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Outline 

• Motivation & prior work 
• Thesis contribution 
• Algorithms for organic indoor 

localization (part I) 

• Motion compatibility-based indoor 
localization (part II) 

– Overview 
– Motion labeling 
– Route network generation 
– Trajectory matching 
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Location, Location, Location 
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GPS does not work indoors…  

 
• Ultra-high frequency (1.57 GHz) signals of 

GPS do not penetrate walls very well. 
• GPS does not provide enough precision 

for room-grained location-based 
services. 
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Early Approaches 

Require instrumenting spaces with 
dedicated transceivers. 

“Active Badge” (Infrared), 1992 

MIT “Cricket” 
(RF+Ultrasound), 
2000  
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WiFi Localization 

Survey environment to build 
WiFi fingerprint database. 

0xa3b 0x5fe 0xbc4 0x6d2 

333 

334 

335 

337 

Signal strength (dBm) 
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WiFi Localization 

0xa3b 0x5fe 0xbc4 0x6d2 

333 -55 -82 -39 -85 

334 -30 -65 -63 -45 

335 -60 -55 -50 -73 

337 -72 -31 -73 N/A 

Surveyor 

Survey environment to build 
WiFi fingerprint database. 

Signal strength (dBm) 
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WiFi Localization 

0xa3b 0x5fe 0xbc4 0x6d2 

333 -55 -82 -39 -85 

334 -30 -65 -63 -45 

335 -60 -55 -50 -73 

337 -72 -31 -73 N/A 

Signal strength (dBm) 

(-31,-66,-60,-40) dBm 
“Where am I?” 

Survey environment to build 
WiFi fingerprint database. 
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WiFi Localization 

0xa3b 0x5fe 0xbc4 0x6d2 

333 -55 -82 -39 -85 

334 -30 -65 -63 -45 

335 -60 -55 -50 -73 

337 -72 -31 -73 N/A (-31,-66,-60,-40) dBm 
“Where am I?” 

Survey environment to build 
WiFi fingerprint database. 

Signal strength (dBm) 
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WiFi Localization 

 
• Fingerprinting-based methods require 

extensive, costly survey. 
 

• Not suitable for large-scale, long-term 
location services. 
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Extending the Horizon 

 

   Users 
      “Organic” place signatures collected by end-users.
  

   Motion signatures 
       The shape and the type of a space define motions. 
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Thesis Contributions 

• Part I: Algorithms for Organic Localization 
– User prompting 
– Erroneous user input filtering 
– Device heterogeneity 
 

• Part II: Motion Compatibility-Based Localization 
– Motion labeling 
– Route network generation 
– Trajectory matching 
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TODAY 

“Users” 

“Motion signatures” 



II. Motion Compatibility-Based  
     Indoor Localization 
Modern smartphones are equipped with a 
variety of sensors. 

Accelerometer 

Gyroscope 

Magnetometer 

Barometer 
Proximity sensor 

Light sensor 

Acoustic sensor 
GPS 

WiFi 

Bluetooth 
Motion 
sensors 
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Previous Work 

“Indoor Pedestrian Navigation” 
Step 1: Sensors at a fixed, known position 
Step 2: Step-counting & heading estimation 
Step 3: Kalman filters / particle filters 

Ascher et al., “Dual 
IMU Indoor 
Navigation with 
Particle Filter based 
Map-Matching on a 
Smartphone”, IPIN, 
2010. 

Foot-mounted IMU for  
“zero velocity update” 

Rai et al., “Zee: Zero-
Effort Crowdsourcing 
for Indoor 
Localization”, 
MobiCom, 2012 

Particle filtering 
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Motion Compatibility-Based  
Indoor Localization 

 
• Human motions in indoor environments 

are highly structured. 
• The shape and the type of a space imply 

a motion signature. 
• Observed motions  originating path 
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Recovering Paths from Motions 

Original path   
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Recovering Paths from Motions 

Original path  3-motion sequence    
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Recovering Paths from Motions 

Original path  3-motion sequence  Many plausible paths  
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Recovering Paths from Motions 

Original path  7-motion sequence  
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Recovering Paths from Motions 

Original path  7-motion sequence  One matching path  
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Recovering Paths from Motions 
1. “Path-compatibility”:  Metric/topological/semantic constraints 

over paths.  
1. Less constraints  higher ambiguity. 
2. More constraints  Lower ambiguity. 

2. (Accurate) motion labeling  
3. (Automatic) map generation. 
4. Uncertainty & noise in inputs. 
5. Salient features: vertical motions, “opening a door”… 
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Recovering Paths from Motions 

 
Motion labeling 
 Sensor data stream  Motion sequence 

Route network generation 
 Floorplan                   Route network 

Trajectory matching 
 Motion + map           User path 
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Motion Models 

• Rest (Sitting) 

• Standing 
• Straight Walk 
• Turn 
• Walking Ascent / Descent (on stairs) 
• Elevator Up / Down 
• Access (“Opening a door”,  

                         “Pressing a button”) 
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Recovering Paths from Motions 

 
Motion labeling 
 Sensor data stream  Motion sequence 

Route network generation 
 Floorplan                   Route network 

Trajectory matching 
 Motion + map           User path 
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Motion Labeling 

• CRF (Conditional Random Field) based sequence classifier, 
labeling motions at 3Hz. 

• Accelerometer/gyroscope/barometer/magnetometer 
• Challenge: Different motion durations. 
• Solution:  

– Multiple feature windows with varying widths for each feature. 
– CRF learns an “optimal” weight for each window. 
– +10~15% improvement over single-window cases. 
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Motion Labeling Demo 
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Motion Labeling Performance 

• 94% per-frame overall “accuracy” (F-
measure) 

• Confusions between  
 “Door Open”  “Button Press” 
     “Sitting”  “Standing” 
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Recovering Paths from Motions 

 
Motion labeling 
 Sensor data stream  Motion sequence 

Route network generation 
 Floorplan                   Route network 

Trajectory matching 
 Motion + map           User path 
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Route Network Generation 

CAD drawings (AutoCAD DXF) 

               By BMG (building model generation) group 

 
Floor plan XML documents 
               Medial axis approximation 

                                            (using constrained Delaunay triangulations) 

 
Route networks 
               Linked through horizontal & vertical adjacencies 
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Route Network Generation 

Stata Center, 1st~4th floor 
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Recovering Paths from Motions 

 
Motion labeling 
 Sensor data stream  Motion sequence 

Route network generation 
 Floorplan                   Route network 

Trajectory matching 
 Motion + map           User path 
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Trajectory Matching 

• Inputs 
 
 

• Sequence labeling with HMM. 
States:  Nodes/edges in the route network,  
               parameterized with directions. 
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(5 sec.) (1 sec.) (15 sec.) (10 sec.) 



Trajectory Matching: Models 

Example: Elevator Up (11 sec.) 
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Trajectory Matching: Models 

Example: Elevator Up (11 sec.) 
1. Elevator 
     (21, 
      23, 
      24) 

34 



Trajectory Matching: Models 

Example: Elevator Up (11 sec.) 
1. Elevator 
2. Up 
     (23, 
      24) 
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Trajectory Matching: Models 

Example: Elevator Up (11 sec.) 
1. Elevator 
2. Up 
3. 11 sec 
     (24) 
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Trajectory Matching: Algorithms 

 
• Formulation as an HMM: 

– Inference (“decoding a trajectory”) using 
standard algorithms (forward-backward, 
Viterbi…) 

– Parameter estimation (hard-EM) 
• Walking speed constant, matching flexibility 

parameters… 
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Trajectory Matching Demo 
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1st 

2nd  

3rd  

4th  

Ground-truth trace Best estimate Uncertainty 



Trajectory Matching Evaluation (1/4) 

Ensemble error: It takes 1+ min. of data after a 
“cold start.” to achieve an accurate user 
path estimate. 
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Trajectory Matching Evaluation (2/4) 

Salient motions: Distinctive motions (vertical 

transitions, in particular) facilitate matching. 
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Trajectory Matching Evaluation (3/4) 

Prior information: Knowing the starting floor 
makes the matching faster. 
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65 sec.51 sec.  



Trajectory Matching Evaluation (4/4) 

Computation time: Linear in the number of 
states (map size) & the length of the input 
(input size). 
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Extending the Horizon, Further 

 
• Any sensor data can form signatures. 
• Multiple trips / multiple users 

– Inference on chains  on networks 

• Bootstrapping signatures  
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Contributions 

• Part I: Algorithms for Organic Localization 
– User prompting 
– Erroneous user input filtering 
– Device heterogeneity 
 

• Part II: Motion Compatibility-Based Localization 
– Motion labeling 
– Route network generation 
– Trajectory matching 
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• Park et al., “Growing an Organic 
Indoor Location System”, MobiSys, 
2010 

• Park et al., “Implications of Device 
Diversity for Organic Localization”, 
INFOCOM, 2011 

• Park et al., “Online Pose 
Classification and Walking Speed 
Estimation using Handheld Devices”, 
UbiComp, 2012 

• Park et al., “Motion Compatibility for 
Indoor Localization”, submitted 
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