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Location, Location, Location
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GPS does not work indoozrs...

e Ultra-high frequency (1.57 GHz) signals of
GPS do not penetrate walls very well.

 GPS does not provide enough precision
for room-grained location-based
services.



Early Approaches

Require instrumenting spaces with
dedicated transceivers.
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W1iF1 Localization

Survey environment to build
WiFi fingerprint database.
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W1iF1 Localization

Survey environment to build
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W1iF1 Localization

Survey environment to build
WiFi fingerprint database.
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W1iF1 Localization

Survey environment to build

WiFi fingerprint database.
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Wi1iF1 Localization

 Fingerprinting-based methods require
extensive, costly survey.

* Not suitable for large-scale, long-term
location services.
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Extending the Horizon

Users
“Organic” place signatures collected by end-users.

Motion signatures
The shape and the type of a space define motions.
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Thesis Contributions

- partI: Algorithms for Organic Localization
— User prompting
— Erroneous user input filtering “Users™
— Device heterogeneity

TODAY : cq eqs P
- partII: Motion Compatibility-Based Localization
— Motion labeling
— Route network generation “Motion signatures”

— Trajectory matching
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II. Motion Compatibility-Based
Indoor Localization

Modern smartphones are equipped with a
variety of sensors.
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o Barometer
Proximity sensor

Gyroscope
Light sensor Y b

Bluetooth Accelerometer

GPS

Acoustic sensor
Magnetometer

WiFi

—

Motion
—

Sensors
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Previous Work

“Indoor Pedestrian Navigation”

step 1: Sensors at a fixed, known position

Step 2: Step-counting & heading estimation

step 3: Kalman filters / particle filters

Foot-mounted IMU for
“zero velocity update”

Ascher et al., “Dual
IMU Indoor
Navigation with
Particle Filter based
Map-Matching on a
Smartphone”, IPIN,
2010.
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Rai et al., “Zee: Zero-
Effort Crowdsourcing
for Indoor
Localization”,
MobiCom, 2012
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Motion Compatibility-Based
Indoor Localization

e Human motions in indoor environments
are highly structured.

 The shape and the type of a space imply
a motion signature.

 Observed motions = originating path
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Recovering Paths from Motions

Original path >
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Recovering Paths from Motions

Original path - 3-motion sequence -
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Recovering Paths from Motions

Original path - 3-motion sequence - Many plausible paths
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Recovering Paths from Motions

Original path - 7-motion sequence -
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Recovering Paths from Motions

Original path - 7-motion sequence - One matching path
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Recovering Paths from Motions

1. “Path-compatibility”: Metric/topological/semantic constraints
over paths.

1. Less constraints 2 higher ambiguity.
2. More constraints - Lower ambiguity.

(Accurate) motion labeling
(Automatic) map generation.
Uncertainty & noise in inputs.
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Recovering Paths from Motions

Motion labeling

Sensor data stream - Motion sequence

Route network generation

Floorplan - Route network

Trajectory matching
Motion + map - User path
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Motion Models

Rest (Sitting)

Standing

Straight Walk

Turn

Walking Ascent / Descent (on stairs)
Elevator Up / Down

Access (“Opening a door”,

“Pressing a button”)



Recovering Paths from Motions

Motion labeling

Sensor data stream - Motion sequence
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Motion Labeling

 CRF (Conditional Random Field) based sequence classifier,
labeling motions at 3Hz.

e Accelerometer/gyroscope/barometer/magnetometer
e Challenge: Different motion durations.

e Solution:
— Multiple feature windows with varying widths for each feature.
— CRF learns an “optimal” weight for each window.
— +10~15% improvement over single-window cases.

Frames

Sensor | : 116

w
F——I2 Feature windows

H1 (for frame j)
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Motion Labeling Demo
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Motion Labeling Performance

e 94% per-frame overall “accuracy” (F-
measure)

 Confusions between
“Door Open” < - “Button Press”
“Sitting” < -2 “Standing”
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Recovering Paths from Motions

Route network generation

Floorplan - Route network
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Route Network Generation

CAD drawings (AutoCAD DXF)

By BMG (building model generation) group

<contour>

<centroid x="T10448.7T67146" y="496440.14
<extent maxy="496449,009485" miny="49643
maxx="710455.963341" minx="71044

<point x="710441.497540" y="496446.04907
<point x="710444.834064" y="496447.56961

<point x="710441.497540" y="496446.04507

Medial axis approximation </contour>
<portal type="stair" class="vertical" tar
. . . . <portal tyf implicit" class="horizontal"
(using constrained Delaunay triangulations) adge marpxann"1.000000" minparsner0.00
</portal>

Route networks

Linked through horizontal & vertical adjacencies




Route Network Generation

. 1st=Atfloor
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Recovering Paths from Motions

Trajectory matching
Motion + map - User path
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Trajectory Matching

e Inputs

Aol Ro =

(5sec.) (1sec.) (15sec.) (10sec.)

 Sequence labeling with HMM.
States: Nodes/edges in the route network,
parameterized with directions.

d
*+—__ node-state do, d1, ..., d7 W
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Trajectory Matching: Models

Example: Elevator Up (11 sec.)

Elevator
shaft
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Trajectory Matching: Models

Example: Elevator Up (11 sec.)

1. Elevator Elevaor
(2~>1,
253, o7
224) {)ﬁ
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Trajectory Matching: Models

Example: Elevator Up (11 sec.)

1. Elevator Elevator
shaft

2. Up
(223,
2->4)

35



Trajectory Matching: Models

Example: Elevator Up (11 sec.)

1. Elevator Elevator
shaft

2. Up
3. 11 sec
(2-24)
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Trajectory Matching: Algorithms

e Formulation as an HMM:

— Inference (“decoding a trajectory’) using
standard algorithms (forward-backward,
Viterbi...)

— Parameter estimation (hard-EM)

e Walking speed constant, matching flexibility
parameters...
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Trajectory Matching Demo
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Trajectory Matching Evaluation (1/4)

Ensemble error: It takes 1+ min. of data after a
“cold start.” to achieve an accurate user
path estimate.
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Trajectory Matching Evaluation (2/4)

Salient motions: Distinctive motions (vertical
transitions, in particular) facilitate matching.
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Trajectory Matching Evaluation (3/4)

Prior information: Knowing the starting floor
makes the matching faster.
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Trajectory Matching Evaluation (4/4)

Computation time: Liinear in the number of
states (map size) & the length of the input

(input size).
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Extending the Horizon, Further

 Any sensor data can form signatures.

e Multiple trips / multiple users
— Inference on chains 2 on networks

* Bootstrapping signatures
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Contributions

- partI: Algorithms for Organic Localization

— User prompting
— Erroneous user input filtering
— Device heterogeneity

Park et al., “Growing an Organic
Indoor Location System”, MobiSys,
2010

Park et al., “Implications of Device
Diversity for Organic Localization”,
INFOCOM, 2011

- partIl: Motion Compatibility-Based Localization

— Motion labeling
— Route network generation
— Trajectory matching

Park et al., “Online Pose
Classification and Walking Speed
Estimation using Handheld Devices”,
UbiComp, 2012

Park et al., “Motion Compatibility for
Indoor Localization”, submitted
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