by
limiting the range of each parameter, using common-sense
knowledge of human motions.
7 Evaluation
7.1 Experimental Methodology

We collected 30 single- and multi-floor motion sequences
over seven days. Of these, 21 traces contained at least one
vertical transition (elevator or stair transit). The total length
of the dataset is 58 minutes, with an average sequence length
of about 2 minutes. Our deployment area was a nine-story,
67,000 m2 office and lab complex. We used four floors of the
building, from the ground level up to the fourth floor. Cover-
age included most corridors and many office and lab spaces.

We developed data logging software running on a Nokia
N900 mobile phone for motion sensing. The N900 host con-
nects to an external sensing unit, containing five consumer-
grade MEMS sensors in a 4× 4× 1cm package: a tri-axial
accelerometer, tri-axial gyroscope, barometer, thermometer,
and tri-axial magnetometer. We chose to use the external sen-
sors because the N900 did not provide sensors that more recent
smartphones support, other than the accelerometer. However,
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Figure 4: Motion labeling performance by different feature window schemes.
The motions are sorted by descending order of occurrence (the number of
segments) in the training data set.

the sensing unit featured equivalent set of MEMS sensors and
was rigidly attached to the host smartphone. We also verified
that its sensing characteristics are identical to that of built-in
sensors.

Our low-level motion classifier performed satisfactorily
on uncalibrated sensor data (i.e. with unit conversion factors
left as factory defaults). The data logging module connected
to the sensing unit via Bluetooth and continuously sampled
time-stamped sensor data, which were then offloaded to a
desktop computer for offline analysis. Our evaluation pipeline
first predicted user motions from the sensor data in leave-
one-trajectory-out manner, then matched each labeled motion
sequence to a trajectory.

We determined ground-truth trajectories by annotating
video of the user and background recorded by the host smart-
phone. We used a custom GUI to indicate the type and du-
ration of each low-level motion, and its location on the map;
locations and motion types were interpolated at fine grain
from these annotations.

7.2 Motion labeling: Feature Templates
We first evaluated the effectiveness of the feature templates

(§4.4) on the fine-grained labeling of indoor motions. The
central idea of using feature templates is to generate multi-
ple features with varying window sizes from the same feature
function. To highlight its effectiveness, it was compared to the
cases in which only a fixed window size was used for feature
computation. We selected a very short feature window (con-
sisting of a single frame, 0.33 seconds, except for the features
from low-rate sensors, such as a barometer), and a long feature
window (16 frames or 5.33 seconds) for comparison. On the
other hand, our feature template method generates all the pos-
sible combinations of features and window sizes, and let the
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Figure 6: Trajectory error for the first example trace (§7.3)
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Figure 7: Trajectory error for the second example

CRF model learn the optimal weight for each combination.
Figure 4 shows the classification performance. We com-

puted frame-by-frame f-measure (harmonic mean of precision
and recall) as a performance metric (i.e., the unit of evaluation
is a frame of 0.33 seconds).

Overall, the f-measure of our labeling method using fea-
ture templates was 94.5% (95.2% precision and 93.8% recall),
which were significantly higher than 89.0% (90.2% preci-
sion and 88.5% recall) of short feature windows (short in
Fig. 4) or 81.4% (86.9% precision and 79.9% recall) of long,
16 frame feature windows (long in Fig. 4). Notably, when
only short windows were used, classification error was higher
for long motions: U-turns were confused with right turns;
vertical motions, especially stair motions were misclassified
as the short windows did not contain enough information to
compute precise barometric pressure gradient, an essential
feature for detection of vertical motions. In contrast, when
only long windows were used, there was remarkable perfor-
mance degradation for transient motions, in particular turns.
The classification accuracy for access motions (DoorOpen and
ButtonPress) degraded as well.

While the classification accuracy was very high for many
essential motions with feature templates, our labeling method
still had difficulty in classifying certain motions that were
either rare or inherently difficult to recognize with measure-
ments from mobile phones. However, our probabilistic map
matching method is designed to be robust to such inaccuracies
in input, by considering them only as “soft constraints.” (See
e.g. Eq. 6 or 13)
7.3 Trajectory Matching Examples

We illustrate the trajectory matching algorithm’s behavior
using matching results from two test traces. We measured
three-dimensional error in which a vertical error due to an
incorrect floor estimate was considered to be 15 meter/floor.

In the first example (Figs. 5 & 6), the user started from
an office on the third floor, transited to the fourth floor via
elevator, walked across the fourth floor, and returned to the
starting office via a different elevator. No information was
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Figure 8: Overall trajectory error (median and interquartile range) over time

known about the user’s starting location.
Figure 5 shows a few snapshots of the trace over time.

We compute trajectory error at time t (Fig. 6) by computing
pointwise error at each frame (3 Hz) until t, then taking the
median as the representative trajectory error at t. (The stair-
step nature of the error plots arises from the fact that the
algorithm computes a new trajectory estimate whenever a new
unit motion becomes available.)

Initially, not enough information is available to constrain
the user path; the user has made only one significant turn, clas-
sified as Right U-Turn. Hence, there were many plausible em-
beddings of this short motion sequence throughout the corpus
(Fig. 5a). The method started to find the correct path before
the user took an elevator to the fourth floor (“ELEV:3->4” in
Fig. 6). The user next walked faster than average, resulting
in a large disparity between the true and estimated walking
distance. This made the algorithm select an incorrect, alterna-
tive path, which better matched the distance estimate while
sacrificing angle compatibility (Fig. 5b). The correct path was
eventually recovered as the user took the elevator, providing
strong evidence of location. This example shows how the
algorithm recovers the correct path history from a transient
failure by incorporating stronger constraints.

We show another example in which the algorithm matches
the true path after 45 seconds of walking (Fig. 7). Though the
user walked on a single floor, the true path was sufficiently
distinctive to enable rapid convergence, yielding the true tra-
jectory after a few turns.
7.4 Ensemble Trajectory Error

We evaluated the matcher’s performance by computing
trajectory error over all sequences in the dataset. Figure 8
shows the progression of trajectory error statistics (median
and interquartile range) over time. The x-axis includes time
spent for all motions, not only for walking. The matching al-
gorithm is typically highly uncertain until it reaches a “tipping
point” at which enough information is available to constrain
the user path with high accuracy. For more than half of the
test traces, the algorithm started to match an input motion
sequence on the correct path within about one minute, and
for almost all traces within about two minutes, similar to the
results of Rai et al. [27]. Note that the exact tipping point is
also a function of the characteristics of the corpus and the
underlying motion labeling algorithm, rather than solely of
the matching algorithm.
7.5 Salient Features

Certain motion classes, when detected, provide strong con-
straints on the user path. Navigation-related events such as
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(a) t = 24 sec, 3rd floor (b) t = 240 sec, 4th floor (c) t = 269 sec, 4th floor

Figure 5: Matching example (green: ground truth; red: best path found; blue: other path candidates): (a) after only one right turn, many plausible paths; (b)
before elevator transit, matching drifted due to noisy walking distance estimate; (c) after elevator transit, matching algorithm corrected the entire path.
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(c) Door-open actions

Figure 9: Error decreases when salient motions are observed.

vertical transitions or door-open actions limit the user path to
a small number of candidates, as there are only a few ways
in which such motions can occur within the provided route
graph.

We confirm this intuition by measuring the trajectory error
after the user experienced a certain number of each kind of
salient motion: turn, vertical transitions (elevators / stairs),
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Figure 10: Trajectory error is lower when the initial floor is provided.

and door-open actions. For each trajectory, we computed the
total number of (ground-truth) salient motions that had been
experienced in that trajectory as of each sensor frame. Note
that the low-level motion classifier sometimes fails to detect
these features; missed actions will not contribute to matching.

The results (Fig. 9) confirm that distinctive motions facili-
tate matching by providing additional constraints on possible
user paths. However, different motions contribute by differ-
ent degrees; constraints provided by vertical transitions are
strongest among the motion classes tested (Fig. 9b). This is
because vertical motions were detected very reliably by our
classifier, and stairwells and elevators occur rarely in our build-
ing (as in most buildings) compared to ordinary rooms. On
the other hand, door-opens, which were often missed or mis-
classified, were a less reliable source of information (Fig. 9c).
Turns were weakest among three, because the angle compat-
ibility function (Eq. 5) allows relatively broad freedom in
matching, enabling many plausible paths on the map until a
certain number of distinct turns were accumulated (Fig. 9a).
7.6 Prior Information

Prior information other than motion sequences could be
valuable for matching. If available, such information could
potentially make the matching process converge faster to the
true user path. Our trajectory matching formulation admits
various types of prior information to be incorporated in the
model, e.g. by setting an initial state distribution or by pre-
filtering candidate locations.

We assessed the method under a hypothetical scenario in
which the starting floor (but not the precise location) is known
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(a) Cumulative computation time as a function of input length

(b) CPU time per unit motion increases with the number of states.

Figure 11: Time for Matrix and Viterbi (“Decoding”) computations

beforehand. Floor information may be available from a dif-
ferent sensor (e.g. WiFi, or barometer [5]), or by taking user
attributes (e.g. office number or calendar contents) into ac-
count. To test this scenario, we initialized the state distribution
p(x0) uniformly over the known starting floor.

Figure 10 compares error with and without starting floor
information. With the initial floor known, the bootstrapping
time required to yield median trajectory error below 5 meters
was 51 seconds, 14 seconds faster than the 65 seconds required
when the initial floor was unknown. This improvement was
due to better matching for previously ambiguous test paths
that did not traverse multiple floors. We expect starting floor
information to be particularly salient when the user motion
trajectory has no or few vertical transitions and different floors
have spatially similar layouts.

7.7 Computation Time
We studied the computational complexity of our matching

algorithm. As explained in Section 6.1, the Viterbi decoding
algorithm with a sparse model has time complexity of O(NT )
rather than O(N2T ), for N states and T timesteps. The com-
plexity of transition and emission matrix computation is also
O(NT ), or O(N) per unit motion. Online, computation of the
model matrices is amortized; each matrix is computed only
once and stored for reuse in later executions.

Our unoptimized Python/SciPy implementation exhibited
update times linear in the input sequence length (Fig. 11a).
Its running time scaled linearly with the number of states
(Fig. 11b), which we varied by selecting subsets of the map.

8 Discussion
Our method recovered user paths successfully for most

cases during the test deployment from only a discrete motion
descriptors without any absolute positioning fixes such as RF
scans. However, our method as presented in this paper has
several limitations.

In our experiments, we had an instance in which no turns
were detected by the motion classification algorithm when the
user walked over a gently curving bridge. The bridge did not
contain any sharp turns (which caused the motion classifier to
fail to detect turns) but the net difference in heading before and
after crossing the bridge was nearly 90 degrees. In that case,
the motion over the bridge was recovered as a single, long
straight-line walk, which the map matching algorithm tried to
match to long corridors rather than to the true bridge path. We
anticipate that this problem could be alleviated by introducing
an additional motion model describing such situations (i.e.
Gentle Turn).

Also, as demonstrated in Section 7.5, the absence of salient
features may cause the method to fail, or may delay acquisi-
tion of the current location. Likewise, if floor layouts in the
building are nearly identical, our method per se may fail to
identify the correct floor as there will be multiple paths with
the same posterior probability. In this case, the method can re-
sort to “external information” such as one-time WiFi scanning
or prior information about the user (e.g. user’s office location)
to constrain the true location among these possibilities (§7.6).

In future work, we anticipate that the current model can
be expanded in a variety of ways to become more expressive
while handling uncertain cases more gracefully. For exam-
ple, the matching model can exploit, or even infer, a user’s
activity pattern in indoor environments. Because people tend
to traverse and use spaces in similar fashion, there exists a
natural association or “activity map” between activities and
space types. While at present we use such cues only for ver-
tical motions, associating them with stairs or elevators, this
mapping can be generalized to handle other motion classes,
e.g. sitting in an office, or walking in a corridor, by defining
emission probabilities that capture the corresponding associ-
ations. Conversely, the trajectory matching algorithm could
be used to learn (unknown) associations from user data by
bootstrapping, as it can proceed given only geometric and
topological compatibilities, without requiring or using seman-
tic information. This learned association could then be used
to facilitate later matching processes, creating a closed loop
between trajectory estimation and activity map learning.

Another way to extend the model would be through joint
estimation of multiple paths from a single user or multiple
users. At a single-user level, each user tends to repeat some
paths, exhibiting a few distinctive motion patterns, or often
returns to a few select locations. At a multi-user level, each
user will encounter or accompany others, having either brief
or substantial overlap with other users’ paths. We anticipate
that such information can be collected from multiple paths,
with the aid of device proximity sensors (e.g. ad hoc WiFi or
Bluetooth), and can be incorporated into the model as a form
of “second-order” compatibility.

9 Conclusion
We described a fine-grained indoor localization and trajec-

tory estimation method based on the notion of path compat-
ibility: probabilistic agreement between user motions and a
prior map encoded as a route graph. We defined user motion
traces as a sequence of navigation-related actions, which were
automatically estimated by a classification algorithm from
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proprioceptive sensor data. The method assumes route net-
works (derived automatically) from legacy floorplans of the
deployment area. With these inputs, we defined an HMM-
based matching model that encodes the compatibility between
motions and locations, and used the model to decode the most
likely trajectory given an input motion sequence. We also
showed how to learn the model parameters from unannotated
data.

Testing on user data from four floors of a deployment area
demonstrates that our method can recover the user’s location
trajectory to within a few meters using only proprioceptive
sensor data from a commodity mobile device. However, our
method fails where the uncertainty of the user motion and/or
prior map is large. As future work, we anticipate that the
current model can be extended to handle more general classes
of motions and to incorporate more expressive semantic asso-
ciations between motions and spaces.
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