Coq Bug Minimizer

Jason Gross

CoqgPL 2015

Abstract

Sales Pitch

Are bugs the bane of your existence? Do you dread Coq upgrades, because
they mean you’ll have to spend days tracking down subtle failures deep
in your developments? Have you ever hit an anomaly that just wouldn’t
go away, and wished you understood what triggered it? Have you ever
been tormented by two blocks of code that looked identical, but behaved
differently? Do you wish you could submit more helpful error reports,
but don’t want to put in the time to construct minimal examples? If you
answered “yes” to any of these questions, then the Coq Bug Minimizer
is for you! Clone your own copy at https://github.com/JasonGross/
cog-bug-finder.

What does it do? How do I use it?

The Coq Bug Minimizer is an external script that will take any error-
generating Coq file in the middle of a development, and after confirming
that it has picked up the right error message, will automatically produce
a small, stand-alone file which is guaranteed to generate the same error
message.

The transformations automatically performed by the bug minimizer
include:

inlining all of the dependencies of a file

e removing unnecessary definitions, lemmas, hints, tactics, section
variables, notations, and other lines

(optionally) replacing unnecessary proofs and definition bodies with
admit

e flattening module and section structure
e removing unnecessary imports

The bug minimizer explicitly does not perform the following transfor-
mations:

e removing unnecessary definition-specific variables
e removing constructors of inductive types nor fields of records

e simplifying the error-generating proof script itself


https://github.com/JasonGross/coq-bug-finder
https://github.com/JasonGross/coq-bug-finder

The first two are, unfortunately, changes that are often required to happen
in multiple places at once; the bug minimizer, currently, only considers
changes that can be made in isolation. The third of these is actually a
feature; it allows you to check for a particular state and then fail with
an appropriate messageﬂ

Hence, typical interaction will consist of a few rounds of automatic
minimization alternated with manual simplification of the final proof script
and removal of record fields. In practice, each round of automatic mini-
mization decreases the number of lines by a factor of 5-10, bottoming out
at around 50-500 lines.

This sounds amazing! Is it fast, too?

Not yet, unfortunately. Because it re-runs Coq for every change it at-
tempts, it tends to take a few minutes to minimize around a thousand
lines of code, a few hours to handle a 5000 line file, and a few weeks to
handle a 40000 line file.

However, by the time the workshop comes, the Coq Bug Minimizer
will hopefully be 100% fasterEI

What’s left to do?

Possible future avenues of development include:
e automatic anomaly reporting integrated into CoqIlDE

e automatic bug minimization service, where an end user can upload
a tarball of their development, and the Coq developers can get a
standalone test-case

e smarter heuristics for minimization, e.g., remove slower lines first

e integration of multiple versions of Coq simultaneously

e using the new -ideslave XML protocol rather than the old and
error-prone -emacs option

e translation from Python into a saner language (like OCaml or Haskell)

What’s left to say?

The proposed presentation will consist of a demo of using the Coq Bug
Minimizer and a brief explanation of how it works and what scenarios it
can be used in. This will be followed by an audience driven presentation
or discussion of other use-cases and details of its functioning, possibly
including the warts of Coq that workarounds were required for. The
presentation will close with a brief period for the audience to make feature
requests.

LIf you have case where rewrite used to progress but no longer does, you would want to be
able to use progress rewrite foo to trigger the error. But if the minimizer was allowed to
change anything, it could inform you that progress idtac produces the same error message.
That is certainly not the test case you were looking for!

2How is this possible, you may ask? Currently, the bug minimizer takes time roughly
O((lines of code)?). By taking advantage of BackTo, it should be possible to chop off at least
a factor of the number of lines of code.



