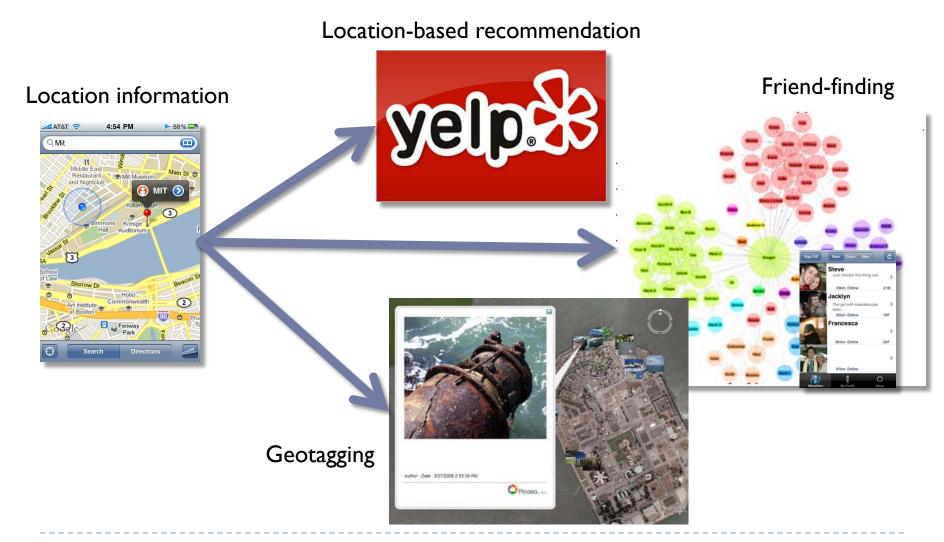
Growing an Organic Indoor Location System

Jun-geun Park MIT CSAIL

Joint work with: Ben Charrow (MIT), Dorothy Curtis (MIT), Jonathan Battat (MIT), Einat Minkov (Nokia, Univ. of Haifa), Jamey Hicks (Nokia), Seth Teller (MIT), Jonathan Ledlie (Nokia)

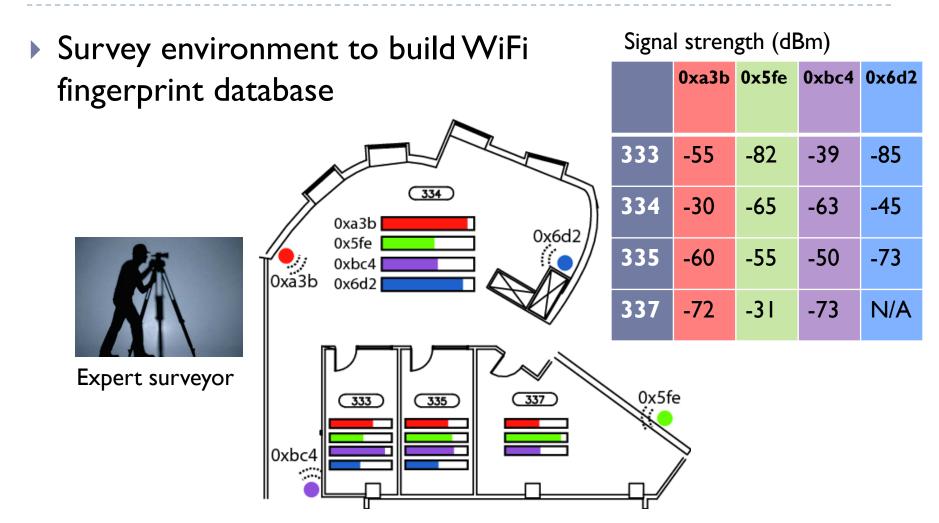
Applications of Location Information



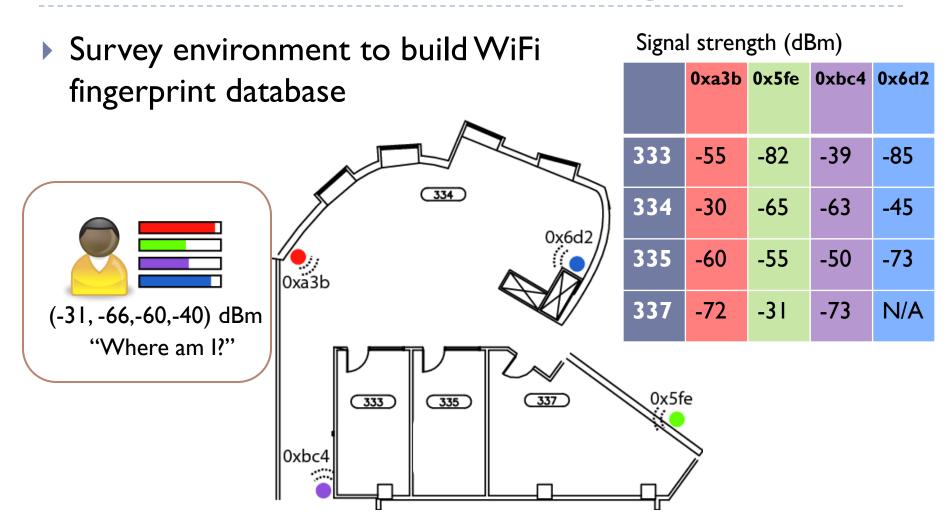
WiFi Localization: Survey Phase

Signal strength Survey environment to build WiFi 0xa3b 0x5fe 0xbc4 0x6d2 fingerprint database 333 334 0x6d2 335 337 0x5fe 333 335 0xbc4

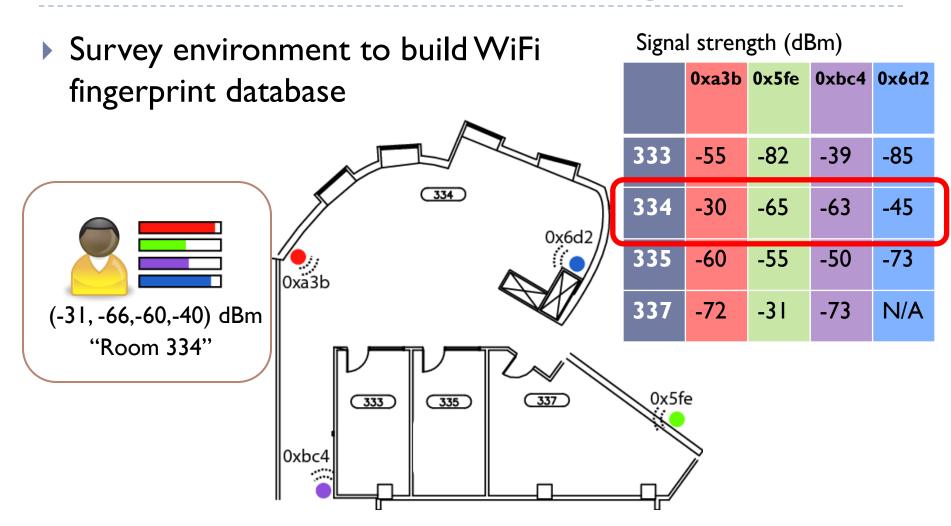
WiFi Localization: Survey Phase



WiFi Localization: Positioning Phase



WiFi Localization: Positioning Phase



Organic Indoor Localization: Motivation

- Who makes the location fingerprints?
 - Survey requires skilled technicians.
 - Survey is expensive and labor-intensive.
 - "I don't want strangers in my room."
 - Surveyed data may become outdated.

Organic Indoor Localization: Motivation

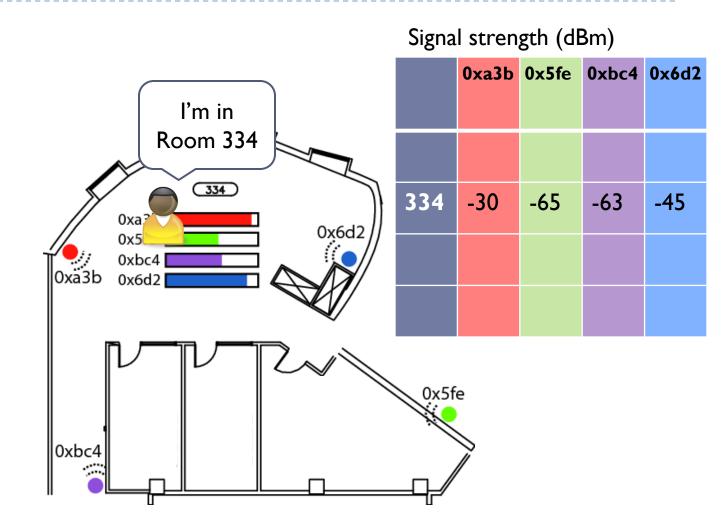
Who makes the location fingerprints?

- Survey requires skilled technicians.
- Survey is expensive and labor-intensive.
- "I don't want strangers in my room."
- Surveyed data may become outdated.

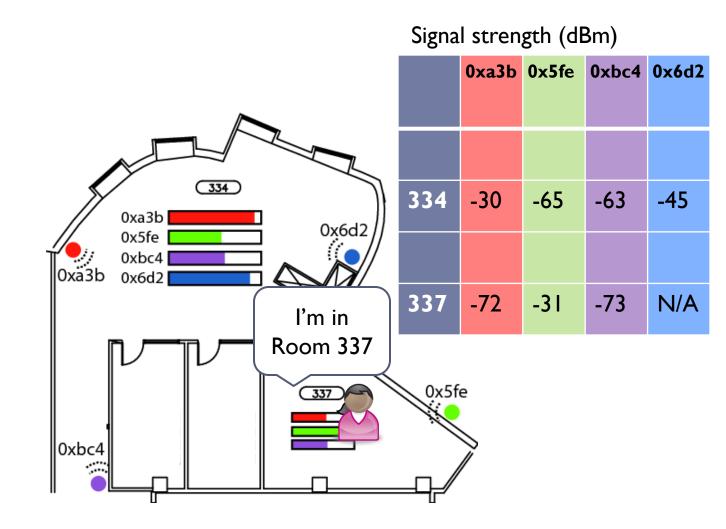
Our approach

- Have users collect survey data
- System facilitates sharing on-line.
- User-generated, or organic localization system

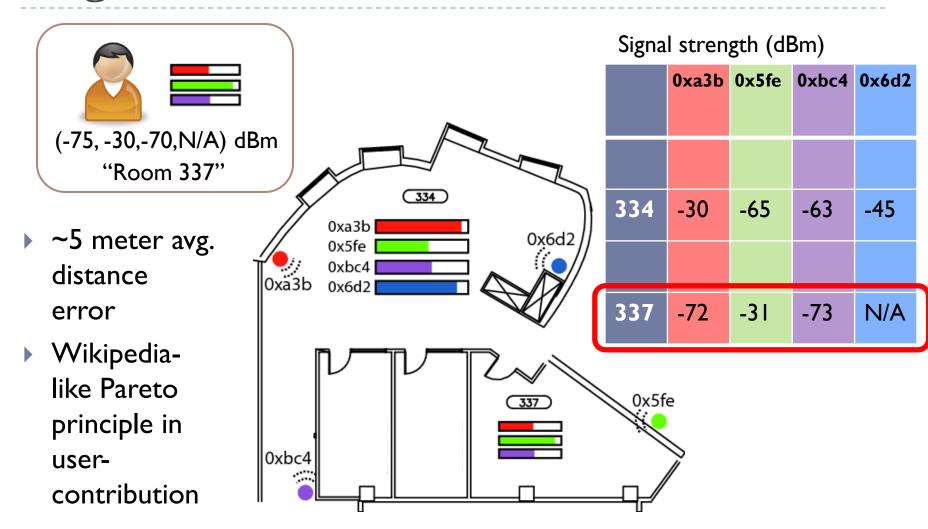
Organic Indoor Localization



Organic Indoor Localization



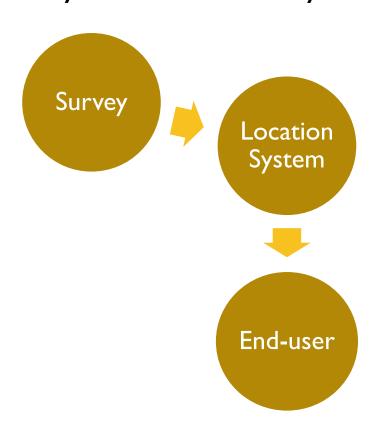
Organic Indoor Localization

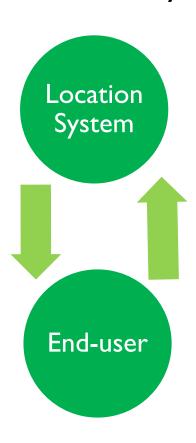


Organic Indoor Location System

Survey-based Location Systems

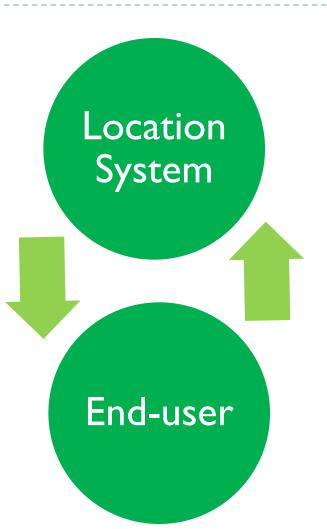
Organic Location Systems





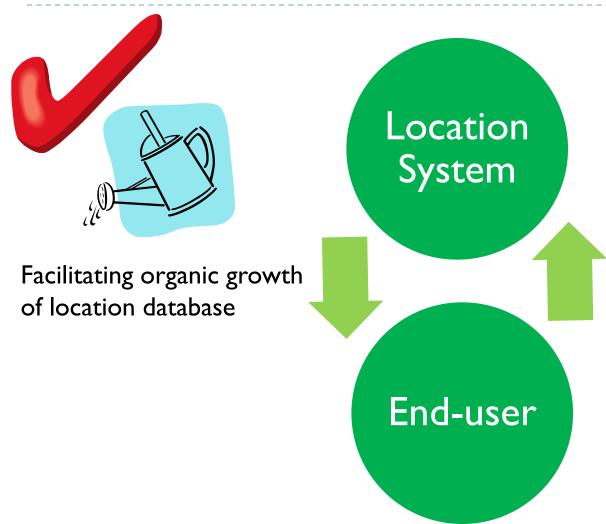
Growing an Organic Indoor Location System

Facilitating organic growth of location database



Weeding out erroneous user-inputs

Growing an Organic Indoor Location System



Conveying Spatial Uncertainty to Users

At early stage of organic localization, some locations have no fingerprint data Fingerprint exists No fingerprint

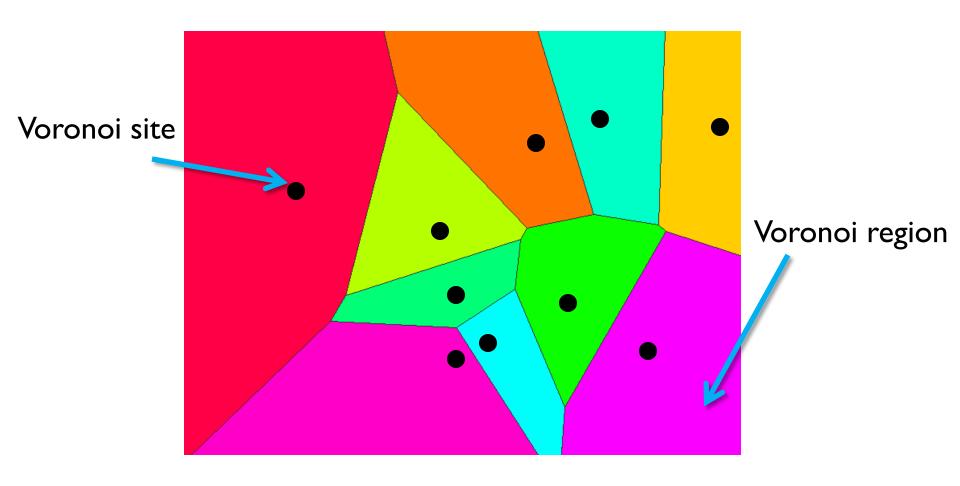
Conveying Spatial Uncertainty to Users

If a user is in a location without fingerprint, localization algorithm will pick one of nearby locations with fingerprint Room B Room A

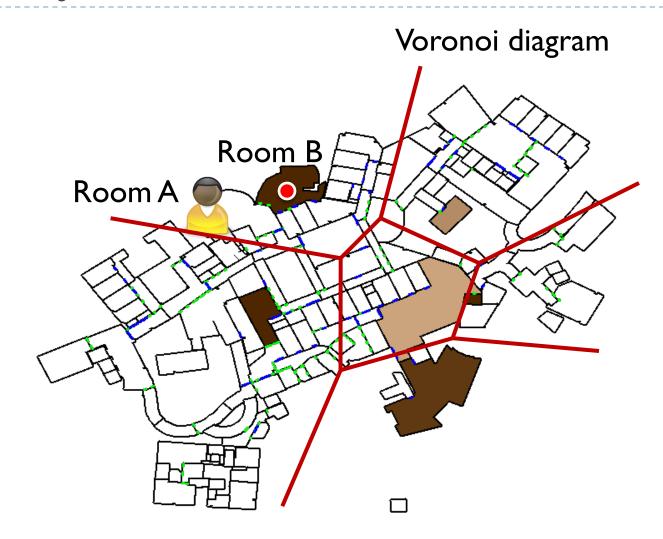
Conveying Spatial Uncertainty to Users

If a user is in a location without fingerprint, localization algorithm will pick one of nearby locations with fingerprint Room B Room A

Voronoi Diagrams



Voronoi Diagrams for Conveying Spatial Uncertainty to Users



Voronoi Diagrams for Conveying Spatial Uncertainty to Users

Voronoi diagram Can derive spatial uncertainty metrics: Number of rooms / geometric size of the Room B region Room A

Voronoi Diagrams for Conveying Spatial Uncertainty to Users

Voronoi diagram Can derive spatial uncertainty metrics: Number of rooms / geometric size of the Room B region Room A Users get graphical feedback on system's uncertainty arising from organic growth of location database

GUI Implementation

Voronoi region

Location estimate

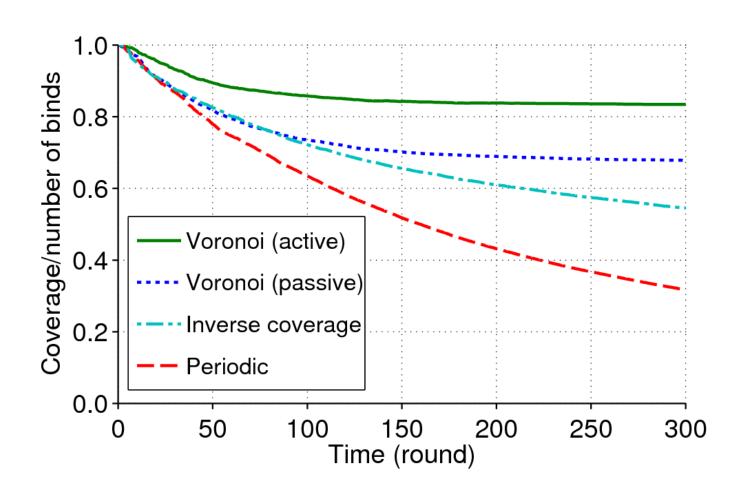
Spatial-Uncertainty-Based User Prompting

- Prompt user for location input if spatial uncertainty is too high (large Voronoi region)
 - Many nearby rooms have no fingerprint data
- Other methods for acquiring user input
 - Prompting when localization estimate is unstable
 - Voluntary user contribution
- Users can postpone or turn off prompting

Voronoi Evaluation: Setup

- Compared Voronoi-based user prompting to other basic methods
 - Quantitative analysis by simulation
- Real-world user testing
 - Qualitative analysis by interviewing users

Voronoi Evaluation (1)

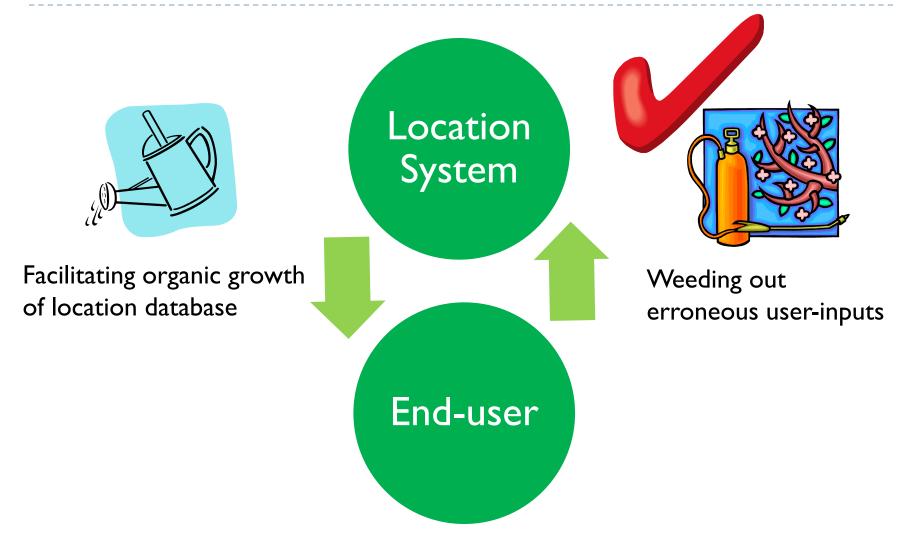


Voronoi Evaluation (2)

Responses from top contributors:

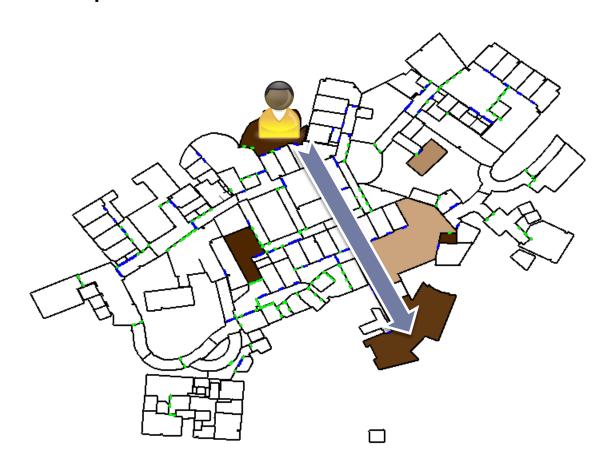
- "Prompts were the main reason that I made so many binds."
- "Voronoi regions were useful for quickly locating the room that I was in as well as assessing how well the tablet knew my current location."
- "Prompting mechanism had no effect on my behavior."

Growing an Organic Indoor Location System



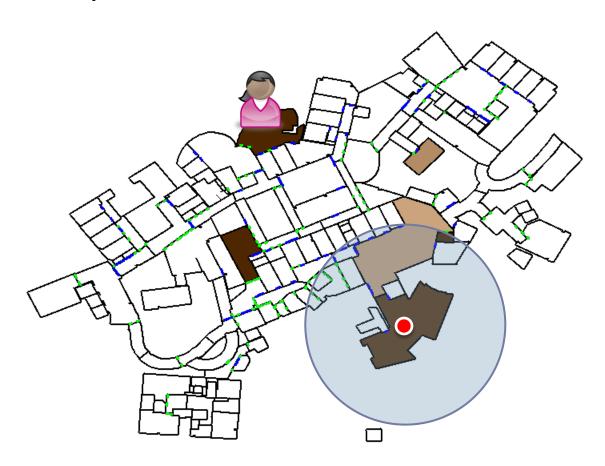
Erroneous User Input Filtering: Problem Statement

▶ Erroneous user inputs result in localization error



Erroneous User Input Filtering: Problem Statement

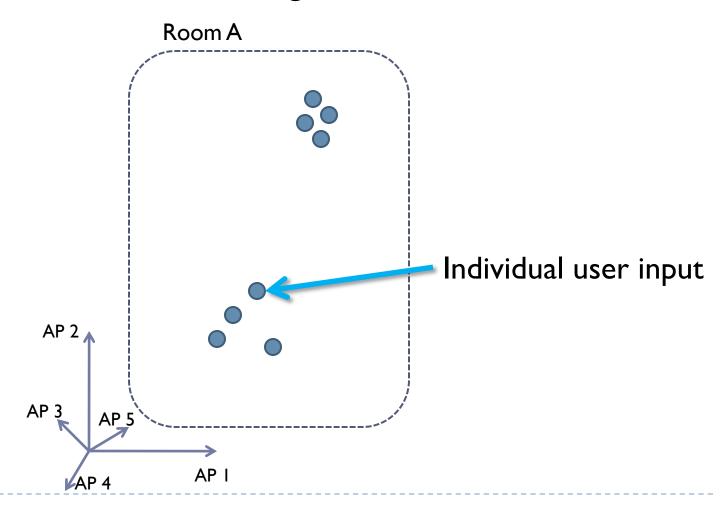
▶ Erroneous user inputs result in localization error



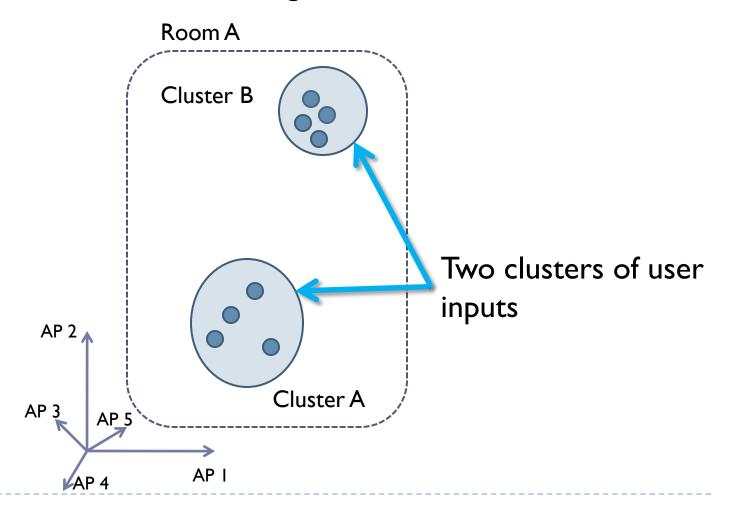
- Common approaches for outlier detection...
 - Density estimation
 - Clustering + majority vote
- ... are not suitable for organic location systems. Why?
 - Organic systems have no data at start

- Common approaches for outlier detection...
 - Density estimation
 - Clustering + majority vote
- ... are not suitable for organic location systems. Why?
 - Organic systems have no data at start
- Our idea: instead of checking validity directly, check for consistency
 - WiFi scans from nearby locations tend to be similar
 - Given a set of scans from a single location, choose the most consistent subset w.r.t. physically adjacent locations

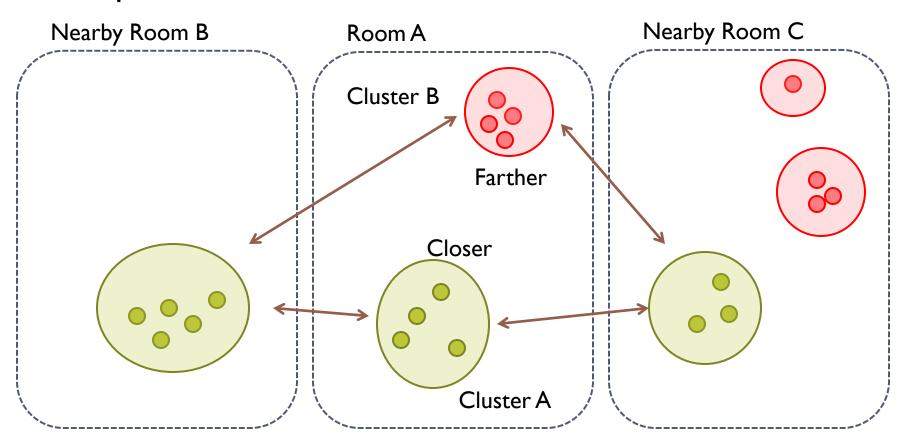
Step I: Hierarchical clustering



Step I: Hierarchical clustering



Step 2: Pick the most consistent cluster



Erroneous User Input Filtering: Result

- Filtering performance improves with additional data
- If 20~30% of user inputs are erroneous, filtering improves the number of spot-on localization estimates by up to 9%
- Refer to our paper for details

Conclusion & Future Work

Conclusion

- Organic localization eliminates survey effort while achieving comparable accuracy
- Organic localization can be improved by adequate methods to facilitate organic process
- Voronoi-diagram-based method for conveying uncertainty and user-prompting
- Clustering-based method for discarding erroneous user inputs

Future work

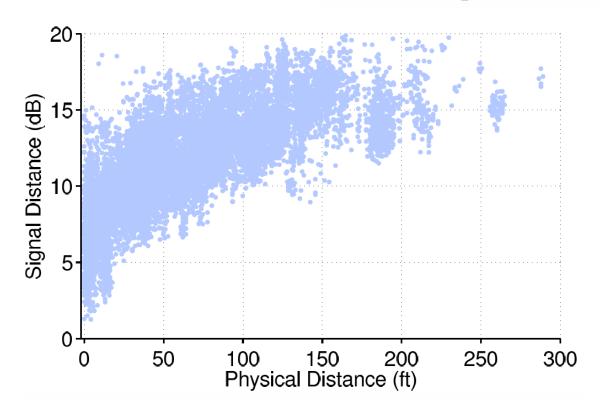
- Adapts to environmental changes (e.g. AP upgrades)
- Handle device diversity
- Combine with "organic" mobile applications

Thank you. Questions?

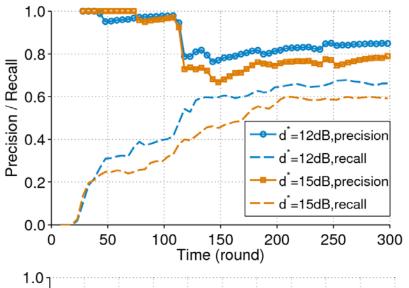
Physical Distance vs. Signal Distance

Normalized signal-space Euclidean distance

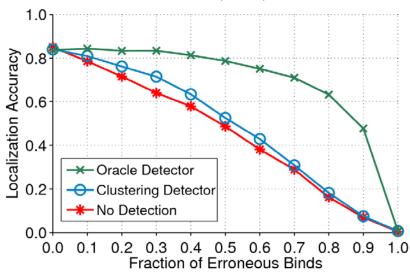
$$d_s(b^s, b^t) = \left[\frac{1}{M} \sum_{i=1}^k (b_i^s - b_i^t)^2\right]^{1/2}$$



Erroneous User Input Filtering: Result



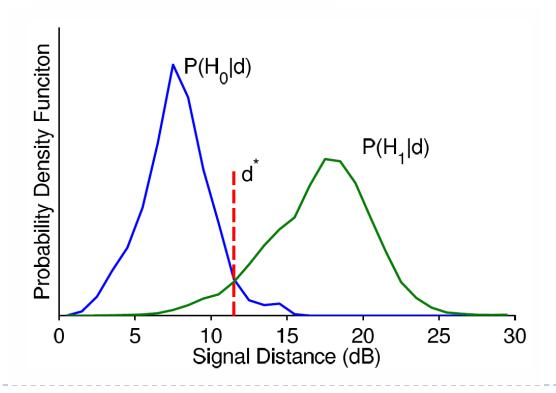
Filtering
 performance
 improves with
 additional data



 Filtering improves accuracy of location estimates

Clustering Threshold Tuning

- ▶ H₀: User inputs are from the same location
- ▶ H₁: User inputs are from different locations
- ▶ Select H₀ if: $P(\mathcal{H}_0|d) > P(\mathcal{H}_1|d)$.



User Deployment Statistics

9-day user deployment

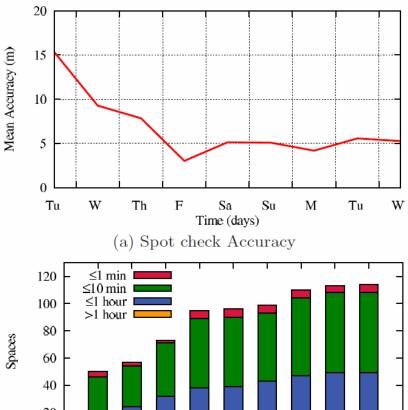
Map Spaces	1,373
Contributing Users	19
Bind Intervals (from users)	604
Scans (from devices)	1, 142, 812
Bound Scans	108, 418 (9.4%)
Spaces with Bound Scans	116 (8.4%)

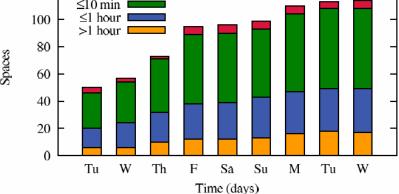
Previous user deployment for 20-days showed similar characteristics

User Deployment Result

- Accuracy over time
 - Pre-installed tablets

Amount of user input over time

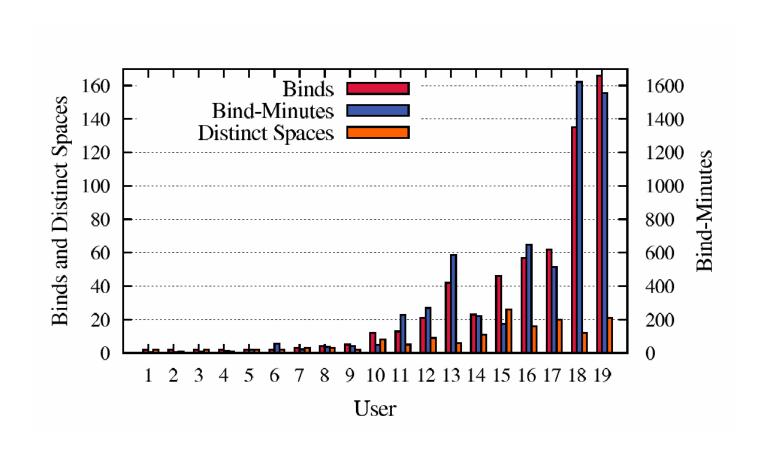




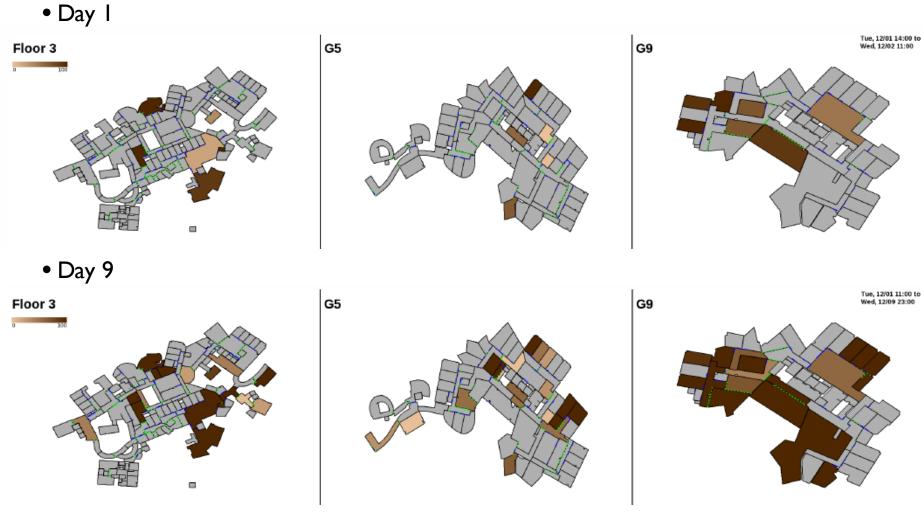
(b) Cumulative Per-Space Bind-Minutes

User Deployment Result

Distribution of per-user contribution



User Deployment Result: Coverage



System Architecture

