
A Computational Interpretation of Higher Inductive Types:
How to Tame Equality in your Types

Jason Gross JGROSS@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Background
An inductive data type is one generated by its constructors.
For example,

data N where
0 : N
S : N → N

is a typical inductive data type, whose computable inhab-
itants are 0, S 0, S (S 0), S (S (S 0)), Fully applied
constructors must construct an inhabitant of the inductive
data type, and we require some basic positivity or termina-
tion constraints.

Sometimes, this isn’t enough. A set isn’t the same thing
as a list, nor is it the same thing as a priority queue, though
languages like Coq might lead us to think so. There are
currently two options for encoding concepts like unordered
lists in Coq: one can assume lots of axioms, which results
in computational problems; or one can use setoids, which
force the programmer to include lots of boiler-plate proofs
in many places.

2. Higher Inductive Types
It would be really nice if we could just assert that permu-
tations of a list are equal, and be done with it. Higher in-
ductive types let us do precisely that. If IsPermutation
`1 `2 is a proposition expressing the assertion that `1 is a
permutation of `2 (and we had higher inductive types), then
we could write

data unordered_list (T : Type) where
disorder : list T → unordered_list T
are_disordered : ∀ `1 `2,

IsPermutation `1 `2
→ disorder `1 = disorder `2

contr1 : ∀ (`1 `2 : unordered_list T)
(pf1 pf2 : `1 = `2),

pf1 = pf2

3. Computation
This is trivial, and obvious, right? The goal is building a
strongly normalizing type theory with confluent reduction
rules around this. That is, we don’t want any of our con-
structions to get stuck on are_disordered when they
shouldn’t, and we certainly don’t want to be able to ex-
ploid are_disordered to write programs that segfault
or crash.

It may seem obvious how to write a computation rule for
higher inductive types. Here is an example to make it seem
less obvious. We prove functional extensionality, follow-
ing (Shulman, 2011), which causes many problems in in-
tensional type theory, without axioms. We can define an
“interval” type with two points and a path (equality) be-
tween them:

data interval where
zero : interval
one : interval
seg : zero = one

Now, given two functions f and g of type
∀ x : A, B x, and a proof H that ∀ x, f x = g x,
we can construct the function

funext_helper : interval → (x : A) → B x
funext_helper zero x = f x
funext_helper one x = g x
funext_helper seg x = H x

Using the fact that x = y → f x = f y
for all functions f, we can get
funext_helper zero = funext_helper one
because seg : zero = one. Thus we obtain that
f = g, proving functional extensionality. So any compu-
tational interpretation of higher inductive types needs to
give a computational account of functional extensionality,
possibly via something like Observational Type Theory
(Altenkirch et al., 2007).

References
Altenkirch, T., McBride, C., & Swierstra, W. (2007). Ob-

servational equality, now! Proceedings of the 2007
workshop on Programming languages meets program
verification (pp. 57–68).

Shulman, M. (2011). An interval type im-
plies function extensionality. http://
homotopytypetheory.org/2011/04/04/
an-interval-type-implies-function-extensionality/.

