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We present a simple profiler for the Ltac tactic language of the Coq Proof Assistent.
It measures the time spent in invocations of primitive tactics as well as tactics defined
in Ltac and their inner invocations. The profiler is available at www.ps.uni-saarland.de/
∼ttebbi/ltacprof/. The primary use is the development of complex tactics, which tend to
be so slow as to impede interactive usage. The reasons for the performence degradation
can be intricate, like a slowly performing Ltac match or a sub-tactic whose performance
only degrades in certain situations. The profiler generates a call tree and indicates the
time spent in a tactic depending on its calling context. Thus it allows locating the part
of a tactic definition that contains the performance bug.

Let us consider an example. Suppose we want to solve the following large1 goal.

Goal ∀ x1, x1 = 0 → ∀ x2, x2 = x1 → ...
... ∀ x200, x200 = x199 → x200 = 0.

Let us compare the following two automation tactics. The first one rewrites naively,
while the second one always picks the right equation with a custum Ltac match.

Ltac arew1 := repeat match goal with
[H : _ ⊢ _] ⇒ rewrite H

end; reflexivity.
Ltac arew2 := repeat match goal with

[H : (?x = _) ⊢ ?x = _] ⇒ rewrite H
end; reflexivity.

The profiler is controlled using Vernacular commands. So we can have an interactive
session with the following commands. The Coq command Restart is just used to prove
the same goal twice.

Start Profiling.
simpl. intros. arew1. reflexivity.
Restart.
simpl. intros. arew2. reflexivity.
Show Profile.

1To create this goal, just write Goal imps 200 0. with the definition
Fixpoint imps n x := match n with 0 ⇒ x = 0 | S n' ⇒ ∀ y, y = x → imps n' y end.
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The last command prints the following result. The first table accumulates over all
invocations, while the second table differentiates according to call tree location. Tactics
that need less than 2% of the time are not displayed.

tactic self total calls max
────────────────────────────────────────┴──────┴──────┴───────┴─────────┘
arew1 ---------------------------------- 21.4% 85.9% 1 19.980s
rewrite H ------------------------------ 68.2% 68.2% 40600 0.180s
arew2 ---------------------------------- 5.3% 9.1% 1 2.108s
intros --------------------------------- 4.9% 4.9% 2 0.588s

tactic self total calls max
────────────────────────────────────────┴──────┴──────┴───────┴─────────┘
arew1 ---------------------------------- 21.4% 85.9% 1 19.980s
└─rewrite H ---------------------------- 64.5% 64.5% 40400 0.008s
arew2 ---------------------------------- 5.3% 9.1% 1 2.108s
└─rewrite H ---------------------------- 3.7% 3.7% 200 0.180s
intros --------------------------------- 4.9% 4.9% 2 0.588s

Note that arew1 is much slower than arew2, but spends a smaller portion of its time
with the Ltac match (21.4% out of 85.9% instead of 5.3% out of 9.1%). So the complex
match pattern in arew2 was not for free. Furthermore, the time spend in intros is
surprisingly high.

We have implemented the profiler as a patch to the Coq sources, since we needed to
instrument the tactic engine. The patch currently only works with Coq 8.4, since the
updated tactic enginge in the upcoming Coq 8.5 affected the error backtrace functionality
of Ltac, which we instrument. We would like to have the instrumentation incorporated
as hooks in the Coq trunk, allowing for the profiler to be developed as a plugin.

In the future, we would like to address the following missing features:

• A user-friendly and configurable interface to visualize the results. Especially, it
should be possible to aggregate selected parts of the call tree.

• A reusable output format like CSV.

• Aggregated results over multiple files.

For the workshop, we propose to do a live demonstration of the profiler, presenting
possible application cases. Afterwards, we would like to discuss use cases, profiling
experiences and feature requests.
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