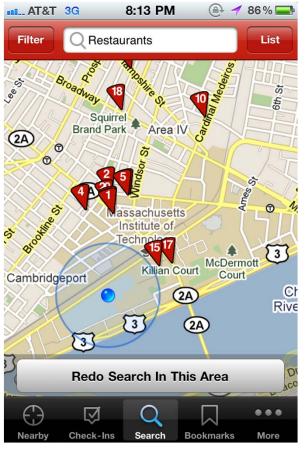


Implications of Device Diversity for Organic Localization

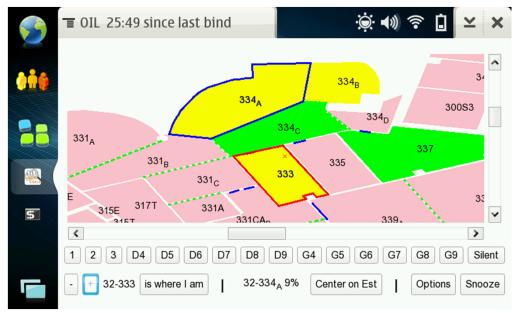
Jun-geun Park¹, Dorothy Curtis¹, Seth Teller¹, Jonathan Ledlie²

Computer Science and Artificial Intelligence Laboratory, MIT¹ Nokia Research Center Cambridge²

Motivation: Location Determination for Mobile Applications



yelp (www.yelp.com)



Teller et al., "Organic Indoor Location Discovery", 2008

Wi-Fi Localization

- Objective: Learn a map $f: S \rightarrow P$ from signal space S to physical space P
 - Signal features: signal strength (RSSI)/detection/... for each wireless access point (WAP)
 - Physical location: (x,y) coordinates/location labels
- Employ a learning algorithm with training (calibration) examples $\{(s_i, p_i)\}$ "fingerprint"
- Limiting assumptions
 - Need training data for each location
 - Localization samples are drawn from the same distribution as the training samples

Organic Localization*

Pros

- Mitigates the need for training data by crowdsourcing
- The system facilitates sharing fingerprints among users

Challenge

- Device diversity due to multiple producers/consumers
- Different antennas, chipsets, drivers, OS's

^{*} Teller et al, Organic Indoor Location Discovery, MIT-CSAIL-TR, 2008

^{*} Park et al, Growing an Organic Indoor Location System, MobiSys, 2010

Overview

We present an experimental analysis and design considerations for organic localization with heterogeneous devices

- Heterogeneous WiFi Signal Strength Characteristics
- Feature Design of Localization Algorithms for Heterogeneous Devices

Data Collection

- 6 different devices including 5 distinct models
- Data collected at 18 locations in a building
- Data available at http://rvsn.csail.mit.edu/location

Device	WiFi Chipset	OS	Kernel
Clevo D901C	Intel 5300AGN	Linux	Linux 2.6.32
laptop	(802.11a/b/g/n)	Ubuntu 10.04	
Asus EEE900A	Atheros AR5001	Linux	Linux 2.6.32
netbook	(802.11b/g)	Ubuntu 10.04	
Lenovo Thinkpad	Intel 4965AGN	Linux	Linux 2.6.32
X61 laptop	(802.11a/b/g/n)	Ubuntu 10.04	
Nokia N810 tablet (x2)	Conexant CX3110X (802.11b/g)	Maemo OS2008	Linux 2.6.21
Nokia N95	TI OMAP2420	Symbian	EKA2
cellphone	(802.11b/g)	S60 FP1	

Algorithm (Signal-Strength-Based)

Bayes classifier

$$p_{L|O}(l|o) = \frac{p_{O|L}(o|l) \ p_L(l)}{p_O(o)} \qquad \qquad \begin{array}{l} L: \text{Location} \\ 0: \text{Signal observation} \\ \hat{l} = l_{MAP} = \underset{l \in L}{\operatorname{argmax}} \left[p_{O|L}(o|l) \right] \end{array}$$

Signal-strength feature, independence between APs

$$\hat{l} = \operatorname*{argmax}_{l \in L} \left[\prod_{i \in M} p_{S_i|L}(s_i|l) \right] \qquad \begin{array}{l} S_i \text{: Signal strength} \\ \text{from AP i} \end{array} \right.$$

• Training: learning $p_{S_i|L}$ for each WAP i, Location l

Cross-Device Positioning with Signal Strength Features

- Training data from device A
 - $-p_{S_i|L}$ was estimated with data from device A
- Localization on device B
 - $-p_{S_i|L}$ is different for data from device B
 - Prediction performance degrades

Linear Transformation for Calibration?

-55

D901C

- Scatterplot matrix of signal strengths from different devices
- High linear correlations exist
- Previous work*
 suggested linear
 transformation
 would be sufficient

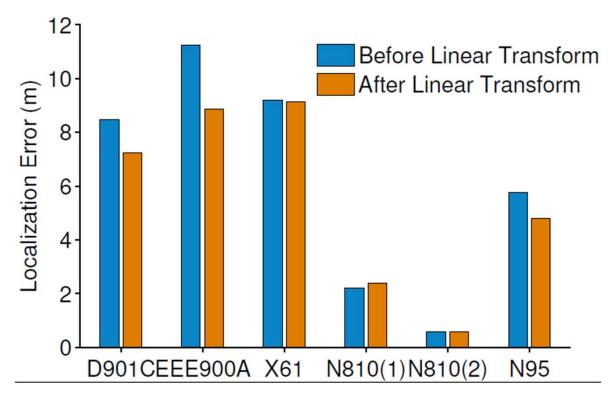
Tsui et al., *Unsupervised Learning for Solving RSS Hardware Variance Problem in WiFi Localization*, Mobile Networks and Applications, 2009

⁻⁹⁵ 0.747 -55EEE900A -95Signal Strength (dBm) 0.952 0.767 0.785 -55 X61 -95 -55 N810(1) -95-55N810(2) -950.868 -55N95 -95-95 -55 -95 -55 -95 -55 -95 -55 -95 -55 Signal Strength (dBm)

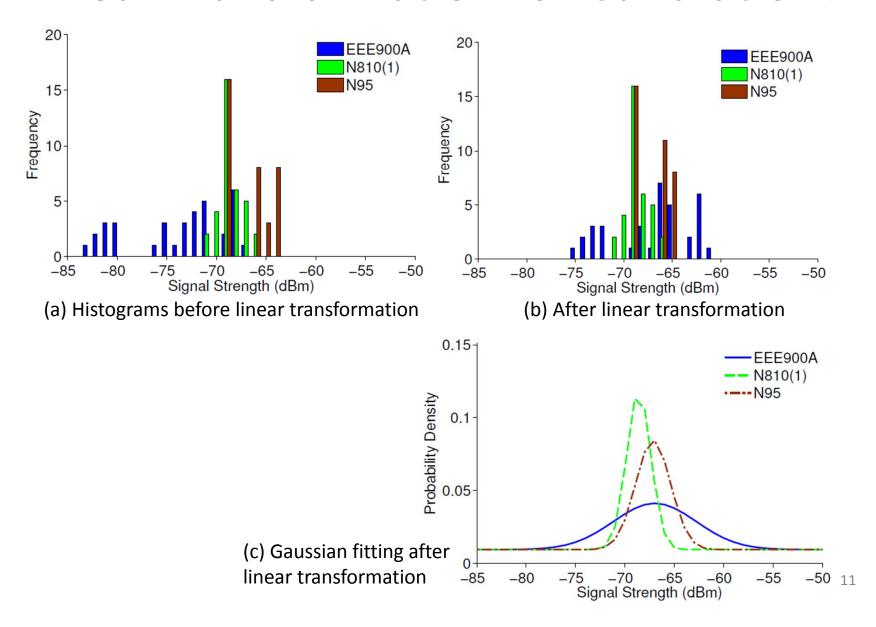
^{*} Haeberlen et al., *Practical Robust Localization over Large-Scale 802.11 Wireless Networks*, MobiCom, 2004,

Linear Transformation for Calibration?

- Linear transformation alone does not solve the problem
- When N810(2) is used for training:



Linear Transformation for Calibration?



"Smoothing" by Kernel Density Estimation

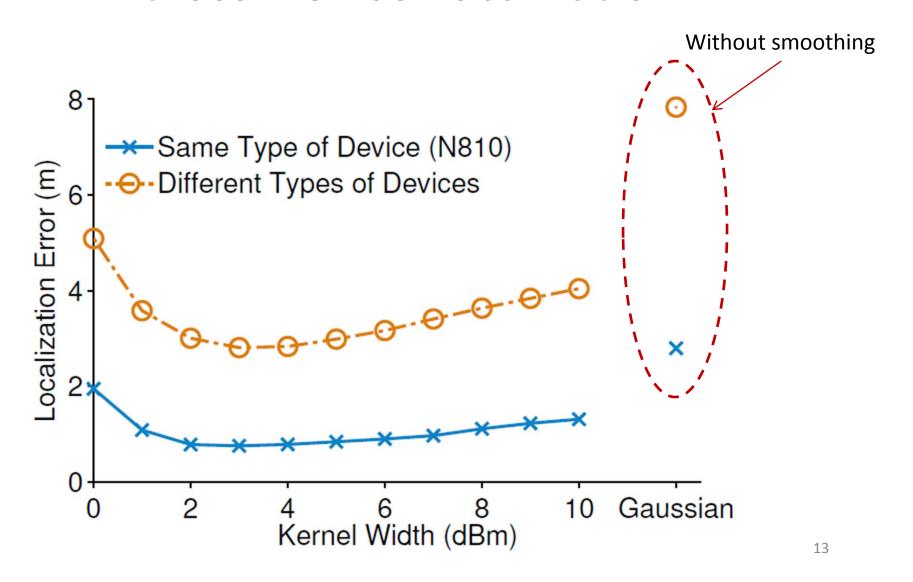
- We need to take into account the variation in individual samples from different devices
- Kernel density estimator

$$\hat{p}_X^k(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right) \quad \begin{array}{l} K(x, x_i) : \text{kernel function} \\ h : \text{kernel width} \end{array}$$

M-estimator on kernel density estimate

$$p_X(x) = \frac{N\hat{p}_X(x) + \Phi\bar{p}_X(x)}{N + \Phi}$$

Kernel Density Estimator Improves Cross-Device Localization



Overview

We present an experimental analysis and design considerations for organic localization with heterogeneous devices

- Heterogeneous WiFi Signal Strength
 Characteristics
- Feature Design of Localization Algorithms for Heterogeneous Devices

To Use or Not To Use AP Detection Feature?

•
$$J_i = \begin{cases} 1 & if AP_i detected \\ 0 & otherwise \end{cases}$$

• Multivariate Bernoulli model $(J_i, 1 \le i \le k, k \text{ WAPs})$

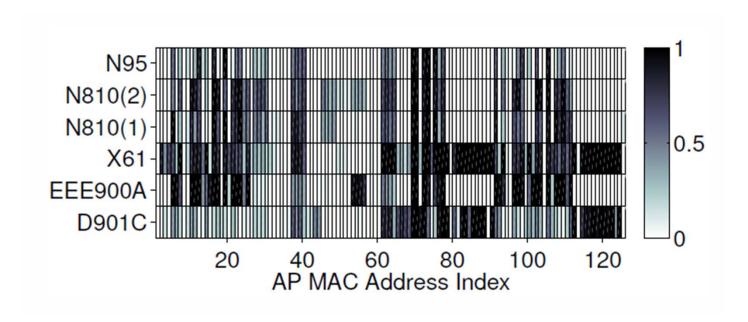
$$\hat{l} = \operatorname*{argmax}_{l \in L} \left[\prod_{1 \leq i \leq k} \left\{ p_{J_i|L}(1|l) \right\}^{J_i} \left\{ 1 - p_{J_i|L}(1|l) \right\}^{1 - J_i} \right]$$

Combine with signal strength (hybrid)

$$\hat{l} = \underset{l \in L}{\operatorname{argmax}} \left[\prod_{1 \le i \le k} \left\{ p_{J_i|L}(1|l) \ p_{S_i|J_i,L}(s_i|1,l) \right\}^{J_i} \right]$$

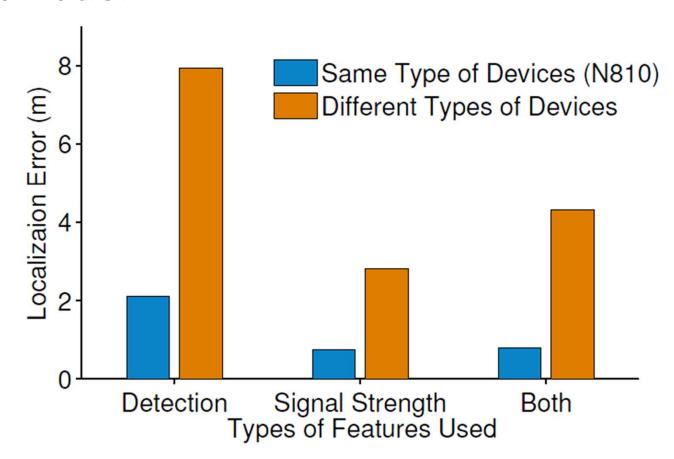
$$\left\{ 1 - p_{J_i|L}(1|l) \right\}^{\alpha(1-J_i)}$$

Detection Frequency Varies Across Devices



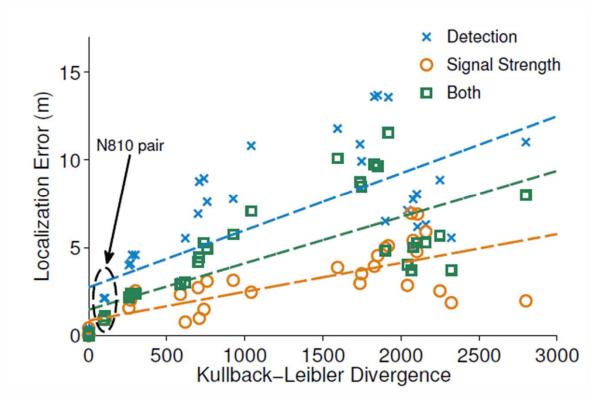
Localization Performance with Different Sets of Features

Detection feature does not help cross-device localization



Empirical Characterization

 Quantified difference in AP detection by Kullback-Leibler divergence of detection rate probabilities *J_i* between different devices



Discussion

- Detection frequency feature does not give much extra information
- Detection frequency feature is largely incompatible across devices
- Signal-strength-only construction does not explicitly model detection process
- Other non-Bayesian algorithms (k-NN, SVM, ...) are also affected because missing entries need to be filled in

Concluding Remarks

- Localization algorithms for cross-device positioning need to account for different dispersions in signal strengths
 - Smoothing by kernel density estimation is an easy way to improve cross-device localization
- Localization algorithms should use only "transferrable" information across different devices
 - AP detection frequency feature may be harmful because it varies widely across different 802.11 devices.

Concluding Remarks

- Localization algorithms for cross-device positioning need to account for different dispersions in signal strengths
 - Smoothing by kernel density estimation is an easy way to improve cross-device localization
- Localization algorithms should use only "transferrable" information across different devices
 - AP detection frequency feature may be harmful because it varies widely across different 802.11 devices.
- Organic indoor localization
 - Teller et al., Organic Indoor Location Discovery, MIT-CSAIL-TR-2008-075, 2008
 - Park et al., Growing an Organic Indoor Location System, MobiSys 2010
 - Ledlie et al., Molé: a Large-Scale, User-Generated Positioning Engine,
 IPIN 2011, submitted
 - http://rvsn.csail.mit.edu/location

Detection Frequency Varies Across Devices

