Indoor Localization using Place and Motion Signatures Jun-geun Park

Thesis Committee: Prof. Seth Teller (Advisor) Prof. Nick Roy Prof. Tommi Jaakkola

Outline

- Motivation & prior work
- Thesis contribution
- Algorithms for organic indoor localization (part I)
- Motion compatibility-based indoor localization (part II)
 - Overview
 - Motion labeling
 - Route network generation
 - Trajectory matching

Location, Location, Location

GPS does not work indoors...

- Ultra-high frequency (1.57 GHz) signals of GPS do not penetrate walls very well.
- GPS does not provide enough precision for room-grained location-based services.

Early Approaches

Require instrumenting spaces with dedicated transceivers.

"Active Badge" (Infrared), 1992

MIT "Cricket" (RF+Ultrasound), 2000

- Fingerprinting-based methods require extensive, costly survey.
- Not suitable for large-scale, long-term location services.

Extending the Horizon

Users

"Organic" place signatures collected by end-users.

Motion signatures

The shape and the type of a space define motions.

Thesis Contributions

- Part I: Algorithms for Organic Localization
 - User prompting
 - Erroneous user input filtering
 - Device heterogeneity

TODAY

- Part II: Motion Compatibility-Based Localization
 - Motion labeling
 - Route network generation

"Motion signatures"

"Users"

Trajectory matching

II. Motion Compatibility-Based Indoor Localization

Modern smartphones are equipped with a variety of sensors.

Previous Work

"Indoor Pedestrian Navigation"

Step 1: Sensors at a fixed, known position
Step 2: Step-counting & heading estimation
Step 3: Kalman filters / particle filters

Foot-mounted IMU for "zero velocity update"

Ascher et al., "Dual IMU Indoor Navigation with Particle Filter based Map-Matching on a Smartphone", IPIN, 2010.

Motion Compatibility-Based Indoor Localization

- Human motions in indoor environments are highly structured.
- The shape and the type of a space imply a motion signature.
- Observed motions \rightarrow originating path

Original path \rightarrow

Original path \rightarrow 3-motion sequence \rightarrow

Original path \rightarrow 3-motion sequence \rightarrow Many plausible paths

Original path \rightarrow 7-motion sequence \rightarrow

Original path \rightarrow 7-motion sequence \rightarrow One matching path

- 1. "Path-compatibility": Metric/topological/semantic constraints over paths.
 - 1. Less constraints \rightarrow higher ambiguity.
 - 2. More constraints \rightarrow Lower ambiguity.
- 2. (Accurate) motion labeling
- 3. (Automatic) map generation.
- 4. Uncertainty & noise in inputs.
- 5. Salient features: vertical motions, "opening a door"...

Motion labeling

Sensor data stream \rightarrow Motion sequence

Route network generation

Floorplan \rightarrow Route network

Trajectory matching

Motion + map \rightarrow User path

Motion Models

- Rest (Sitting)
- Standing
- Straight Walk
- Turn
- Walking Ascent / Descent (on stairs)
- Elevator Up / Down
- Access ("Opening a door",

"Pressing a button")

Motion labeling

Sensor data stream \rightarrow Motion sequence

Route network generation

Floorplan \rightarrow Route network

Trajectory matching

Motion + map \rightarrow User path

Motion Labeling

- CRF (Conditional Random Field) based sequence classifier, labeling motions at 3Hz.
- Accelerometer/gyroscope/barometer/magnetometer
- Challenge: Different motion durations.
- Solution:
 - Multiple feature windows with varying widths for each feature.
 - CRF learns an "optimal" weight for each window.
 - $+10 \sim 15\%$ improvement over single-window cases.

Motion Labeling Demo

Principal Lateral Vertical Auxiliary

Motion Labeling Performance

- 94% per-frame overall "accuracy" (Fmeasure)
- Confusions between

"Door Open" $\leftarrow \rightarrow$ "Button Press" "Sitting" $\leftarrow \rightarrow$ "Standing"

 Motion labeling

 Sensor data stream → Motion sequence

 Route network generation

 Floorplan
 → Route network

 Trajectory matching

 Motion + map
 → User path

Route Network Generation

CAD drawings (AutoCAD DXF)

By BMG (building model generation) group

Floor plan XML documents

Medial axis approximation

(using constrained Delaunay triangulations)

Route networks

Linked through horizontal & vertical adjacencies

Route Network Generation

 Motion labeling

 Sensor data stream → Motion sequence

 Route network generation

 Floorplan
 → Route network

 Trajectory matching

 Motion + map
 → User path

Trajectory Matching

• Inputs

• Sequence labeling with HMM.

States: Nodes/edges in the route network,

parameterized with directions.

Example: Elevator Up (11 sec.)

Example: Elevator Up (11 sec.)

Example: Elevator Up (11 sec.)

Example: Elevator Up (11 sec.)

1. Elevator Elevator shaft 2. Up 4th 3. 11 sec $(2\rightarrow 4)$ 3rd 2nd 1st

Trajectory Matching: Algorithms

- Formulation as an HMM:
 - Inference ("decoding a trajectory") using standard algorithms (forward-backward, Viterbi...)
 - Parameter estimation (hard-EM)
 - Walking speed constant, matching flexibility parameters...

Trajectory Matching Evaluation (1/4)

Ensemble error: It takes 1+ min. of data after a "cold start." to achieve an accurate user path estimate.

Trajectory Matching Evaluation (2/4)

Salient motions: Distinctive motions (vertical transitions, in particular) facilitate matching.

Trajectory Matching Evaluation (3/4)

Prior information: Knowing the starting floor makes the matching faster.

Trajectory Matching Evaluation (4/4)

Computation time: Linear in the number of states (map size) & the length of the input (input size).

Extending the Horizon, Further

- Any sensor data can form signatures.
- Multiple trips / multiple users
 Inference on chains → on networks
- Bootstrapping signatures

Contributions

- Part I: Algorithms for Organic Localization
 - User prompting
 - Erroneous user input filtering
 - Device heterogeneity

- Park et al., "Growing an Organic Indoor Location System", MobiSys, 2010
- Park et al., "Implications of Device Diversity for Organic Localization", INFOCOM, 2011
- Part II: Motion Compatibility-Based Localization
 - Motion labeling
 - Route network generation
 - Trajectory matching

- Park et al., "Online Pose Classification and Walking Speed Estimation using Handheld Devices", UbiComp, 2012
- Park et al., "Motion Compatibility for Indoor Localization", submitted