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Motivation: Location Determination
for Mobile Applications
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Wi-Fi Localization

* Objective: Learnamap f : S = P from signal
space S to physical space P

— Signal features: signal strength (RSSI)/detection/... for
each wireless access point (WAP)

— Physical location: (x,y) coordinates/location labels
e Employ a learning algorithm with training
(calibration) examples {(s;, p;)} “fingerprint”
* Limiting assumptions
— Need training data for each location

— Localization samples are drawn from the same
distribution as the training samples



Organic Localization™

* Pros

— Mitigates the need for training data by
crowdsourcing

— The system facilitates sharing fingerprints among
users

 Challenge

— Device diversity due to multiple
producers/consumers

— Different antennas, chipsets, drivers, OS’s

* Teller et al, Organic Indoor Location Discovery, MIT-CSAIL-TR, 2008
* Park et al, Growing an Organic Indoor Location System, MobiSys, 2010



Overview

We present an experimental analysis and
design considerations for organic localization
with heterogeneous devices

e Heterogeneous WiFi Signal Strength
Characteristics

e Feature Design of Localization Algorithms for
Heterogeneous Devices




Data Collection

e 6 different devices including 5 distinct models

e Data collected at 18 locations in a building

e Data available at http://rvsn.csail.mit.edu/location

Device WiFi Chipset OS Kernel
Clevo D901C Intel 5300AGN Linux Linux 2.6.32
laptop (802.11a/b/g/n) Ubuntu 10.04

Asus EEE900A Atheros ARS5001 Linux Linux 2.6.32
netbook (802.11b/¢) Ubuntu 10.04

Lenovo Thinkpad  Intel 4965AGN Linux Linux 2.6.32
X61 laptop (802.11a/b/g/n) Ubuntu 10.04

Nokia N810 Conexant CX3110X  Maemo Linux 2.6.21
tablet (x2) (802.11b/g) 0OS2008

Nokia N95 TI OMAP2420 Symbian EKA2
cellphone (802.11b/¢) S60 FPI




Algorithm (Signal-Strength-Based)

e Bayes classifier

leO(- 0) = p0(0) O : Signal observation

[ =lpmap = argmax [])0|L(0V )
leL ]

e Signal-strength feature, independence between
APs

[ = argmax H 1)5_|L(.s-i|l) Si: Signal strength
leL ' from AP i

 Training: learning Ds;|L for each WAP i, Location [



Cross-Device Positioning with Signal
Strength Features

* Training data from device A

— Ds;|1. Was estimated with data from device A

* Localization on device B
— Ds,|1. Is different for data from device B

— Prediction performance degrades



Linear Transformation for Calibration?

e Scatterplot matrix
of signal strengths
from different
devices

e High linear
correlations exist

 Previous work*
suggested linear
transformation
would be sufficient

Signal Strength (dBm)

* Haeberlen et al., Practical Robust Localization over Large-
Scale 802.11 Wireless Networks, MobiCom, 2004,

Tsui et al., Unsupervised Learning for Solving RSS Hardware
Variance Problem in WiFi Localization, Mobile Networks and
Applications, 2009
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Linear Transformation for Calibration?

e Linear transformation alone does not solve
the problem

e When N810(2) is used for training:
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Linear Transformation for Calibration?
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“Smoothing” by Kernel Density
Estimation

e \We need to take into account the variation in
individual samples from different devices

e Kernel density estimator

€T — Iy -
koo } : - z K (x, x;) : kernel function
Iv\T) = — K ‘
PX ( ) nh h h : kernel width
=1

e M-estimator on kernel density estimate

) *\vjA)/‘{ (I) + (I)j_)/\r (1)
px(r) = -
N+ &




Kernel Density Estimator Improves
Cross-Device Localization

Without smoothing
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Overview

We present an experimental analysis and
design considerations for organic localization
with heterogeneous devices

e Heterogeneous WiFi Signal Strength
Characteristics

e Feature Design of Localization Algorithms for
Heterogeneous Devices
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To Use or Not To Use AP Detection

Feature?
. ] = {1 if AP; detected
Y otherwise

e Multivariate Bernoulli model (J;, 1 < i < k, k WAPs)

y j J; . ) —J;
[ = ;11-g111;1x|: H {]-’JJL(H”} {l —in|L(l’/)}1 }
el |1<i<k
e Combine with signal strength (hybrid)
A ) _ Ji
[ = ;11‘5.;‘111;1}:[ H {in_|L(l\l) I)Si_lji,L(.s-.i|l.l)}

el |1<i<k

{1— 1)J1|L(1V)}a(lj')}
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Detection Frequency Varies
Across Devices
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Localization Performance with
Different Sets of Features

e Detection feature does not help cross-device
localization
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Empirical Characterization

 Quantified difference in AP detection by Kullback-
Leibler divergence of detection rate probabilities
J; between different devices
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Discussion

Detection frequency feature does not give much
extra information

Detection frequency feature is largely
incompatible across devices

Signal-strength-only construction does not
explicitly model detection process

Other non-Bayesian algorithms (k-NN, SVM, ...)
are also affected because missing entries need to

be filled in



Concluding Remarks

* Localization algorithms for cross-device
positioning need to account for different
dispersions in signal strengths
— Smoothing by kernel density estimation is an easy way

to improve cross-device localization

e Localization algorithms should use only
“transferrable” information across different

devices

— AP detection frequency feature may be harmful
because it varies widely across different 802.11

devices.



Concluding Remarks

Localization algorithms for cross-device positioning need to account
for different dispersions in signal strengths

— Smoothing by kernel density estimation is an easy way to improve
cross-device localization

Localization algorithms should use only “transferrable” information
across different devices

— AP detection frequency feature may be harmful because it varies
widely across different 802.11 devices.

Organic indoor localization

— Teller et al., Organic Indoor Location Discovery, MIT-CSAIL-TR-2008-
075, 2008

— Park et al., Growing an Organic Indoor Location System, MobiSys 2010

— Ledlie et al., Molé: a Large-Scale, User-Generated Positioning Engine,
IPIN 2011, submitted

— http://rvsn.csail.mit.edu/location



Detection Frequency Varies Across
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