
Systematic Synthesis of Elliptic
Curve Cryptography Implementations

Andres Erbsen
MIT

andreser@mit.edu

Jade Philipoom
MIT

jadep@mit.edu

Jason Gross
MIT

jgross@mit.edu

Robert Sloan
MIT

varomodt@gmail.com

Adam Chlipala
MIT

adamc@csail.mit.edu

Abstract
The cryptographic code that runs the Internet is sub-
ject to intense manual optimization by elite program-
mers. Most of the complexity of the optimized code
comes from manipulation of integers too large to fit in
hardware registers. Perhaps surprisingly, for a change
as innocuous as changing an algorithmic parameter to
a different prime number, significant pieces of code are
rewritten from scratch. Only a handful of experts on the
planet are seen as competent enough to do it well, and
new implementations (which often include significant
amounts of handwritten assembly) tend to take months
to code and debug. In this paper, we demonstrate that
the work of those experts can be automated while si-
multaneously increasing our confidence in code correct-
ness. We implemented a framework in the Coq proof
assistant for generating efficient code for elliptic curve
cryptography (ECC), with proofs of conformance to a
whiteboard-level specification in number theory. While
some past projects have verified this kind of code, ours
is the first to synthesize it from security parameters.
We also have a smaller trusted code base than in past
work, as all of our formal reasoning is done within Coq.
Still, our generated code is faster than past work that
verified clean-slate implementations. We come within
a factor of 6 of the running time of the handcrafted
world-champion implementations.
/* XXX: Can it really happen that r<0?, See
HAC, Alg 14.42, Step 3. If so: Handle it here!*/
~ed25519 “ref” implementation on SUPERCOP [1]

1. Introduction and Existing Work
Code that implements cryptographic functionality is
subject to several constraints: at the very least, it needs
to have high throughput and low latency, its execution

time needs to be independent of secret inputs, and it
needs to use a minimal amount of system resources.
In practice, it is these requirements that turn a 26-line
executable specification into 213 lines of low-level code
that is only intelligible to a small group of experts.
Furthermore, since all these properties need to hold
even in the presence of malicious input crafted with
knowledge of the code, randomized testing against a
reference implementation (the current practice of the
industry) is helpful but distinctly insufficient because
the input space is enormous by design.

In this paper we examine elliptic curve cryptography
(ECC). Today it is typical for every new TLS connec-
tion to apply ECC key agreement and signing, and con-
nections are often short-lived enough that the cost of
these cryptographic operations dominates a company’s
bottom-line costs to maintain a simple HTTPS web-
site, so performance is crucial. Since these operations
are security-critical, so is correctness. However, com-
ments like the one at the beginning of this paper betray
that even the most expert programmers are uncertain
of the correctness of what they write.

To summarize our contribution: we have built the
first framework for synthesizing implementations of el-
liptic curve cryptography. No new program code needs
to be written for each new set of parameters, e.g. large
prime numbers, though the state of practice today, in
open-source and industry, is laborious reimplementa-
tion and testing for each prime. Our framework is a
library within the Coq proof assistant, and we trust no
other formal-methods tools, giving us a much smaller
trusted code base than in past related work, which we
achieve in part by formalizing more aspects of the ways
that elliptic curves are used, rather than just details
of arithmetic. Compared to past work on verification
of ECC primitives, despite our stronger guarantees and

1 2016/11/30

more automated development process, our code is much
faster, by a factor of 50. Our code is attached as a sup-
plement to this paper.

We are aware of three substantial achievements in
assuring correctness of ECC1. Chen et al. [16] showed
that the body of the main loop of expert-written as-
sembly code for the X25519 (then Curve25519) imple-
mentation on 64-bit processors corresponds to the “x-
coordinate Montgomery ladder” implementation strat-
egy. The verification was split between two tools: the
Boolector SMT solver and Coq for goals that the former
could not discharge. An overlapping set of authors later
came up with a tool they describe as more lightweight
and that significantly reduces the burden of verifica-
tion: gfverif [10] works on C code by replacing the ma-
chine integers with symbolic variables, equations over
which are solved by Gröbner-basis computation in Sage.
The tool is described as an “early experiment” and
an “alpha test” (and indeed, there are known bugs in
Sage’s Gröbner-basis computation – Sage issues 17676
and 9645). Based on their experiences, the authors iden-
tify 10 criteria that they (as crypto engineers) consider
important in its design. We summarize their helpful cri-
teria under three headings: effort (for existing code and
new code), rigor (scope and soundness), and generality
(of environments and computations).

In this terminology, ECC-star by Zinzindohoue et al.
[35] strikes a good balance between the desired quali-
ties: while they do require the code to be written in a
new language (F∗) and executed using a managed run-
time, they aim to minimize effort by sharing executable
code between different elliptic curves and using elab-
orate verification tools. Similarly to gfverif, the main
achievement is verification of scalar-multiplication sub-
routines, but this time for three curves. However, the li-
brary uses simpler implementation techniques than the
code verified in gfverif, and lags in performance by a
factor of 290.

All three projects verify the most important proper-
ties of the code in question, but real-world use of these
functions makes more assumptions about the proper-
ties. For example, while it is crucial that the output
finite-field element is represented canonically (otherwise
the redundancy would allow for an information leak), we
find that the top-level specifications of none of the three
projects guarantee that. Furthermore, all three top-level
specifications are at a lower level than the traditional
one for Internet standards. In order to avoid missing
such subtle assumptions, it is necessary to verify at a

1 We are not aware of any significant verification of other finite-
field cryptography, and techniques previously applied to symmet-
ric cryptography tend not to scale to cover the gap between our
very high-level specification and low-level code.

higher level, a task to which existing approaches are not
suited. Therefore, we set ourselves the following goals:

• Rigor: Wide enough to catch all known classes of
functional-correctness bugs and to satisfy require-
ments of potential clients of the elliptic-curve library.
Specs should match RFCs (the standards documents
of the Internet), and the trusted code base should be
small.

• Effort: Follow ECC-star in controlling the cost per
set of parameters by implementing a very general
library of proofs. Go further in also implementing
all algorithms and their proofs parametrically, in
a way that supports generating efficient low-level
code while doing most reasoning in a high-level,
verification-friendly language.

• Generality: Use state-of-the-art implementation strate-
gies. Do not commit to design decisions that would
rule out a known-good implementation strategy.

We will give a brief overview of context and our sys-
tem’s structure, then proceed to describe and evaluate
our implementation.

2. Overview and Structure
From the standpoint of formal methods and correct
compilation, many cryptographic algorithms have a
similar flavor. They start from moderately complex
number theory, based on modular arithmetic over num-
bers too large to fit in registers on commodity proces-
sors. To reach high-performance implementations, it is
necessary to substitute more clever data structures for
the natural ones of the specification, and these new
structures must be proven equivalent to the originals.
The heart of any efficient implementation, and the part
most likely to lead to security-critical bugs even in code
written by experts, is big-integer arithmetic. Traditional
big-integer libraries based on dynamic allocation are
hopelessly inefficient, when hand-coded assembly can be
as much as 100 times faster than generic constant-time
code. The main focus of the framework we have built is
proof-generating synthesis of custom big-integer code,
following the optimization tricks from world-champion
implementations. Crucially, the expertise behind those
optimizations is encapsulated once and for all in our
framework, so that new variants can be generated on
demand, soundly and automatically.

We refer to appendix A for additional details of el-
liptic curves, but a quick primer here will set the stage
for understanding what follows. Elliptic curves are al-
gebraic domains that are useful for digital signatures
and other cryptographic operations. An Edwards curve
with parameters a and d is defined to contain precisely
the points (x, y) for which ax2+y2 = 1+dx2y2. Points,
along with a point-addition operation, form a commu-

2 2016/11/30

Top-Level Equations
Elliptic-curve points uppercase, scalars in lowercase.
Juxtaposition is scalar multiplication; 3P = P + P + P sB

?
= R+ hA

Elliptic-Curve Operations
Code shown is point addition ((+) in the verification equation).
These coordinates are elements of a finite field, so

the (+), (−), and juxtaposition are modular arithmetic.

(x1, y1) + (x2, y2) =(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)

Prime-Field Operations (Section 3)
Code shown is multiplication (x1x2 in the point-addition formula).
This multiplication operates on a representation of field

elements as lists of integers; see section 3.2.
The argument “base” is the base system used. For

instance, [3,7] represents 3 + (226 · 7) in base [1, 226].

mul (base us vs : l i s t Z) :=
(f i x mul ’ usr vs :=

match usr with
| [] => []
| u : : usr ’ =>

add (mul ’ usr ’ vs)
(scmul u (s h i f t base (len usr ’) vs))

end) (rev us) vs .

Figure 1: Abstraction layers (fully understanding the code and math here is not essential)

tative group. Most operations can be computed reason-
ably quickly, but inverting point-scalar multiplication is
believed to be intractable and gives rise to the security
of ECC.

In other words, a good abstract characterization of
our domain is: We start with arithmetic modulo a large
prime number. These numbers form the ingredients
within a larger algebraic structure. Our goal is to sup-
port efficient computation of operations in the larger al-
gebraic structure, while generating proof trails at com-
pile time that relate optimized low-level code back to
its relatively simple specification.

One of the key challenges is that optimizations are
implemented across multiple abstraction layers. Perfor-
mant low-level code includes optimizations in the rep-
resentation of elliptic-curve points, in arithmetic on the
big integers that make up point coordinates, and in the
way those integers are distributed across smaller ma-
chine integers. Keeping all of these layers and repre-
sentations in one’s head is challenging but necessary
for writing the straightline assembly used in practice;
hence why so few people can write that code. However,
using Coq, we can separate the abstraction layers for
the purpose of proofs and reasoning, and then collapse
the abstraction layers by performing partial evaluation
at the lowest level (see section 4.1). This last step allows
us to precompute operations on constants and simplify
operations, speeding up our field-multiplication code by
a factor of 13.

Figure 1 displays some of the abstraction layers we
used. Our performance relies upon optimizations across
all levels; these optimizations do not generally need to
be aware of each other, and are both easier to prove
and more useful in their most general forms. All the
proofs on the level labeled “Elliptic Curve Operations,”
for example, know only that coordinates are elements
of some field; they do not rely on the specific field

or details of its operations. Similarly, proofs at the
level of signature creation and checking (labeled “Top-
Level Equations” in Figure 1) reason about an arbitrary
group; they do not know that the group’s elements are
2-coordinate points or what the point-addition formula
is. In fact, it is crucial that those proofs not rely on the
specific group implementation; there is an optimization
that uses 4-coordinate points (with some redundancy)
and an optimized addition formula (see section 5.2).
The easiest path to proving properties of the group
is to prove them about the 2-coordinate version and
then prove that the 2- and 4-coordinate versions are
isomorphic.

A similar strategy is employed for prime fields. Rea-
soning about prime fields is best done by reasoning
about unbounded integers modulo a prime number.
However, computers cannot represent unbounded inte-
gers, and field elements are large enough that they must
be spread across several bounded machine words. Clev-
erness in precisely how they are spread out, however,
can make a significant difference in performance by re-
ducing data dependencies and allowing fast modular-
reduction algorithms (section 3.1). These multiword im-
plementations are quite complicated to reason about
directly, so we reason about the easiest representation,
the unbounded integers, and then prove an isomorphism
with our efficient machine representation. Because of
the generic structure of the proofs at the elliptic-curve
level, we can simply swap out representations without
needing new proofs.

Obtaining the multiword implementation is a chal-
lenge in itself, and forms our main accomplishment in
terms of synthesis. The production-quality implementa-
tions of this functionality in open-source and industry
are hardcoded for different primes and base systems,
despite the general rules lurking beneath them. So, in
the interests of creating as broad a library as possible,

3 2016/11/30

1. Functional Operations
mul (base us vs : l i s t Z) :=
(f ix mul’ usr vs :=
match usr with
| [] => []
| u : : usr ’ =>
add (mul’ usr ’ vs)

(scmul u (sh i f t base (len usr ’) vs))
end) (rev us) vs .

2. Low-Level Operations
mul (f g : tuple Z 10) : tuple Z 10 :=
let fg0 := f0* g0 + 19 * (2 * f9 * g1 + f8 * g2 +.. .) in
let fg1 := fg0>> 26 + f1 * g0 + f0 * g1 + 19 * . . . in
let fg2 := fg1>>25 + f2 * g0 + 2 * f1 * g1 + . . . in
. . .
let fg9 := fg8>>26 + f9 * g0 + f1 * g8 + . . . in
(fg0 , fg1 , fg2 , . . . , fg9) .

3. Flattened with Bounded Types
mul (f g : tuple word64 10) :=

let x := Word64.mul f0 g0 in
let x0 := Word64.mul g1 2 in
let x1 := Word64.mul f9 x0 in
. . .
let x21 := Word64.add x1 x20 in
let x22 := Word64.mul 19 x21 in
let x23 := Word64.add x x22 in
let x24 := Word64. shr x23 26 in
. . .
(x248 , x249 , . . . x257) .

Figure 2: Synthesis stages for prime-field operations

we wrote prime-field operations in a maximally generic
way and then synthesized concrete implementations in
several stages (figure 2).

Our synthesis pipeline divides naturally into high-
level and low-level transformations. Section 3 explains
the high-level part, implementing modular big-integer
arithmetic in terms of multiple integers at fixed pre-
cisions supported by commodity processors. In section
4 we explain how to transform the resulting functional
programs into efficient low-level code that looks like as-
sembly, where every intermediate result fits in a hard-
ware register with a provable lack of arithmetic over-
flow. After explaining the synthesis pipeline for modular
arithmetic, we take a step back and explain some of the
idiosyncrasies of how we extended the pipeline to the
complete problem of elliptic-curve signatures. We eval-
uate our synthesized system for security, performance,
and ease of development, compare in more detail with
related efforts, and conclude with thoughts on remain-
ing barriers to deployment in production.

3. Finite-Field Operations
Prime fields, as used in cryptography, are based on the
three classic operations of addition, subtraction, and
multiplication. Division is defined, but efficient algo-
rithms avoid it, so we use a slow placeholder version. It
is easy enough to define their meanings in the usual style

from undergraduate discrete-math classes. Commodity
processors even support these operations natively for
particular moduli that do not happen to be prime (e.g.,
264). Still, it is surprisingly difficult to implement other
moduli efficiently. Our flagship case study uses modu-
lus 2255 − 19, which is not so trivial to implement on
top of 32-bit or 64-bit machine words. (Because of our
strategy of creating specific code from generic proofs,
we do not have to commit to a particular word size.)

3.1 Prime-Specific Modular Arithmetic
The choice of 2255−19 for elliptic-curve cryptography is
not an accident, but rather the result of a sophisticated
analysis of modular-arithmetic performance [6, “Why
this field?”]. Primes of the form 2k−c with “small” c are
called pseudo-Mersenne, and they are the first choice in
cryptography due to the following extremely simple and
fast modular-reduction rule:
∀a, b. (2ka+ b) mod (2k − c) = (ca+ b) mod (2k − c)

Note that just replacing 2ka with ca does not nec-
essarily produce output within the interval [0, 2k − c),
but it does significantly reduce the size of the inte-
ger in question. The correctness of this rule follows
from m mod m = 0 and a + b mod m = (a mod m +
b mod m) mod m, and in particular, it does not depend
on having b < 2k (even though this does lead to smaller
output). Therefore, it suffices to have the big-integer im-
plementation expose a way to efficiently split a number
into a, b such that b is relatively small, and we never
need to make the notion of “relatively small” precise.
This flexible specification allows for significant perfor-
mance improvements in the big-integer implementation
when synthesizing the latter to a specific k.

3.2 Representing Fixed-Size Integers
We will at least follow the practice that we all learned
in grade school of representing numbers according to
base systems. The natural choice would be to make each
digit, say, 32 bits wide, so that a representation like
[d0, d1, d2] could stand for the number d0+d1 ·232+d2 ·
(232)2. We call this base system uniform because suc-
cessive digits are associated with successive powers of
a fixed base. Surprisingly, performance-competitive im-
plementations adopt nonuniform base systems, where
different digits are represented with different numbers
of bits. We will refer to each machine word in a base
system as a limb, and use limb widths to reference the
weight of each integer. In the uniform 32-bit system de-
scribed above, for example, the limb widths would all
be 32. Given limb widths bi, an n-limb tuple x0 . . . xn−1

represents the following integer:

n−1∑
i=0

xi2
pi where pi =

i−1∑
j=0

bj

4 2016/11/30

Carrying immediately:
1 2 6

+ 3 8 2
5 0 8

Dependencies

@@ NNCC

Delayed carrying:
1 2 6

+ 3 8 2
4 10 8

Figure 3: Comparing dependencies of traditional addi-
tion and delayed-carrying addition

The choice of limb widths for best performance
is heavily influenced by k. To achieve competitive
modular-reduction performance, it is necessary to im-
plement the split operation by simply regrouping the
limbs. For example, k = 256 implemented using 4 64-bit
limbs can be split into two pairs of two words in 0 CPU
cycles! However, naively dividing k into equally sized
limbs would only allow implementing 255 = 3·5·17 with
15-bit, 17-bit, or 51-bit words – all of which would have
disappointing performance on a 32-bit platform. Thus
we designed our big-integer library to operate on arbi-
trary nonuniform baseystem representations, for exam-
ple 255 = 26+25+26+25+26+25+26+25+26+25.
We would say this representation has “limb widths”
[26,25,26,25,26,25,26,25,26,25].

This approach has another significant benefit: avoid-
ing data dependencies between the constituent opera-
tions, allowing processors to run several of them in par-
allel (see figure 3). Naively adding two 32-bit numbers
can produce a 33-bit result, and handling the carry bit
right away after every addition would create a chain of
data dependencies between additions of different limbs.
If some number of high bits of each limb are known
to be zero, we can add two field elements by adding
corresponding words, without carrying. In fact, we can
add six 255-bit numbers before carrying, since there
are 32 bits available and at most 26 are initially set
– and the optimized equations we derive for curve op-
erations never perform that many additions in a row
anyway. Notably, using more limbs needs more instruc-
tions, both due to the potential explicit carries and in-
creased number of positions, but the computation takes
fewer cycles on a modern pipelined processor due to the
less restrictive data dependencies.

3.2.1 Carry Chains
When not every addition is required to be followed by a
carry, choosing when and which limbs to carry is critical
for keeping the limb values bounded. In full generality,
carrying position i consists of replacing xi in a limb
with xi mod 2bi and adding

⌊
xi/2

bi
⌋

to the limb at the
next (more significant) position. This does not change

19 12 20
��

82 8
+2

��

1
−2 × 8

��
19 14

��
4

82

+1

��

8
−1 × 8

��

1

20
%%

6 4

82

−2 × 8

��

8 1
+2 × 3

��
4 6 10

82 8 1

Figure 4: Carry chain (0, 1, 2) in base 8 (mod 83 − 3).

the value of the number being represented but reduces
the value of the ith limb significantly at the cost of a
slight increase in limb i + 1. Carrying from the most
significant limb would naively create a new limb, but
if the new limb would be in the 2k position, the carry
operation can be efficiently combined with a modular
reduction by adding

⌊
xi/2

bi
⌋
c to x0 instead.

A carry chain can be written down as an ordered
list of limb numbers. For example, figure 4 represents
applying the carry chain (0, 1, 2) to a three-limb number
modulo 83 − 3, in a uniform base-8 representation. The
original number (19, 12, 20) represents 19·82+12·8+20.
We carry from limb 0 to limb 1 by observing that
12 · 8 + 20 = 14 · 8 + 4, so we can represent exactly
the same number with the digits (19, 14, 4). Similarly,
we carry from limb 1 to limb 2 and obtain (20, 6, 4).
Carrying from the third digit is more complicated, and
here it becomes important that we are using modular
arithmetic. If there were a fourth digit, we would use
the same process as before and get the number (2, 4,
6, 4), with the 2 having weight 83. However, modulo
83 − 3, adding 2 · 83 is the same as adding 2 · 3. So we
can instead add 2 · 3 to the first digit, with weight 1.

Even for just the choice of performing one chain of
carries right after every multiplication (rather arbitrary,
but convenient for elliptic-curve arithmetic), the design
space of carry chains is vast, and finding the best choices
is a subject of ongoing work [11, page 9]. Instead of
trying to encode all relevant constraints in our formal
model, we choose to take the carry chain as a synthesis
parameter. For F2255−19 (the field modulo 2255−19), the
one we chose for our main case study, multiple efficient
carry chains are already known, and we use one of them.
It would also be feasible to programmatically generate
a variety of “reasonable guesses,” benchmark the ones

5 2016/11/30

for which the entire synthesis process succeeds, and use
the fastest one of those.

3.2.2 Canonical Representations
One downside of this representation is that it is redun-
dant; that is, there are many ways to represent the same
field element. This can be problematic when trying to
determine if two sets of limbs represent the same field
element. In these cases, it is necessary to obtain a canon-
ical representation. In the case of F2255−19, for example,
this will be a set of limbs that evaluates to an integer
in the range [0, 2255 − 19), and in which none of the
10 limbs has more bits set than its corresponding limb
width (i.e. 25 or 26 bits).

Efficiently converting an integer to its canonical rep-
resentation is rather tricky. Any specific implementa-
tion consists of a fixed number of sequential carry oper-
ations where each operation carries away from the limb
that the previous one carried into. Each limb needs to
be carried from three times. However, proving that the
resulting representation is indeed canonical required a
complex invariant.

3.2.3 Correctness of Field Operations
The generic implementations and correctness proofs
of multiplication, addition, subtraction, carrying, and
canonicalization are the most complicated part of our
development, totaling about 4000 lines of code. This,
however, was a one-time cost: the specifications of op-
erations for limbs relate them to operations on math-
ematical integers by stating that the two sequences of
operations in the following square (for multiplication)
produce the same answer for all input limbs:

limbs × limbs mul //

��

limbs

��
Z× Z mul // Z

In other words, if two sets of limbs A and B represent
the integers x and y respectively, then the result of our
optimized multiplication on A and B would represent
x · y. This specification allows us to reason about field
elements like unbounded integers, despite operating on
a much more complicated representation.

Concretely, what we get from this phase are exe-
cutable Coq functions for the different operations, pa-
rameterized over lists of digit multipliers for nonuni-
form base systems. (See, for instance, the mul function
in Figure 2.) Calling these functions naively, we recurse
through dynamically allocated lists of digits, simulta-
neously doing lookups in dynamically allocated lists of
digit multipliers. In other words, we still face much of
the runtime overhead of traditional big-integer libraries.

4. Synthesizing Low-Level Code
Though the high-level transformations provide the
heart of the clever algorithms we will employ in the
end, it still remains to avoid the runtime overheads of
running functional programs directly. Our goal is proof-
generating transformation to functional programs that
look just like assembly code: sequences of let bind-
ings of native integers. The first challenge is to flatten
the control flow of the high-level programs, simplifying
away all uses of lists using knowledge of the precise pa-
rameters we are synthesizing for. The next challenge is
to analyze the dataflow sufficiently well to prove that
all high-level operations on unbounded integers are ac-
curately simulated with machine integers.

This buys us a factor of about 100 in running time.

4.1 Partial Evaluation
The purpose of partial evaluation in our pipeline is to
flatten all the carefully crafted abstraction layers in-
troduced earlier in the process. Our general, recursive
multiplication function becomes a chain of simple op-
erations specific to a particular set of parameters. Con-
stants derived from the set of parameters are inlined.
Here is a fragment of partial-evaluation output for a
combined modular multiplication and carrying opera-
tion for F2255−19 with 10 limbs:

let fg0 := f0*g0 + 19*(2*f9*g1 + f8*g2 +...)in
let fg1 := fg0>>26 + f1*g0 + f0*g1 + 19*... in
let fg2 := fg1>>25 + f2*g0 + 2*f1*g1 + ... in
let fg3 := fg2>>26 + f3*g0 + f2*g1 + ... in

We would like to point out that the same multiplica-
tion procedure (minus the bit-shifted carries from one
output limb to another) appears in [11, page 12] as
a performance-engineering achievement of its own. Our
framework generates it and its many variants automat-
ically by partial evaluation, from a multiplication im-
plementation proved correct once and for all.

Conversely, the generic OCaml code extracted in [35]
was reported to be over 100 times slower than a refer-
ence C implementation, and they pointed out the use
of boxed integers and boxed arrays as the main rea-
son for the slowdown. Importantly, this performance-
oriented transformation is easily available to us because
our generic code is purely functional, as opposed to their
stateful procedures. Because this transformation pro-
ceeds using the built-in rules of computation of Gallina,
the specification language of Coq, no proof is required.
Just this transformation alone speeds the multiplication
code up by a factor of 13.

Still, we had to solve a few engineering challenges,
principally informing Coq about which functions to
evaluate at compile time and which to save for runtime.
We defined aliased versions of several basic arithmetic

6 2016/11/30

operations, associating one flavor of each operator with
compile-time evaluation, and provided that list of oper-
ators to Coq as a whitelist of functions to inline at call
sites.

4.2 Bounds Checking
Although the high-level algorithms were designed specif-
ically to avoid overflowing or underflowing machine-
integer registers holding the limbs, we cannot rule these
out in a generic way without falling back to lower-
performance algorithms. Instead, we perform a separate
analysis on the partially evaluated code. The require-
ments for bounds on machine integers are that (a) no
primitive machine operation overflows or underflows
a (32-/64-bit) word, and (b) the output of any field
operation must be at least as tightly bounded as the
input to that operation. (Requirement (b) is necessary
to allow chaining of field operations.) In practice, find-
ing bounds that satisfy both (a) and (b) is done by
educated guessing, and the bounds are dependent on
the particular prime being used, the limb widths, and
the machine architecture. Because guessing the right
bounds is beyond the scope of our automatic synthe-
sis, we take the bounds as part of the input and use
a verified, proof-generating checker to ensure that the
bounds satisfy these properties. We will use the GHC
Haskell compiler in the end, and checking the bounds
statically produces code that is 8 times faster than
GHC’s approach of choosing between machine words
and a big-integer implementation at runtime.

Given simple straightline code for each operation
and some upper and lower bounds for the inputs, it is
straightforward to track the bounds throughout the pro-
cedure and establish bounds at the output. We imple-
ment bounds analysis after we have already performed
all optimizations that make sense in non-assembly code,
and performed partial evaluation.

Because Coq is slow at manipulating large terms, and
we must analyze hundreds of lines of straight-line code,
we do bounds analysis reflectively [15], meaning we de-
fine a bounds checker as a formal functional program
and prove its soundness once and for all, so that for in-
dividual curves we merely run the checker and appeal
to its soundness theorem. We encode syntax trees for
a subset of Gallina, with simple arithmetic operations
and let binders, using parametric higher-order abstract
syntax [17], one solution to the surprisingly vexing prob-
lem of encoding lambda-term syntax in proof assistants.
Bounds analysis proceeds by abstract interpretation on
a type of bounded words, which we prove correct in a
generic fashion.

We call attention to two features of our reflective
automation that the reader may find interesting. First,
we decided to flatten let bindings in this stage; this
consists, for example, of turning

let x := (let y := a + b in y + y) in x + x

into

let y := a + b in let x := y + y in x + x

This transformation is necessary for our eventual goal of
synthesizing assembly code. We found that the reflective
pipeline that transformed Gallina code operating on
unbounded integers into code operating on bounded
words was the most convenient place to perform this
change.

Second, we found it convenient to represent each
function in fully uncurried form, as taking a single tuple
argument, and to represent a let binder as binding a
number of variables at once. Thus, if adc takes three
arguments (two values to add and a Boolean carry flag)
and returns a pair of values (a Boolean carry flag and
the sum of the operands), we would represent binding
the return of adc to a variable as:

let (CF', retv) := adc (a, b, CF) in ...

4.3 Double-Word Operations
While the algorithms described in section 3.2 require
after-the-fact bounds analysis due to delayed carries,
which are useful for performance in many scenarios,
that algorithm only works for pseudo-Mersenne primes.
When the prime is not pseudo-Mersenne, for example,
p256 = 2256 − 2224 + 2192 + 296 − 1, we use simpler
algorithms for modular reduction that admit a much
simpler form of boundedness guarantees.

These algorithms, described in section 4.4, rely only
on the ability to do arithmetic on n-bit integers for
fixed n (e.g., 256). We built a library to synthesize the
operations needed for these algorithms.

Each synthesis rule shows how to construct an oper-
ation for n-bit integers from simpler operations on the
same size, or any supported operation on n/2-bit inte-
gers. Therefore, a 256-bit addition is constructed from a
128-bit addition, which is constructed from a 64-bit ad-
dition, and so on. Each rule is written down and proven
correct once and used several times during synthesis.

4.4 Barrett Reduction and Montgomery Form
The word-size-doubling constructions in section 4.3 give
an alternative (sometimes faster, sometimes slower) way
of implementing modular reduction without making any
assumptions about the value of the prime (only its size).
In particular, standard techniques known as Barrett re-
duction and Montgomery-form reduction allow for re-
duction modulo any prime at the cost of a handful of
simpler arithmetic operations and some prime-specific
precomputation. It should be noted that both of these
are informal implementation strategies rather than spe-
cific formulas; there are multiple variations of each with

7 2016/11/30

different performance characteristics. When prototyp-
ing our modular-arithmetic implementations, we tran-
scribed and proved correct a total of 5 different sets of
parametric formulas. Each formalization reads like (and
in one case is based on) a Wikipedia article about the
strategy; all 5 add up to 750 lines of code and proof.

For example, reduction modulo p256 is implemented
as using the “REDC” variant of Montgomery reduc-
tion, with big-integer arithmetic operations synthesized
as appropriate. On the other hand, arithmetic modulo
the order of the Curve25519 group, l ≈ 2252 +1.3 · 2124,
is implemented using Barrett-style formulas, mirroring
the choice of the fastest public-domain implementa-
tions [1, ed25519-amd64-51-30k]. Choosing which for-
mulas to use is not within the scope of our library, and
as in the two cases shown, these choices can be made
based on existing work with little effort.

5. Case Study: EdDSA
Our main case study is a digital-signature scheme called
EdDSA, used for client and server authentication in
SSH, TOR, OpenBSD, Signal, a yet-to-be-finalized TL-
S/x509 certificate type [20], and in numerous less promi-
nent systems [3]. The main goal of this case study is to
validate our modular-arithmetic correctness theorems:
it would be a pity if the verified specification of the op-
timized arithmetic code were not complete enough to
allow for verified composition. Establishing the correct-
ness of an EdDSA implementation involves a number of
interesting proofs that rely on the correctness of mod-
ular arithmetic but are otherwise orthogonal. We also
included a representative subset of high-level optimiza-
tions used in the fastest EdDSA implementations but
did not aim for performance parity.

5.1 Fidelity of High-Level Specifications
To the best of our knowledge, our specifications match
the descriptions of the relevant cryptographic primitives
and mathematical structures more closely than any
other specification against which an implementation has
been formally verified. As an example, here is our Coq
specification of Edwards curves.

Definition point := { P : F*F
| let '(x,y) := P in
a*x^2+y^2 = 1+d*x^2*y^2 }.

Definition coordinates (P:point)
: (F*F) := proj1_sig P.

Program Definition zero : point := (0, 1).
Program Definition add (P1 P2:point) : point :=
exist _ (

let (x1, y1) := coordinates P1 in
let (x2, y2) := coordinates P2 in
(((x1*y2 + y1*x2)/(1 + d*x1*x2*y1*y2)),
((y1*y2 - a*x1*x2)/(1 - d*x1*x2*y1*y2))))_.

The main difference between this and the English-
language definition of Edwards curves is an artifact of
encoding of subsets in Coq – each point is represented as
its coordinates along with a proof of the invariant that
the coordinates are on the curve; proj1_sig strips this
proof, and exist _ P _ attaches a new one (which is lo-
cated automatically by Coq’s Program machinery [32]).
Specifications that do not introduce invariants are even
simpler; here is our definition of when an EdDSA sig-
nature should be accepted:

exists A S R, Eenc A = pubkey /\
Eenc R ++ Senc S = signature /\
S * B == R+(H(Eenc R++EencA++msg) mod l)*A.

5.2 Optimized Point Formats
Cryptography experts have developed faster represen-
tations of elliptic-curve points. We use an extended rep-
resentation of twisted Edwards curves
[7], with each point encoded as (X,Y, Z, T), represent-
ing the 2-coordinate point (X/Z, Y/Z), with the side
conditions Z ̸= 0 and T/Z = XY . Having an explicit
field element Z that corresponds to “the denominator”
of X and Y enables the addition formulas to be writ-
ten without any expensive field-element inversions or
divisions.

To show that the group formed by the fast 4-
coordinate addition formulas is isomorphic to the speci-
fication group, we translate the Sage script in [7] to Coq
tactics, relying heavily on the nsatz [28] tactic, which
internally uses Gröbner-basis computation for finding
proof certificates. The same strategy (along with some
simple facts about when a product can be nonzero) ap-
plies to proving that Edwards-curve points indeed form
a group or that the Edwards addition-law denominator
is never zero (theorem 3.3 in [9]).

5.3 Space-Efficient Representations
Edwards curve points (x, y) in EdDSA are transmitted
as (y, x mod 2) to save space, and the recipient is ex-
pected to solve the curve equation for x2 and then pick
the unique value for x such that the parity is correct
(x and −x have different parity if q is odd). Our ver-
ification covers both encoding a point in precisely the
specified way and solving for the omitted coordinate
given the sign bit, and we are not aware of any previous
verification of these procedures – both are conceptually
simple but require simultaneous attention to nontrivial
number-theoretic properties and the exact wire format.

Furthermore, while signature verification would naively
involve decoding two points (signature nonce R and
public key A), we include (and verify) a well-known op-
timization that involves decoding A, solving for R, en-
coding it, and comparing the encodings – again, saving
a field-element inversion and square-root computation.

8 2016/11/30

5.4 Powers, Inverses, Square Roots
From the basic field operations, we can construct a more
complete set of necessary operations on field elements,
relying on a suite of nonobvious implementation tech-
niques.

For exponentiation by a constant, we go beyond
the binary exponentiation that would, for instance, ex-
press x15 with 6 multiplications as x15 = x × (x ×
(x × x2)2)2. Instead, we parameterize exponentiation
over arbitrary addition chains that encode the sharing
of subcomputations, so that we can compute x15 with
only 5 multiplications as x15 = x3 × ((x3)2)2.

For inversion (finding a multiplicative inverse), we
use Fermat’s Little Theorem (whose proof we import
from the Coqprime [33] library) to show that ap−2 is
the multiplicative inverse of a modulo p, so that our
exponentiation routine provides the main ingredient.

For finding square roots (modulo prime p), we
employ various prime-specific tricks for fast execution
based on Euler’s criterion. For instance, when p ≡ 3
mod 4, the square root of a (if a has a square root) is
given by a

p+1
4 , again relying on exponentiation.

6. Evaluation
We will evaluate our implementation using the three
criteria described in the introduction: rigor (section
6.1), generality (section 6.3), and effort (section 6.3).
We will also compare our performance to real-world
implementations (section 6.2).

6.1 Safety From Bugs
We analyzed deployed cryptographic software for a
sample of functional-correctness bugs specific to the
functions being implemented (to exclude memory-
management errors or timing side channels). Our sam-
ple includes the first 15 bugs we found fitting the crite-
rion of specificity to the implemented function; we did
not intentionally exclude bugs for any other reason, al-
though a more thorough search would probably uncover
more bugs. We observed that while the mistakes were
often “small” in the sense that the difference between
the original and corrected versions was minimal (in one
case, a single character), understanding why one is cor-
rect and the other is not requires significant contextual
information, sometimes across multiple abstraction lay-
ers. In sharp contrast with the top-level specification,
it is nontrivial to write the specification of a subroutine
that captures all required behaviors and yet allows for
important optimizations.

6.1.1 Multiword Arithmetic Bugs
Of the 15 bugs, 11 had to do with low-level multi-
word arithmetic. These are summarized in Table 1. In
this category, it is nontrivial to distinguish between

design errors (code correctly implements the program-
mer’s flawed understanding) and coding mistakes (ty-
pos, missed low-level details) based on the code itself,
so we refer to relevant bug-tracker discussion if avail-
able. Similarly, it is extremely difficult to estimate the
security impact of these bugs: [4] shows a sophisticated
exploit against OpenSSL bug 1593, and Bernstein and
Schwabe estimate [10] that a well-equipped attacker
would be able to exploit OpenSSL CVE-2015-3193, but
we do not know about all of the bugs. A detailed analy-
sis of exploitability is outside the scope of this project,
and we choose not to speculate.

Here are three example bugs for which an explana-
tion was available:

• The TweetNaCl paper [14] describes a typo of un-
known impact in ed25519-amd64-64-24k: r1 += 0
+ carry should have been r2 += 0 + carry instead.
Authors noted that this line was one of 16,184 sim-
ilar lines, and the issue would not have been caught
by random tests.

• OpenSSL bug 1593 was traced back to confusion be-
tween the postconditions of exact division with re-
mainder and an operation like our split that produces
a q and r s.t. x = qm + r, but does not guarantee
that r is the smallest possible. The probability of
a random test triggering this bug was bounded to
10 · 2−29.

• One of the two bugs uncovered in OpenSSL issue
3607 was summarized by its author as “Got math
wrong :-(”. The discussion was concluded when
the patched version was found to be “good for ~6B
random tests” and the reviewer saw that “there
aren’t any low-hanging bugs left.”

6.1.2 Higher-Level Bugs
While field arithmetic accounts for the nastiest bugs
we have seen, the following are good examples of how
increased rigor would have helped higher-level code:
Jager et al. demonstrate [19] how, because an elliptic-
curve point-decoding function failed to establish that
the point indeed lies on the elliptic curve, devastating
remote attacks were enabled against TLS/HTTPS se-
curity implemented by Oracle Java and Bouncy Castle
libraries. Google End-to-End issue 340 describes a con-
ceptually similar confusion about the members of an el-
liptic curve with no known adverse consequences. CVE-
2006-4339 involves improper validation during parsing
that allowed for bogus RSA signatures to pass as valid.
Even more embarrassingly, Socat security advisory 7
admits unbounded loss of security due to a hardcoded
constant that was required to be prime actually being
composite (and of unknown origin).

9 2016/11/30

Table 1: Multiword Arithmetic Bugs

Software Reference Summary
OpenSSL CVE-2015-3193 Integer overflow (next to comment “can this overflow?”)
OpenSSL commit 0c687d7e Possible overflow (failed manual analysis)
OpenSSL issue 3607 Integer overflow
OpenSSL issue 3607 Precondition/postcondition confusion
OpenSSL issue 1593 Precondition/postcondition confusion
curve-donna-c32 commit 8edc799f Incomplete modular reduction
Golang math/big issue 13515 Incorrect carrying
OpenSSL CVE-2016-7055 Incorrect carrying
Nettle commit 09e3ce4d Incorrect carrying
ed25519-amd64-64-24k TweetNaCl (p. 2) Typo among 16,184 similar lines
OpenSSL CVE-2014-3570 Incorrect results when squaring field elements

6.1.3 Our Contribution
Our verification rules out all functional-correctness bugs
(historic and hypothetical) that we are aware of, in-
cluding those described above. Because we use bounded
types, results that are incorrect due to integer overflow
are covered (see section 4.2). Our high-level specifica-
tions ensure that our operations compose correctly; in
order to do so, they must produce correct output in all
cases. We represent elliptic-curve points with a depen-
dent type that not only includes coordinates but also
requires the coordinates to be on the curve; it is impos-
sible to parse a point that is not in fact on the curve,
and we avoid the problems encountered by Oracle Java
and Bouncy Castle.

Furthermore, our verification has already uncovered
subtle issues with real-world implementations on two
occasions. First, in the process of producing our ver-
ified implementations, we discovered a troubling dif-
ference between what could be verified to be correct
and similar implementations deployed by a well-known
technology company. The implementation we studied
performed Barrett-style reduction modulo two different
primes and was justified by the same correctness ar-
gument for both of them. The code featured a novel
optimization to perform one conditional subtraction of
the modulus instead of two. The generic justification
did not pass verification in Coq, was found to be faulty,
and has not found a fix to this day. For one of the
two moduli, we were able to check the computation by
enumerating all semantically different inputs, but doing
the same for the other one would have been computa-
tionally infeasible. After significant investigation failed
to turn up any reason why the remaining code would
be correct, the company removed the new optimization
from production.

Second, we also discovered a discrepancy between the
paper specification (and Python reference implementa-
tion) of ed25519 and all the most optimized implemen-

tations we tested (C “ref”, ed25519-donna, ed25519-
amd64-51-30k). In particular, a malicious actor would
be able to create a signature that is considered good
by any implementation that follows the specification to
the letter but considered invalid by the optimized im-
plementation. The difference comes from the fact that
the point (h mod l)P is equal to hP only if P has or-
der l, but Curve25519 also contains points of other or-
ders, even though a good signer never generates them.
The optimization is sound in the sense that it makes no
new signatures valid, and it significantly simplifies im-
plementation, so we argue that the specification should
be changed to allow for that optimization. The latest
IETF draft [20], due to an independent fix, contains
this updated specification.

6.2 Performance
To measure the performance of our synthesized code, we
use Coq’s extraction mechanism to translate the output
to Haskell. We have the extraction map key types in Coq
to their Haskell counterparts (in particular, word 64
becomes Data.Word.Word64) and instruct GHC to use
strict evaluation and inline field-arithmetic functions.

The performance of our synthesized code reflects the
optimizations we verified and integrated. In particular,
our synthesis output reliably outperforms generic code
and naive specialized implementations, comes close to
similarly optimized handwritten code, and lags behind
the world-champion implementations that incorporate
additional optimizations. Tables 2 and 3 contain our
own benchmark results on a 2.6GHz Intel Broadwell
i7-5600U processor along with SUPERCOP results [1]
from machine skylake scaled to the former’s clock
frequency.

The performance ranking of our synthesized code on
the X25519 key-agreement benchmark is limited by our
suboptimal choice of limb widths and complete lack of
instruction-level optimization: an implementation writ-
ten in C with the same limb widths is 40% faster than

10 2016/11/30

Table 2: X25519 Diffie-Hellman Handshake

implementation time limbwidths lang.
amd64-51 69µs 51 qhasm
donna-c64 71µs 51 C
donna-2526 237µs 25.5 C
ours 384µs 25.5 Haskell
GMPtoy 1022µs - C/Haskell
ref 2351µs 8 C
ECC-star [35] 20000µs 51 OCaml

ours, and using 51-bit limbs saves another factor of 4 on
our field multiplication. We are working on extending
our synthesis process to support generating code for 51-
bit limbs: all layers that work with mathematical inte-
gers already support it, but the verified translation from
arbitrary-precision integers to 64-bit words, described
in section 4.3, would need to detect and separately han-
dle 128-bit products of 64-bit integers that need to be
split across two variables. We also included for refer-
ence a naive non-constant-time (and thus insecure) im-
plementation where all field arithmetic is performed by
the GNU Multiple Precision arithmetic library.

Table 3: Ed25519 signing

implementation time exp. limbs lang.
amd64-51-30k 19µs hex 51 qhasm
donna-c64 22µs hex 51 C
donna-2526-64 44µs hex 25.5 C
ref 443µs hex 8 C
ours 1529µs bin 25.5 Haskell
ed25519.py 2010000µs bin - Python
our spec ~ 2250µs n/a - Coq

While X25519 primarily exercises the lower layers of
our framework (finite-field operations, efficient repre-
sentation of large bounded integers), the performance
of an Ed25519 implementation depends even more heav-
ily on the handling of elliptic-curve points and in par-
ticular the implementation of point-scalar multiplica-
tion. As seen in table 3, an “unoptimized” implemen-
tation derived directly from the specification would be
completely intractable to execute, and replacing point
multiplication by repeated addition with an analogue
of binary exponentiation (as in the original reference
implementation ed25519.py) still leaves several orders
of magnitude of speed to be gained. Our implementa-
tion further improves on that by using inversion-free
point-addition formulas in extended coordinates, com-
ing to within 4x of the C “ref” implementation that
combines the best-known elliptic-curve optimizations
with a naive field-arithmetic library. The fastest im-
plementations use precomputed tables, represent points
differently depending on what operations are performed

on that point, and use “hexadecimal exponentiation”
(handling a fixed window of 4 exponent bits at a time).

Finally, we are excited to report that the implemen-
tation of Barrett reduction discussed in the end of sec-
tion 6.1.3, which we synthesized to match third-party
code, actually ended up 10% faster than the hand-
optimized target. Our synthesis pipeline correctly iden-
tified and eliminated a redundant computation that the
programmer missed.

6.3 Effort
The framework described in this paper was designed
and implemented in less than two person-years of work.
This is on par with the timescales of cryptographic
implementation development: for example, the project
that produced the qhasm implementations of X25519
and ed25519 (discussed earlier section 6.2) took 38
months [22], and the ed25519 paper [12] lists 5 authors.
Of course, the original ed25519 developers had to come
up with the optimizations themselves, which is at least
as difficult as our coming up with a strategy for verifying
them.

We do not have a direct indication of the effort
to later verify the body of the innermost loop of the
X25519 implementation as done by Chen et al. [16],
but we expect their smaller scope and looser integra-
tion story between different formal-methods tools sim-
plified implementation, which involved 8 authors. The
paper also indicates a 27-fold increase in proof steps
between the fastest multiplication modulo 2127 − 1 and
the fastest multiplication modulo 2255 − 19. The au-
thors of gfverif [10] judge this previous verification to
have required “much more effort” than checking simi-
lar C code with gfverif, but they also emphasize that
the latter “should not be relied upon.” The verification
of a new, much slower implementation of arithmetic in
the same field by Zinzindohoue al. [35] roughly matches
ours in terms of proof size (5800 lines), but the later
synthesis steps that are key to our better performance
require additional proof, adding up to a total of 8000
lines. They still require a significant overhead of 600
handwritten lines per curve (compared to our 1 line),
and none of the three projects provide comprehensive
whiteboard-level specifications.

Where synthesis really pays off is producing new code
using a known strategy. For example, when we read the
work of Zinzindohoue et al. [35] and decided to synthe-
size a X25519 implementation to compare performance,
it took one person less than 8 hours to synthesize code
using the optimizations in our library, prove the cor-
rectness of the composition, and extract and benchmark
Haskell code. In the “real world,” even smaller changes
like replacing the prime modulus require from-scratch
reimplementation. These delays have unfortunate secu-
rity consequences: for example, the EdDSA RFC [20]

11 2016/11/30

recommends Ed25519 over Ed448 in cases where the
inferior security margin is tolerable and notes that the
latter has “much worse support” on the implementa-
tion front. In our framework, creating an implementa-
tion with a single parameter takes less than 10 min-
utes: one has to copy the file that specifies the synthe-
sis parameters and change what is desired. We prac-
ticed this exercise on 5 pseudo-Mersenne primes from
the SafeCurves list of primes recommended for use in
elliptic-curve cryptography [8]. In particular, we gener-
ated code for 2221 − 3, 2251 − 9, 2255 − 19, 2414 − 17,
and 2521 − 1. Nearly all of the process was automatic;
the only input necessary to generate verified, optimized
field arithmetic for a new prime was a tiny JSON file.
This is the input for the prime 2221 − 3:

{ "k" : 221, "c" : 3, "n" : 8, "w" : 32,
"ch" : "[0;1;2;3;4;5;6;7;0;1]" }

The parameters n and w correspond to number of
limbs and machine-word size (though due to current
lack of support for multiple word sizes discussed in
Future Work, this code would actually be generated for
64-bit). The ch parameter is the carry chain used after
multiplication. Determining the optimal carry chain is
currently not a generically solved problem, so it must be
specified by the programmer. (However, our machinery
will check for integer overflow automatically should
the programmer fail to carry enough.) A short Python
script does text replacement on a template, producing
Coq source that differs only superficially, despite the
fact that the final generated code will include operations
in entirely different base systems.

7. Related Work
As discussed in the introduction and the evaluation sec-
tion, prior projects in verifying field-specific modular-
arithmetic code have had significantly larger trusted
bases and less concise specifications than ours, and are
either less much more work-intensive per implementa-
tion [16] or result in significantly slower code [35].

Performance-oriented synthesis of domain-specific
code (without proofs of correctness) has previously
been done using explicit templates (e.g. Template
Haskell [31]) and more sophisticated multistage pro-
gramming (e.g. Lightweight Modular Staging [30]).
More specialized frameworks along these lines include
FFTW [18] and Spiral [26]. Out of these, our synthe-
sis strategy is most similar to LMS, differing mainly
in the choice of using existing (proof-generating) Coq
facilities for controlled partial evaluation and rewriting
rather than implementing them ourselves.

Myreen and Curello verified a general-purpose big-
integer library [24]. The code uses a hardcoded uni-
form base system, does not include specialized modular-

reduction optimizations, and does not run in constant
time. However, their verification extends all the way
down to AMD64 assembly using verified decompilation.
The proof effort is roughly similar to ours (6227 lines of
HOL).

While verified compilers (e.g., CakeML [21], Comp-
Cert [23]) and translation validators [25] are useful for
creating soundly optimized versions of a reference pro-
gram, we are not aware of any that could cope with
abstraction-level-collapsing synthesis as done in this
work or LMS.

Verification of cryptographic protocols (e.g., Certi-
Crypt [34], FCF [27]) is complementary to this work:
given a good formal specification of a protocol, it can be
shown separately that an implementation corresponds
to the protocol (our contribution for EdDSA) and that
the protocol is secure (out of scope for this paper). The
work by Beringer et al. [5] is a good example of this pat-
tern, composing a protocol-security proof, a correctness
proof for its C-level implementation, and a correctness
proof for the C compiler.

8. Future Work
There are several additional blockers to the use of our
synthesized implementations in any real product. Most
importantly, to be linked against programs in languages
other than Haskell, our synthesized code would need to
be extracted to a low-level language with no managed
runtime. Mechanically, this is perfectly tractable right
now: a purely syntactic change of let x := Word64.add
a b in ... to uint64_t x = a + b; would yield
valid C code, but ideally the transformation would be
accompanied by a proof of correctness (removing GHC
and Coq’s extraction machinery from our trusted base).

We are working on a synthesis pass to choose fixed
representations of different sizes of integers. This would
enable us to use base-251 and thus bridge most of
the X25519 performance gap. The remaining 40% is
due to instruction-level optimization in other imple-
mentations. Similarly, while our current EdDSA im-
plementation is foundationally verified and fast enough
for some applications, the remaining elliptic-curve-level
optimizations would need to be included to achieve
competitive performance (a prerequisite for large-scale
adoption). At the very end, the output machine code
should be checked against the semantics of the target
machine to make sure that there is no data flow from
secret inputs to execution time (e.g. through branch
conditions or array indices) – while our code is written
with constant time in mind, GHC (or any other sophis-
ticated compiler we are aware of) is not designed to
preserve that property.

In addition to improving the current use cases of
this library, we are optimistic that the same approach

12 2016/11/30

will be useful in other cryptographic domains: most
obviously, hyper-elliptic-curve cryptography, but also
lattice-based cryptography and possibly also RSA with
a fixed modulus size.

13 2016/11/30

A. Elliptic Curves and Cryptography
Elliptic curves are defined over finite fields Fq (integers
modulo q) as sets of points that satisfy some predicate
(the curve equation). We turn curves into groups by
adding an addition law. A twisted Edwards curve with
parameters a and d is defined as follows:

{(x, y) ∈ F× F | ax2 + y2 = 1 + dx2y2}

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1y1x2y2
,
y1y2 − ax1x2

1− dx1y1x2y2

)
Multiplication of a point by an integer is defined as

repeated addition, and (0, 1) is the identity element.
There are other families of elliptic curves (more and
less general), and the “same” curve (up to isomorphism)
can be represented in different coordinate systems. In
cryptography, the coordinate system and parameters
are chosen for best security and performance if at all
possible, and a and d are chosen such that the de-
nominator is never zero. Our chosen example curve is
Curve25519 [6], because it is highly optimizable and is
used in a broad swath of applications [2, 3]. Curve25519
uses q = 2255 − 19, a = −1, and d = −121665/121666.
Importantly, the curve is specified in the form best for
comprehension and security analysis, but implementa-
tions can use any coordinate system for which there
exists an efficiently computable isomorphism.

A.1 EdDSA Digital Signatures
A motivating application of ECC is the EdDSA signa-
ture scheme, which one host can use to attach a dig-
ital signature to a network message. The signature is
relatively efficient to compute, given knowledge of a se-
cret key, but intractable to forge without the key. The
general EdDSA signature scheme with 11 parameters is
defined rigorously in [13], which is the basis of our for-
malization. The definitions in [12, 20] are special cases
of the former, but we follow the last one here for sim-
plicity. Parameters include:

• An Edwards curve
• A canonical encoding of points
• “Base” point B
• Cryptographic hash function H
• An integer l s.t. lB = (0, 1)

For a secret integer a, the public key is A = aB.
Then the signature on a message M is defined as the
pair (rB, (r +H(rB,A,M)a) mod l), where r is a pseu-
dorandom value derived from a secret and M using H.
To verify an alleged signature (R,S) by A on message
M , it is sufficient to check SB = R + H(R,A,M)A.
Some standards mandate different checks, but these are
not necessary for detecting forgeries. It is critical that
the signer does not reveal any information about r for

any of its signatures – otherwise the signing equation
could be solved for a.

A.2 Diffie-Hellman Key Exchange
Given a common base point B, two parties (with secret
integers x and y and public-key points X = xB and
Y = yB) who are able to mutually authenticate each
other can agree on a shared secret by publishing X and
Y and then computing

xY = x(yB) = xyB = yxB = y(xB) = yX

It is permissible to perform the key exchange first and
then authenticate the choices of X,Y before continuing,
but it is not okay to use xyB as the basis of that
authentication or to authenticate xyB instead. It is
safe to reuse x and X for multiple key agreements, but
erasing x can avoid compromise of finished sessions in
case of attack.

A.3 TLS 1.3
The work-in-progress version of the Transport Layer
Security standard allows connection establishment us-
ing the two described algorithms as of the latest IETF
drafts [20, 29]. In particular, each connection begins
with both the client and the server transmitting their
chosen signature and key-agreement mechanisms, the
information necessary for key agreement (here X), and
a signature on the hash of all session-initiation mes-
sages (including the ones described here). Elliptic-curve
cryptography is used only for connection initiation and
authentication; subsequent application messages are
encrypted and authenticated using simpler methods
that rely on the presence of a shared key, for example
chacha20poly1305.

B. Techniques
In the course of this project, we came up with a handful
of useful techniques and patterns to simplify our veri-
fication task. Of these, a few address generic problems
that future researchers might face; we summarize those
here.

B.1 Representation Proofs
Multiple optimizations verified in our library rely on
changing representation of the values that are being
computed on throughout the entire computation. In
particular, given an existing reference implementation
of some implementation of an abstract type TREF with
operations f : TREF → TREF, we wish to show that an-
other type TOPT with corresponding operations behaves
equivalently in the sense required by the Coq rewriting
mechanisms we use to synthesize code. In particular,
the following requirements need to be met to push a
conversion from TREF to TOPT towards the leaves of an
expression tree:

1 2016/11/30

1. OPT(f(x)) = fOPT(OPT(x))
2. fOPT is proper: if REF(xOPT) = REF(yOPT) then

REF(fOPT(xOPT)) = REF(fOPT(yOPT))

If the equivalence of TOPT values corresponds to
equality of their REF images, this can be pictorially
represented as the following commuting diagram:

TREF
f //

OPT
��

TREF

OPT
��

TOPT
fOPT

// TOPT

//
Proper

//

However, proving both properties directly would result
in a duplication of work for each function f . The follow-
ing “flipped” formulation, which can be easily certified
to imply the former, requires only one proof about each
function, and is in our experience much easier to prove:

TREF
f //

SS

OPT REF

TREF

TOPT
fOPT

// TOPT

REF

OO

1. REF(fOPT(xOPT)) = fREF(xOPT)
2. faithful representation: REF(OPT(x)) = x

B.2 Selective Partial Evaluation
In section 4.1, we discussed partially evaluating code
such that function calls were inlined and computed as
far as possible, leaving only low-level operations (in
particular, operations with corresponding assembly in-
structions). We did this by “whitelisting” those func-
tions, telling Coq to inline and compute everything
else. But in some places, we did actually want to in-
line those functions. For example, we would not want
to do compile-time computation of an addition that op-
erated on two pieces of input, but we do want compile-
time computation of additions that operate on variables
that are known at compile time but are unknown to
generic functions. In order to differentiate these cases,
we needed a way to “mark” the instances of addition,
bitshifting, etc. that we did want Coq to compute. In or-
der to do this, we defined new versions of the operations
that were equivalent to the old ones but were computed
as far as Coq could compute them with no input. Then
we replaced the instances we wanted to compute with
these new operations, and they were not preserved by
the whitelist.

B.3 Optimization through Interactive Proofs
Many steps in our process, including the refinements of
field operations described in section 4.1 and the marking
of functions in section B.2, required us to synthesize
new equivalent versions of functions after more variables
were known. One way to do this is to write a new
function and then prove it equivalent to the old one;
however, even with good proof automation, this is a
fairly manual process. A change done midway through
the pipeline does not automatically propagate; it needs
to be manually changed in every later step. So we
used a more automated technique. It is probably not
novel; however, it is worth noting as a useful and little-
discussed method.

1. To start interactive optimization, state the goal as
an informative existential: Definition f_opt_sig
: { f_opt | forall x, f_opt x = f x }.

2. Start proving the correctness while leaving f_opt to
be determined in process by running eexists.

3. Perform any rewrite and other desired simplifica-
tion on the right-hand-side of the equality.

4. Run reflexivity to unify the two sides, implicitly
determining f_opt.

5. Use Definition f_opt := Eval cbv [proj1_sig
f_opt_sig] in f_opt_sig to retrieve the function.

2 2016/11/30

References
[1] ebacs: Ecrypt benchmarking of cryptographic sys-

tems. URL https://bench.cr.yp.to/supercop/
supercop-20161026.tar.xz.

[2] Things that use curve25519, . URL https://ianix.
com/pub/curve25519-deployment.html.

[3] Things that use ed25519, . URL https://ianix.com/
pub/ed25519-deployment.html.

[4] Practical realisation and elimination of an ECC-related
software bug attack. 2011. URL https://eprint.iacr.
org/2011/633.pdf.

[5] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel.
Verified correctness and security of OpenSSL HMAC.
In 24th USENIX Security Symposium, pages 207–221,
Aug. 2015.

[6] D. J. Bernstein. Curve25519: new Diffie-Hellman speed
records. In Public Key Cryptography - PKC 2006. Pro-
ceedings of the 9th International Conference on Theory
and Practice in Public-Key Cryptography, New York,
NY, USA, April 24-26. Springer-Verlag. URL http:
//cr.yp.to/papers.html#curve25519.

[7] D. J. Bernstein and T. Lange. Explicit-formulas
database: Extended coordinates for twisted edwards
curves, . URL https://hyperelliptic.org/EFD/g1p/
auto-twisted-extended.html.

[8] D. J. Bernstein and T. Lange. Safecurves: choosing
safe curves for elliptic-curve cryptography, . URL http:
//safecurves.cr.yp.to.

[9] D. J. Bernstein and T. Lange. Faster addition and dou-
bling on elliptic curves. In Proceedings of the Advances
in Crypotology 13th International Conference on Theory
and Application of Cryptology and Information Secu-
rity, ASIACRYPT’07, pages 29–50, Berlin, Heidelberg,
2007. Springer-Verlag. ISBN 3-540-76899-8, 978-3-540-
76899-9. URL https://eprint.iacr.org/2007/286.

[10] D. J. Bernstein and P. Schwabe. URL http://gfverif.
cryptojedi.org/.

[11] D. J. Bernstein and P. Schwabe. NEON crypto. In
E. Prouff and P. Schaumont, editors, Cryptographic
Hardware and Embedded Systems – CHES 2012, vol-
ume 7428 of Lecture Notes in Computer Science, pages
320–339. Springer-Verlag Berlin Heidelberg, 2012. URL
http://cryptojedi.org/papers/#neoncrypto. Docu-
ment ID: 9b53e3cd38944dcc8baf4753eeb1c5e7.

[12] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and
B.-Y. Yang. High-speed high-security signatures. Jour-
nal of Cryptographic Engineering, 2(2):77–89, 2012.
URL http://cryptojedi.org/papers/#ed25519.
Document-ID: a1a62a2f76d23f65d622484ddd09caf8.

[13] D. J. Bernstein, S. Josefsson, T. Lange, P. Schwabe,
and B.-Y. Yang. EdDSA for more curves, 2015. URL
http://cryptojedi.org/papers/#eddsa.

[14] D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange,
P. Schwabe, and S. Smetsers. TweetNaCl: A crypto li-
brary in 100 tweets. In D. Aranha and A. Menezes, edi-
tors, Progress in Cryptology – LATINCRYPT 2014, vol-

ume 8895 of Lecture Notes in Computer Science, pages
64–83. Springer-Verlag Berlin Heidelberg, 2015. Doc-
ument ID: c74b5bbf605ba02ad8d9e49f04aca9a2, http:
//cryptojedi.org/papers/#tweetnacl.

[15] S. Boutin. Using reflection to build efficient and certified
decision procedures. In Proc. TACS, 1997.

[16] Y.-F. Chen, C.-H. Hsu, H.-H. Lin, P. Schwabe, M.-H.
Tsai, B.-Y. Wang, B.-Y. Yang, and S.-Y. Yang. Veri-
fying Curve25519 software. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS’14, pages 299–309. ACM, 2014.
URL http://cryptojedi.org/papers/#verify25519.
Document ID: 55ab8668ce87d857c02a5b2d56d7da38.

[17] A. Chlipala. Parametric higher-order abstract syntax
for mechanized semantics. In ICFP’08: Proceedings
of the 13th ACM SIGPLAN International Conference
on Functional Programming, September 2008. URL
http://adam.chlipala.net/papers/PhoasICFP08/.

[18] M. Frigo and S. G. Johnson. The design and imple-
mentation of FFTW3. Proceedings of the IEEE, 93(2):
216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[19] T. Jager, J. Schwenk, and J. Somorovsky. Practical
invalid curve attacks on TLS-ECDH. 2015. URL
http://euklid.org/pdf/ECC_Invalid_Curve.pdf.

[20] S. Josefsson and I. Liusvaara. Edwards-curve
digital signature algorithm (EdDSA). Internet-
Draft draft-irtf-cfrg-eddsa-08, IETF Secretariat, August
2016. URL http://www.ietf.org/internet-drafts/
draft-irtf-cfrg-eddsa-08.txt.

[21] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens.
CakeML: A verified implementation of ML. In POPL
’14: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 179–191. ACM Press, Jan. 2014. doi: 10.1145/
2535838.2535841.

[22] T. Lange, D. J. Bernstein, and P. Schwabe. Im-
proved networking and cryptography library. Tech-
nical report. URL https://cryptojedi.org/papers/
caced25-20110211.pdf.

[23] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.

[24] M. O. Myreen and G. Curello. A verified bignum
implementation in x86-64 machine code. URL http:
//www.cse.chalmers.se/~myreen/cpp13.pdf.

[25] G. C. Necula. Translation validation for an optimizing
compiler. pages 83–94.

[26] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura,
J. Johnson, D. Padua, M. M. Veloso, and R. W. John-
son. Spiral: A generator for platform-adapted libraries
of signal processing algorithms. Journal of High Per-
formance Computing and Applications, special issue on
Automatic Performance Tuning, 18(1):21–45, 2004.

[27] A. Petcher and G. Morrisett. The Foundational Cryp-
tography Framework. 2014. URL http://adam.
petcher.net/papers/FCF.pdf.

13 2016/11/30

https://bench.cr.yp.to/supercop/supercop-20161026.tar.xz
https://bench.cr.yp.to/supercop/supercop-20161026.tar.xz
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://eprint.iacr.org/2011/633.pdf
https://eprint.iacr.org/2011/633.pdf
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html
https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html
http://safecurves.cr.yp.to
http://safecurves.cr.yp.to
https://eprint.iacr.org/2007/286
http://gfverif.cryptojedi.org/
http://gfverif.cryptojedi.org/
http://cryptojedi.org/papers/#neoncrypto
http://cryptojedi.org/papers/#ed25519
http://cryptojedi.org/papers/#eddsa
http://cryptojedi.org/papers/#tweetnacl
http://cryptojedi.org/papers/#tweetnacl
http://cryptojedi.org/papers/#verify25519
http://adam.chlipala.net/papers/PhoasICFP08/
http://euklid.org/pdf/ECC_Invalid_Curve.pdf
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-eddsa-08.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-eddsa-08.txt
https://cryptojedi.org/papers/caced25-20110211.pdf
https://cryptojedi.org/papers/caced25-20110211.pdf
http://www.cse.chalmers.se/~myreen/cpp13.pdf
http://www.cse.chalmers.se/~myreen/cpp13.pdf
http://adam.petcher.net/papers/FCF.pdf
http://adam.petcher.net/papers/FCF.pdf

[28] L. Pottier. Connecting Gröbner bases programs with
Coq to do proofs in algebra, geometry and arithmetics.
CoRR, abs/1007.3615, 2010. URL http://arxiv.org/
abs/1007.3615.

[29] E. Rescorla. The Transport Layer Security (TLS)
protocol version 1.3. Internet-Draft draft-ietf-
tls-tls13-11, IETF Secretariat, December 2015.
URL http://www.ietf.org/internet-drafts/
draft-ietf-tls-tls13-11.txt. http://www.ietf.
org/internet-drafts/draft-ietf-tls-tls13-11.
txt.

[30] T. Rompf and M. Odersky. Lightweight modular stag-
ing: A pragmatic approach to runtime code generation
and compiled DSLs. Commun. ACM, 55(6), 2012.

[31] T. Sheard and S. P. Jones. Template meta-
programming for Haskell. 2 2016. URL
https://www.microsoft.com/en-us/research/
wp-content/uploads/2016/02/meta-haskell.pdf.
orig. 2002.

[32] M. Sozeau. Subset coercions in Coq. 2006.
URL https://www.irif.fr/~sozeau/research/
publications/Subset_Coercions_in_Coq.pdf.

[33] L. Théry and B. Grégoire. Coqprime. URL http:
//coqprime.gforge.inria.fr/.

[34] S. Zanella-Béguelin. Formal certification of game-based
cryptographic proofs. URL http://software.imdea.
org/~szanella/Zanella.2010.PhD.pdf.

[35] J. K. Zinzindohoue, E.-I. Bartzia, and K. Bharga-
van. A verified extensible library of elliptic curves.
In IEEE Computer Security Foundations Symposium
(CSF), 2016.

14 2016/11/30

http://arxiv.org/abs/1007.3615
http://arxiv.org/abs/1007.3615
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-11.txt
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/meta-haskell.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/meta-haskell.pdf
https://www.irif.fr/~sozeau/research/publications/Subset_Coercions_in_Coq.pdf
https://www.irif.fr/~sozeau/research/publications/Subset_Coercions_in_Coq.pdf
http://coqprime.gforge.inria.fr/
http://coqprime.gforge.inria.fr/
http://software.imdea.org/~szanella/Zanella.2010.PhD.pdf
http://software.imdea.org/~szanella/Zanella.2010.PhD.pdf

	Introduction and Existing Work
	Overview and Structure
	Finite-Field Operations
	Prime-Specific Modular Arithmetic
	Representing Fixed-Size Integers
	Carry Chains
	Canonical Representations
	Correctness of Field Operations

	Synthesizing Low-Level Code
	Partial Evaluation
	Bounds Checking
	Double-Word Operations
	Barrett Reduction and Montgomery Form

	Case Study: EdDSA
	Fidelity of High-Level Specifications
	Optimized Point Formats
	Space-Efficient Representations
	Powers, Inverses, Square Roots

	Evaluation
	Safety From Bugs
	Multiword Arithmetic Bugs
	Higher-Level Bugs
	Our Contribution

	Performance
	Effort

	Related Work
	Future Work
	Elliptic Curves and Cryptography
	EdDSA Digital Signatures
	Diffie-Hellman Key Exchange
	TLS 1.3

	Techniques
	Representation Proofs
	Selective Partial Evaluation
	Optimization through Interactive Proofs

