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Abstract
Widely used implementations of cryptographic primitives
employ number-theoretic optimizations specific to large
prime numbers used as moduli of arithmetic. These opti-
mizations have been applied manually by a handful of ex-
perts, using informal rules of thumb. We present the first
automatic compiler that applies these optimizations, starting
from straightforward modular-arithmetic-based algorithms
and producing code around 5X faster than with off-the-shelf
arbitrary-precision integer libraries for C. Furthermore, our
compiler is implemented in the Coq proof assistant; it pro-
duces not just C-level code but also proofs of functional
correctness. We evaluate the compiler on several key primi-
tives from elliptic curve cryptography.

1 Introduction
Software development today benefits from division of labor.
For instance, novices can quickly assemble functional Web
applications by delegating most work to featureful open-
source frameworks. Experts, too, benefit from reusing com-
plex components, especially when these same people are not
also experts on computer performance engineering. A scien-
tist might produce a simulation program, relying critically
on a library of optimized data structures and on an optimiz-
ing compiler for a high-level language. In well-developed
ecosystems of this kind, subject-matter experts can iterate
rapidly through the design spaces meaningful to them.

One domain lacking that kind of tooling today is cryptog-
raphy. The field is exploding, with ongoing experimentation
in domains like secure outsourced and multiparty computa-
tion. New protocols are being proposed frequently. However,
experiments with deploying these protocols are hindered
by a reality that most software developers are not aware
of: even a competently written C implementation of a new
cryptographic primitive will often be 5X slower or worse
than what implementation experts know how to build. It is
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rare for a single person to have the expertise both in proto-
col/primitive design and in their efficient implementation
on commodity processors. Even for that rare person, it is
common, in the course of implementing optimizations, to
introduce bugs with serious security implications.

Even a 2X performance cost is prohibitive for, e.g., the big
Internet companies, operating massive data centers where a
cryptographic primitive may be activated millions of times
per second. For instance, elliptic curve cryptography (ECC) is
used preferentially on every new HTTPS connection, with
the draft TLS 1.3 protocol that should become the industry
standard in the next few years. Companies have enormous
incentives to optimize these building blocks. Today’s labor
cost of manual optimization may be so high that potential
users of novel cryptographic functionality never bother to
develop related systems.
In this paper, we present the first automatic compiler per-

forming the number-theoretic optimizations required for com-
petitive elliptic-curve code, and furthermore, our compiler is
implemented in the Coq proof assistant, giving first-principles
proofs of correctness, relating generated low-level code to
whiteboard-level number theory. For the first time, crypto-
graphic protocol experts have a push-button way to generate
fast implementations of new curve variants.
Our generated code does not yet match the performance

of world-champion implementations for all curves, but it is
a significant advance over what can be implemented with-
out domain-specific optimization. For Curve25519, the one
most favored by cryptographers today, we are about 20%
off from the latency of the best assembly code. Further ad-
vances should be achievable using problem-specific instruc-
tion scheduling and register allocation, which we leave for
future work. It is conceivable that such work could lead
to a fully automatic, correct-by-construction pipeline that
produces world-champion assembly implementations from
descriptions of elliptic curves.

Our results are already good enough that Google Chrome
has adopted our compiler, through the BoringSSL library,
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replacing previous handwritten C code for Curve25519, in-
curring performance overhead small enough to be within
measurement error. As a consequence, within a year or so,
we expect that a significant percentage of all Web client con-
nections will be running our autogenerated, proved-correct
code, without the old worries about implementation errors
voiding security guarantees.

Which dimensions of variation show up in this domain?
Themost important one is changing the large prime numbers
used as moduli for arithmetic. Number-theoretic optimiza-
tions are used to generate code in ways very sensitive to
details of the prime numbers. We codify these optimizations,
which crypto-implementation experts apply intuitively, in a
compiler for the first time.

The situation is also complicated by competing demands
of performance and security/privacy. Many of today’s most
widely used cryptographic primitives can be defined in single
pages of pseudocode, and, handed such a piece of paper, the
average developer would have little trouble coding up a script
using, for instance, Python’s arbitrary-precision integers.
However, this script would likely use non-constant-time
arithmetic operations, leaving it vulnerable to timing attacks,
and would have very uncompetitive performance.

The custom code that the experts write often has serious
correctness and security bugs. We performed an in-depth
analysis of issues from public bug trackers in this domain,
with results reported in Appendix A (anonymous supple-
ment). The most common source of defects is the use and
implementation of custom representations that split inte-
gers into multiple digits of carefully chosen sizes, a subject
that will be our main interest in this paper. Our new com-
piler avoids all of these bugs by construction. It is featureful
enough to generate the elliptic-curve implementations used
in the TLS protocols. There, every new HTTPS connection
must perform key agreement, whereby public-key crypto is
used to agree on a shared secret, which then drives faster
symmetric-key algorithms; and signature checking, whereby
server certificates are verified for authenticity. Elliptic curves
are the mechanism for these tasks most favored by cryptogra-
phers today, and TLS 1.3 supports multiple curves, including
Curve25519 and NISTP256.

This general area is a fertile one, withmany recent projects
proving functional correctness and security of crypto-primitive
code that has already been written: HACL∗ [22] for a library
in the F∗ programming language, Jasmin [1] for routines in a
cross-platform assembly language, and Vale [7] for metapro-
grams that generate assembly. Vale’s case-study programs
mimic standard practice in libraries like OpenSSL, where
metaprogramming is used to unroll loops and realize other
modest effort savings over writing assembly code directly.
However, in all cases mentioned here (and in mainstream
libraries), all curve-specific aspects of code are handwritten

Input:
modulus = 2^256 - 2^224 + 2^192 + 2^96 - 1
architecture = amd64

Output:
multiply(uint64_t x8, uint64_t x9, uint64_t x7,

uint64_t x5, uint64_t x14, uint64_t x15,
uint64_t x13, uint64_t x11) {

uint64_t x17, uint64_t x18 = mulx_u64(x5, x11);
// ...104 more similar lines...
uint64_t x322 = cmovznz(x318, x305, x292);
return (x319, x320, x321, x322))

}

Figure 1. Example input and output of code generation

at approximately the abstraction level of assembly. Further-
more, to achieve best performance, code iswritten with partic-
ular hardware architectures in mind. We show how to achieve
similar high assurance levels while also achieving automatic
compilation when changing the curve or target architecture.
Figure 1 gives a more concrete sense of what our frame-

work provides, for generating custom modular-arithmetic
code. The only input is a (usually large) prime number, writ-
ten in a suggestive way with additions and subtractions,
where most literals are powers of 2. The particular prime
in the figure happens to be NISTP256, the most commonly
used one for TLS.

Our framework uses the prime’s addition-and-subtraction
structuring to choose a data structure and algorithms (for
different standard arithmetic operations). The figure shows
part of the example of modular multiplication. The function
takes in 8 inputs, as each big integer has been split into 4
word-sized digits, and we multiply 2 big integers. The body
of the function is literally pretty-printed within Coq from an
abstract syntax tree in a formal straightline-code language,
really more like a compiler IR than C. The only additional
features beyond standard C are for intrinsics and derived op-
erations with multiple return values. A thin layer of scripting
converts this literal Coq output into real GCC-compatible
C code that uses nonstandard intrinsics for, e.g., multiplica-
tion generating two words of output. A Coq theorem is also
generated, whose trusted base only includes the syntax and
semantics of our straightline-code language plus standard
arithmetic definitions.
The next section overviews our entire proof and code-

generation pipeline, describing techniques that should apply
beyond the concrete setting of ECC. The following three sec-
tions go into more detail on three key phases of the pipeline
for ECC. Afterward, we discuss experimental evaluation,
compare with related work, and conclude. Our framework
source code and benchmarking examples and scripts are
included as an anonymous supplement to the paper.
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2 Outline of Compilation and Verification
Pipeline

In this section, we run through all of the main steps in our
compilation pipeline, on simpler examples than full-fledged
cryptography primitives. We believe that our pipeline for-
malizes the procedures that crypto-implementation experts
have been applying implicitly.
As we are generating code whose primary purpose is to

promote security and privacy, a word is also in order about
threat models and trusted code bases. In this project, when
it comes to proved properties, we are concerned only with
functional correctness: the low-level code we output imple-
ments a fixed mathematical function (the specification). It is
also very important to avoid information leaks through side
channels. Our code is designed to avoid timing side channels
using the standard techniques of this domain, and the low-
level language we use for generated straightline code only
exposes functionality that is widely implemented in con-
stant time in commodity hardware. Side channels requiring
physical access (like those based on monitoring electromag-
netic emissions) we leave out of scope. Also out of scope
are proofs that the mathematical algorithms we implement
provide standard security conditions from the theory of cryp-
tography.

Our trusted code base includes the Coq proof checker and
its usual dependencies. We also trust the (relatively small)
functionality specifications sketched in the next subsection.
At the back end of our pipeline, we have assembly-like ab-
stract syntax trees that are proved to implement the original
specifications. Currently we trust a C compiler used to trans-
late those trees to assembly (after applying a trusted but
small pretty-printer), though we expect eventually to inte-
grate with a lower-level certified compiler.

2.1 The Specification
The fundamental objective of our work is to make it possi-
ble to write algorithms as straightforward programs (with
some of the classic characteristics of “pseudocode”) but have
them compiled automatically to performance-competitive
low-level code that is free of timing side channels. As a some-
what orthogonal bonus, we want machine-checked proofs
that compilation is performed correctly. These goals taken
together imply that it is reasonable to write starting specifica-
tions as functional programs in Coq. We also write example
code in some unspecified functional language with light-
weight syntax, as opposed to literal Coq syntax.

ECC is based onmanipulation of points in two-dimensional
geometric spaces, and we will work through an example
sharing that property. We take some large prime modulus
p as fixed throughout, and we write Np for the modular-
arithmetic field associated with p. Arithmetic operations are

implicitly operating in that field.
type point = Np × Np
frob ((x1,y1) (x2,y2) : point) : point = (x1 + x2, (y1 × y2) × x−11 )

We define some arbitrary point operation frob, built out of
addition, multiplication, and inversion. The level of simplic-
ity in the code here is the standard we strive for.

2.2 Optimized Point Formats
One distinctive characteristic of this domain is that many al-
gorithmic challenges can be tackled quite effectively in high-
level functional code, even though we choose data structures
and algorithms with an eye toward efficient execution on
particular hardware platforms. Our first example of the pat-
tern comes in selection of optimized point formats, i.e. data
structures for our two-dimensional points. Field inversion,
it turns out, is much more expensive than addition or mul-
tiplication. As a result, it is worthwhile to trade inversions
for simpler operations, even at the expense of increasing the
sizes of data structures. Our running frob example provides
an opportunity for this kind of algorithmic rethinking.

Concretely, we make the counterintuitive choice of repre-
senting points with three coordinates each, instead of two.
The intuition is that the new final coordinate gives a divisor
to apply to the second coordinate.

type point = Np × Np × Np
frob′ ((x1,y1,d1) (x2,y2,d2) : point) : point =
(x1 + x2,y1 × y2,d1 × d2 × x1)

The payoff is that now no inversion operations are required
for most computation steps.

We carry out classic data-abstraction proofs to show that
optimized formats and their methods are faithful to simple
formats. For this particular example, we prove the usual com-
muting diagrams with respect to this abstraction function:

⌊
(x ,y,d )

⌋
≜
(
x ,

y

d

)

The proof obligation for frob is:

∀a,b . ⌊frob′ a b⌋ = frob ⌊a⌋ ⌊b⌋
Here the algebra is trivial. Full-scale elliptic curves require

algebra complex enough that computer-algebra systems are
routinely used to validate it. Our proofs duplicate that style
of reasoning inside Coq, partly based on new tactics that we
developed for this purpose, described in Section 3.

2.3 Base Systems for Multi-Digit Representation
Next on the agenda is implementing the numeric operators
like + and × that still appear in our optimized point arith-
metic. The numbers involved are typically too large to fit in
single hardware registers, so we need to represent numbers
explicitly as sequences of digits, each digit typically about
the size of the largest available register. To start out with,
let us consider the example of addition, with the simplifying

3



331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

Conference’17, July 2017, Washington, DC, USAAndres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

precondition that all digits are small enough to avoid the
need to carry between them.

type num = list Np
add : num→ num→ num
add (a :: as ) (b :: bs ) = let n = a + b in n :: add as bs

add as [] = as

add [] bs = bs

Assume we are compiling for a 64-bit machine, where it is
natural to make each digit a 64-bit integer. We define an
abstraction function compiling each digit sequence (taken
as little-endian) back into a single large number.

⌊ℓ⌋ = Σi< |ℓ | ℓi × 264i

Next we can prove data-abstraction theorems similar to the
ones from the prior subsection, one for each arithmetic oper-
ation. For instance, we prove the following for our addition
operation.

∀a,b . ⌊add a b⌋ = ⌊a⌋ + ⌊b⌋
One challenge in machine arithmetic is avoiding unin-

tended overflow. However, our reasoning at this stage avoids
explicit overflow reasoning by representing all digits as
infinite-precision integers. Here we see another instance
of the pattern of anticipating low-level optimizations in writ-
ing high-level code: we do expect to avoid overflow, and our
choice of a digit representation is motivated precisely by
that aim. It is just that the proofs of overflow-freedom will
be injected in a later stage of our pipeline, as long as earlier
stages like our current one are implemented correctly. There
is good reason for not keeping overflow reasoning encapsu-
lated in high-level stages: generally we care about the context
of higher-level code calling our arithmetic primitives.
Section 4 presents the actual library of multi-digit arith-

metic algorithms that we implemented and verified.

2.4 Partial Evaluation
It is impossible to achieve competitive performance with
arithmetic code that manipulates dynamically allocated lists
at runtime. The fastest code will implement, for instance, a
single numeric addition with straightline code that keeps
as much state as possible in registers. Expert implementers
today write that straightline code manually, applying various
rules of thumb. Our alternative is to use partial evaluation in
Coq to generate all such specialized routines, beginning with
a single library of high-level functional implementations.

Consider the case where we know statically that each num-
ber we add will have 3 digits. A particular addition in our top-
level algorithmmay have the form add [a1,a2,a3] [b1,b2,b3],
where the ais and bis are unknown program inputs. While
we cannot make compile-time simplifications based on the
values of the digits, we can reduce away all the overhead
of dynamic allocation of lists. We use Coq’s term-reduction
machinery, which allows us to choose λ-calculus-style re-
duction rules to apply until reaching a normal form. Here is

what happens with our example, when we ask Coq to leave
let expressions unreduced but apply most other rules.

add [a1,a2,a3] [b1,b2,b3] ⇓ let n1 = a1 + b1 in n1 ::
let n2 = a2 + b2 in n2 ::
let n3 = a3 + b3 in n3 :: []

We have made progress: no run-time case analysis on lists
remains. Unfortunately, let expressions are intermixed with
list constructions, leading to code that looks rather different
than assembly. Thus we come to another complication that
we introduce to drive performant code generation: arith-
metic operations are written in continuation-passing style.
Concretely, we rewrite add.

add′ : ∀α . num→ num→ (num→ α ) → α

add′ (a :: as ) (b :: bs ) k = let n = a + b in

add′ as bs (λℓ. k (n :: ℓ))
add′ as [] k = k as

add′ [] bs k = k bs

Now Coq’s normal reduction is able to turn our nice abstract
functional program into assembly-looking code.

add′ [a1,a2,a3] [b1,b2,b3] (λℓ. ℓ) ⇓ let n1 = a1 + b1 in

let n2 = a2 + b2 in

let n3 = a3 + b3 in

[n1,n2,n3]

When this procedure is applied to a particular continuation,
we can reduce away the result list. We get attractive com-
position properties, where chaining together sequences of
function calls leads to idiomatic and efficient assembly-style
code, based just on Coq’s normal term reduction, with good
(and automatic) sharing of common subterms via let-bound
variables. This level of function inlining is common for the
inner loops of crypto primitives, and it will also simplify the
static analysis described in the next subsection.

2.5 Bounds Inference
Up to this point, we have derived code that looks almost ex-
actly like the assembly code we want to produce. The code is
structured to avoid overflows when run with fixed-precision
integers, though we are still using infinite-precision integers.
The final major step is to infer a range of possible values for
each variable, allowing us to assign each one a register or
stack-allocated variable of the appropriate bit width.
This phase of our pipeline is systematic enough that we

chose to implement it as a certified compiler. That is, we de-
fine a type of abstract syntax trees (ASTs) for the sorts of pro-
grams that earlier phases produce, we reify those programs
into our AST type, and we run compiler passes written in
Coq’s Gallina functional programming language. Each pass
is proved correct once and for all, as Section 5 explains in
more detail.
The bounds-inference pass basically works by standard

abstract interpretation with intervals. As inputs, we require
4
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lower and upper bounds for the integer values of all free vari-
ables in a program. These bounds are then pushed through
all operations in the program, to infer bounds for temporary
variables. Each temporary is assigned the smallest bit width
that can accommodate its full interval.

As an artificial example, assume the input boundsa1,a2,a3,b1 ∈
[0, 231]; b2,b3 ∈ [0, 230]. The analysis concludes n1 ∈ [0, 232];
n2,n3 ∈ [0, 230 + 231]. The first temporary is just barely too
big to fit in a 32-bit register, while the second two will fit
just fine. Therefore, assuming the available temporary sizes
are 32-bit and 64-bit, we can transform the code with precise
size annotations.

let n1 : N264 = a1 + b1 in

let n2 : N232 = a2 + b2 in

let n3 : N232 = a3 + b3 in

[n1,n2,n3]

Note how we may infer different temporary widths based
on different bounds for the free variables. As a result, the
same primitive inlined within different larger procedures
may get different bounds inferred. World-champion code for
real algorithms takes advantage of this opportunity.

2.6 Generating Assembly-Like Code
We finish with ASTs in a simple language of straightline code,
with arithmetic and bitwise operators. Our future-work plans
include creating enough Coq certifying-compilation support
to handle surrounding code with loops and conditionals, but
we have also run some performance experiments that are al-
ready feasible. We take the ASTs of our generated arithmetic
primitives and pretty-print them as C code, benchmark them
separately, or overwrite the corresponding code in popular
C implementations. Section 6 reports on our performance
experiments, but a good summary is that we are 5X faster
than generic multi-precision arithmetic libraries, faster than
OpenSSL cross-platform C code, and within 2X of world-
champion handwritten assembly code.
We now use the bulk of the paper to go back through

the phases of our compilation in more detail, before saying
more about the specific primitives we have generated and
the experiments we ran on our implementations.

3 Curve Data Structures and Algorithms
The main reusable methodology we want to highlight in this
paper is for correct-by-construction generation of efficient
low-level code for modular big-number arithmetic. However,
we also built complete implementations of ECC-based key
exchange, signing, and (signature) verification, parameter-
ized on arithmetic implementations. Since our specification
and proof choices there are interestingly different than in
past work, we say a bit about them here. Connecting our
modular-arithmetic proofs to end-to-end arguments about
complete primitives gives us confidence that we chose the
right theorems to prove about modular arithmetic.

Recall Section 2.1, giving a toy example of a geometric
point type and one of its operations. Elliptic curves are all
about more involved point types and operations. Recall also
Section 2.2, which performed a change of data representation
for points. A menagerie of standard representation changes
exists for elliptic curves: we defined and verified affine, XYZT,
and Niels variants of Edwards coordinates; affine, Jacobian,
and Projective Weierstrass coordinates; and affine and XZ
Montgomery coordinates.

Past related work we are aware of (e.g. Zinzindohoue et al.
[21]) has only taken the already-optimized point formats as
the starting specification. By starting with the more elemen-
tary formats, we simplify specifications and decrease trusted
base. These optimizations are nontrivial. Even experts need
to apply computer-algebra systems to check all the details.
Often optimized algorithms are only sound for particular
subsets of curve points, and higher-level algorithm proofs
must show that corresponding preconditions are always met.
We formalized preconditions for all the operations of all the
optimized point formats and proved them sufficient.

To prove the operations correct, we need functionality sim-
ilar to that provided by computer-algebra systems like Sage.
We build upon the nsatz [16] tactic from Coq’s standard
library, which solves implications between polynomial equal-
ities. Our tactic fsatz broadens the scope to high-school-
algebra examples like this one: given 9

x 2+x−2 =
3

x+2 + 7
1

x−1
and appropriate assumptions about the coefficients and de-
nominators being nonzero, we may deduce x = − 1

5 . Efficient
support is particularly important for using and proving in-
equalities, as required for each denominator in the goal.
Through a set of heuristics for reducing arithmetic oper-

ators and relations to more elementary ones, we produce
nsatz-compatible goals and manage to prove all the key
point-format properties quickly and predictably. For exam-
ple, fsatz solves all 131 field equations (a total of 72 kB of
text) required for a direct proof that every elliptic curve in
Weierstrass form is a commutative group.

4 Generic Modular Arithmetic
After we commit to particular optimized point formats, atten-
tion turns to the numeric operations of the prime field, used
to compute individual coordinates of points. Recall Section
2.3’s example of custom code implementing a numeric base
system. We now describe our full-scale library.

For those who prefer to read code, we suggest src/Demo.v
in the code supplement to this submission, which contains a
succinct standalone development of the unsaturated-arithmetic
library up to and including modular reduction.

4.1 Multi-Limbed Arithmetic
Before describing our library, we review the motivation and
algorithmic big ideas of this style of arithmetic. The first
piece of motivation is shared with conventional big-integer

5
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libraries: a single integer is too large to fit in a hardware
register, so we must represent one big integer with several
smaller digits (often called limbs in the crypto context). The
interesting difference is in how subtle it is to design a strategy
for dividing a number into digits; as we will show, this choice
depends heavily on the particular prime modulus being used.

The most popular choices of primes in elliptic-curve cryp-
tography are of the form m = 2k − cl2tl − . . . − c02t0 , en-
compassing what have been called “generalized Mersenne
primes,” “Solinas primes,” “Crandall primes,” “pseudo-Mersenne
primes,” and “Mersenne primes.” Although any number could
be expressed this way, and the algorithms we describe would
still apply, choices ofm with relatively few terms (l ≪ k)
and small ci more readily facilitate fast arithmetic.
Imagine that we have two numbers that are about the

same size as the modulus (k bits), and we multiply them. We
would need 2k bits to represent the result. However, we only
care about what the result is mod m. So we apply a (par-
tial) modular reduction, an operation that reduces the upper
bound on its input while preserving modular equivalence.
With this form of prime, there is a well-known trick for

simple and fast modular reduction. Set s = 2k and c = cl2tl +
. . . + c02t0 , som = s − c . To reduce x modm, first find a and
b such that x = as + b. (We call this operation split, and
careful choices of big-number representation will make it
very efficient.) Then a simple derivation yields a division-free
procedure for partial modular reduction:

x modm = (as + b) mod (s − c )
= (a(s − c ) + ac + b) mod (s − c )
= (ac + b) modm

The choice of a and b does not further affect the correct-
ness of this formula, but it does influence how much the
input is reduced: picking b = x and a = 0 would make this
formula a no-op. One might pick b = x mod s , although the
formula does not require it. Even if b = x mod s , the final
output ac + b is not guaranteed to be the minimal residue.
Making the split operation fast will motivate how we

represent numbers. Consider Curve25519 (m = 2255 − 19,
k = 255), where an intermediate multiplication result re-
quires 510 bits. One natural way to represent it uses 8 64-bit
registers, like so, where ti is the ith digit/register:

(t0+264t1+22×64t2+23×64t3)+2256 (t4+264t5+22×64t6+23×64t7)

We split the digit sequence in half suggestively, such that
the values of the two sides can be combined using a multi-
plication by 2256. If 2256 were 2255, we could have our split
operation entirely “for free” – this formula is already in the
form b + 2256a. Unfortunately, 256 is not 255, and the prop-
erty does not apply! This off-by-one error motivates a rather
different strategy for dividing a number into digits.

Instead, we could divide 510 bits into 10 groups of 51 bits
each. That is, we will use 64-bit registers but not even take

advantage of the full value space for each one. Now we get a
more satisfying formula to convert back into one big number.

(t0 + 251t1 + 22×51t2 + 23×51t3 + 24×51t4)
+ 2255 (t5 + 251t6 + 22×51t7 + 23×51t8 + 24×51t9)

The 2255 lets us apply the modular-reduction optimization.
This representation is standard for 64-bit processors, found
in essentially every major crypto library and Web browser.
That is not the end of the story for this curve, though.

On 32-bit machines, we do better with a representation that
fits in 32-bit registers. The best-performing solution divides
the 510 bits into 20 groups of 25.5 bits each, or actually we
use a ceiling operation to round each such bit width. The
32-bit registers for digits alternate between getting 26 and
25 bits each, which happens to line us up for a 2255 in just
the right place. We have a mixed-radix base, as opposed to a
uniform-radix base in which every digit has the same number
of bits. This odd-seeming data structure appears in the 32-bit
versions of the major crypto libraries and browsers.

Already, then, for this important prime modulus, we see
three different well-justified representations. Different hard-
ware platforms could imply still more representations. It
would behoove us to find code-reuse (and proof-reuse) op-
portunities that quantify over the essence of the different
representations.

Following that strategy, we also need to implement generic
algorithms that adapt to different digit decompositions. We
will illustrate with just one key algorithm specialized to
just one modulus and digit strategy. To simplify matters a
bit, we use modulus 2127 − 1. Say we want to multiply 2
numbers s and t in its field, with those inputs broken up as
s = s0 + 243s1 + 285s2 and t = t0 + 243t1 + 285t2. Distributing
multiplication repeatedly over addition gives us the answer
form shown in Figure 2.

We format the first intermediate term suggestively: down
each column, the powers of two are very close together,
differing by at most one. Therefore, it is easy to add down
the columns to form our final answer, split conveniently into
digits with integral bit widths.

At this point we have a double-wide answer for multipli-
cation, and we need to do modular reduction to shrink it
down to single-wide. For our example, note that the last two
digits can be rearranged like so:

2127 (2s1t2 + 2s2t1) + 2170s2t2 (mod 2127 − 1)
= 2127 ((2s1t2 + 2s2t1) + 243s2t2) (mod 2127 − 1)
= 1((2s1t2 + 2s2t1) + 243s2t2) (mod 2127 − 1)

As a result, we can merge the second-last digit into the
first and merge the last digit into the second, leading to this
final formula for a single-width answer.
(s0t0+2s1t2+2s2t1)+243 (s0t1+s1t0+s2t2)+285 (s0t2+2s1t1+s2t0)
We still manage to restrict ourselves to a modest number of
elementary arithmetic operations. Also, there are not many
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s × t = 1 × s0t0 + 243 × s0t1 + 285 × s0t2
+ 243 × s1t0 + 286 × s1t1 + 2128 × s1t2

+ 285 × s2t0 + 2128 × s2t1 + 2170 × s2t2
= s0t0 + 243 (s0t1 + s1t0) + 285 (s0t2 + 2s1t1 + s2t0) + 2127 (2s1t2 + 2s2t1) + 2170s2t2

Figure 2. Distributing terms for multiplication mod 2127 − 1

data dependencies within the expression, so there are good
opportunities for instruction-level parallelism on modern
processors.

4.2 Further Challenges
We do not have space to explain the full range of additional
wrinkles that show up in deriving all of the common code
patterns for modular arithmetic in ECC. However, here are
some highlights.

• Different combinations of moduli and hardware archi-
tectures are suited to saturated vs. unsaturated arith-
metic, where the former uses the full bitwidth of hard-
ware registers, and the latter leaves bits unused.
• All of our examples above used primes of the form
2k − c where c was very small. In those cases, com-
puting ac + b on multi-digit integers is reasonably
straightforward: multiply each digit of a by c and add
each digit of the result ac to the corresponding digit
of b. Because we are not using the full bit widths of
our registers, and because c is quite small, overflow is
not even an issue. However, the same formula applies
for larger c , such as in NIST p-192 (m = 2192 − 264 − 1).
Now we ought to perform multi-digit multiplication
of a and c – working very similarly to polynomial
multiplication.
• In unsaturated base systems, by design we are not
carrying immediately after every addition. Therefore,
choosing when and which digits to carry is part of
the design and is critical for keeping the digit values
bounded. Generic operations are easily parameterized
on carry strategies, although our library uses a conser-
vative heuristic by default.

4.3 Associational Representation
As is evident by now, the most efficient code makes use of
sophisticated and specific big-number representations, but
all of these tend to operate on the same set of underlying
principles. We want to reason about the basic arithmetic
procedures (multiplication, carrying, modular reduction) in
a way that allows us access to those underlying principles
while abstracting away implementation-specific details like
the exact number of limbs or whether the base system is
mixed- or uniform-radix. Designing our system such that
this level of reasoningwas possible was one of the key factors
in making our verification successful.

Our initial attempt at formalizing mixed-radix base sys-
tems involved keeping track of two lists, one with the base
weights (i.e., power of 2 associated with each digit) and one
with the corresponding runtime values. This version was
very messy; we had to keep track of preconditions stating
that the lists had the same length, and in basic arithmetic
operations we were constantly dealing with the details of
the base. For instance, in multiplication, every time we ob-
tained a partial product, we had to check if the weight of
the partial product matched one of our fixed digit weights
(not guaranteed with mixed-radix bases) and, if not, shift
the partial product before inserting it into the right place in
the list. That representation was very close to how things
were written in the C code; however, it was not the best way
to represent the algorithms conceptually, and it introduced
unnecessary complexity.

In our second attempt, we came up with what we call as-
sociational representation–a list of pairs, where one number
represents the weight, known at compile time, and the other
represents a runtime value. For example, the decimal number
95 might be encoded as [(10, 9); (1, 5)] or [(16, 5);
(1, 15)], representing 10 · 9 + 1 · 5 = 16 · 5 + 1 · 15 = 95.
In an associational setting, proving multiplication, addition,
and reduction became extremely straightforward. Addition
is simply concatenating two lists. Schoolbook multiplication
is also trivial: (a1 ·x1 + . . .) (b1 ·y1 + . . .) = (a1b1 ·x1y1 + . . .),
where a1b1 is a constant term that can be computed during
partial evaluation. The details of the three fit in 6 lines of
executable code, 4 lines of lemma statements, and 10 lines of
proof (as written in src/Demo.v). The split step of modular
reduction simply partitions the list into terms with weights
higher than s and terms with weights lower than s , and
then the rest of modular reduction just calls addition and
multiplication.

However, we ultimately want to add the partial products
and end up with one term per digit, in what we call a po-
sitional representation. We can convert from associational
to positional using a weight function (importantly, we do
not try to infer the weights from the associational repre-
sentation). Weights that are present in the input but not in
the desired positional representation are eliminated by mul-
tiplying the corresponding digit by a constant: converting
[(20, 3); (1, 7)] to a 2-digit base-10 representation yields 67
because (20/10) · 3 = 6.
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We then exposed the same positional interface as in our
first attempt by simply converting to associational, perform-
ing whatever operations we needed, and converting back to
positional. The change produced no clutter in our final out-
put, since as soon as the base system and weight function are
instantiated, the representation differences and conversions
between them can be evaluated away.
Furthermore, representing things this way made our im-

plementations generalize naturally.While in our first attempt
we had only implemented modular reduction for very small
c , the natural way to write the algorithm in associational
representation is to represent c as a list of pairs and multi-
ply it by a using the full Cartesian-product strategy. This
strategy naturally generalizes to c with multiple terms, with
no extra effort in code or proofs. Surprisingly, even to us
when we first implemented it, this 5-line implementation is
flexible enough to allow expressing any specialized modular-
reduction-algorithm formula we know of – and the 15-line
correctness proof applies to all of them. The design freedom
comes from being able to choose different associational rep-
resentations for c . For example, the prime modulus of the
secp256k1 elliptic curve used in Bitcoin, 2256 − 232 − 977
with s = 2256, can be implemented reasonably using either
c = [(232, 1); (1, 977)] or c = [(1, 232 + 977)]. The first op-
tion generates twice as many digit multiplications as the
second but is still preferable on some architectures because
all these partial products fit in 64 bits. On architectures such
as AMD64 that can multiply two 64-bit numbers to get a
128-bit product, the second option has an advantage.

4.3.1 Saturated Arithmetic and Montgomery
Modular Multiplication

However, in some cases, the base being used does warrant
changes to the underlying arithmetic routines, most notably
for saturated versus unsaturated representations. In unsatu-
rated code, for instance, it is not necessary to worry about
producing hardware instructions that set carry flags, but in
saturated representations it is essential. Also, in unsaturated
representations, we store the partial products in multiplica-
tion routines in double-wide registers, which makes sense,
given that it does not help us to split the product along 64-bit
boundaries (wewould prefer the low 51 bits, for instance) and
would require bit-shifting anyway. It is our experience that
algorithms based on unsaturated representations are signifi-
cantly easier to implement and reason about. However, while
unsaturated arithmetic is very fast for X25519 and X448, ev-
ery implementation of NISTP256 that achieves even remotely
competitive performance uses as few machine registers as
possible, relies on hardware instructions that are not readily
exposed in most programming languages (like two-output
multiplication and add-with-carry), and uses algorithms that
require intermediate values to be within specific ranges. So
when we decided to target that prime, it was necessary to
implement an extension to our arithmetic routines.

Again, associational representation is helpful here. Our
multiplication routine remained virtually the same, the only
change being that instead of producing (ab,xy) as the partial
product for terms (a,x ) and (b,y), we now produce let xy
:= mul x y in [(ab, fst xy); (ab * bound, snd
xy)], where bound is the size of the registers. This new form
of partial product could be appended to the rest of the list
and thenceforth handled using literally the same code as we
had used for unsaturated representations; for instance, there
was no need to change the code for modular reduction. Even
addition used the same code, since associational represen-
tation does not require us to add terms together and worry
about carries just yet.
Instead, we worried about carries only when converting

from associational to positional. We created an intermedi-
ate representation (again, leveraging our ability to switch
between whatever representations are convenient) that accu-
mulated terms at each position without adding them. Then
we could do an addition loop for each weight, repeatedly
adding up the terms of the smallest remaining weight and ac-
cumulating their carries into one (multi-bit) term. The carry
term would then be added to the next weight.
The takeaway here is that even completely changing the

underlying hardware instructions we used for basic arith-
metic did not require redoing all the work from unsaturated
representations.
Our most substantial use of saturated arithmetic was for

Montgomery modular reduction. In some circumstances, com-
puting ab modm is rather expensive. Instead, we replace all
intermediate values x with xR, multiplying by some fixed
weight R. Such values are said to be in Montgomery form.
Now imagine we have a fast way, given a and b, to calculate
abR−1 modm. When a andb are really a′R andb ′R, the result
of the operation is (a′R) (b ′R)R−1 modm = (a′b ′)R modm,
which conveniently returns to Montgomery form.

5 Certified Bounds Inference
Recall from Section 2.4 how we use partial evaluation to
specialize the functions from the last section to particular
parameters. The results are elementary enough code that it
becomes more practical to apply relatively well-understood
ideas from certified compilers. That is, as sketched in Section
2.5, we can define an explicit type of program abstract syntax
trees (ASTs), write compiler passes over it as Coq functional
programs, and prove those passes correct once and for all.
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5.1 Abstract Syntax Trees
The results of partial evaluation fit, with minor massaging,
into this intermediate language that we defined.

Base types b
Types τ ::= b | unit | τ × τ

Variables x
Operators o

Expressions e ::= x | o(e ) | () | (e, e )
| let (x1, . . . ,xn ) = e in e

Types are trees of pair-type operators × where the leaves
are one-element unit types and base types b, the latter of
which come from a domain that is a parameter to our com-
piler. It will be instantiated differently for different target
hardware architectures, which may have different primitive
integer types. When we reach the certified compiler’s part
of the pipeline, we have converted earlier uses of lists into
tuples, so we can optimize away any overhead of such value
packaging.

Also a language parameter is the set of available primitive
operators o, each of which takes a single argument, which
is often a tuple of base-type values. Our let construct bakes
in destructuring of tuples, in fact using typing to ensure
that all tuple structure is deconstructed fully, with variables
bound only to the base values at a tuple’s leaves. Our deep
embedding of this language in Coq uses dependent types to
enforce that constraint, along with usual properties like lack
of dangling variables and type agreement between operators
and their arguments.

Several of the key compiler phases are polymorphic in the
choices of base types and operators, but bounds inference is
specialized to a set of operators. We assume that each of the
following is available for each type of machine integers (e.g.,
32-bit vs. 64-bit).

Integer literals: n
Unary arithmetic operators: − e
Binary arithmetic operators: e1 + e2, e1 − e2, e1 × e2
Bitwise operators: e1 ≪ e2, e1 ≫ e2, e1 & e2, e1 | e2
Conditionals: if e1 , 0 then e2 else e3
Carrying: addWithCarry(e1, e2, c ), carryOfAdd(e1, e2, c )
Borrowing: subWithBorrow(c, e1, e2), borrowOfSub(c, e1, e2)
Two-output multiplication: mul2(e1, e2)

We explain the last three categories, since the earlier ones
are familiar from C programming. To chain together multi-
word additions, as discussed in the prior section, we need to
save overflow bits (i.e., carry flags) from earlier additions, to
use as inputs into later additions. The addWithCarry oper-
ation implements this three-input form, while carryOfAdd
extracts the new carry flag resulting from such an addition.
Analogous operators support subtraction with borrowing,
again in the grade-school-arithmetic sense. Finally, we have
mul2 to multiply two numbers to produce a two-number

result, since multiplication at the largest available word size
may produce outputs too large to fit in that word size.
All operators correspond directly to common assembly

instructions. Thus the final outputs of compilation look very
much like assembly programs, just with unlimited supplies
of temporary variables, rather than registers.

Operands O ::= x | n
Expressions e ::= (O, . . . ,O )

| let (x1, . . . ,xn ) = o(O, . . . ,O ) in e

We no longer work with first-class tuples. Instead, pro-
grams are sequences of primitive operations, applied to con-
stants and variables, binding their perhaps multiple results
to new variables. A function body, represented in this type,
ends in the function’s perhaps multiple return values.

Such functions are easily pretty-printed as C code, which
is how we compile them for our experiments. Note also that
the language enforces the constant time security property
by construction: the running time of an expression leaks no
information about the values of the free variables. (One ad-
ditional restriction is important, forcing conditional expres-
sions to be those supported by native processor instructions
like conditional move.)

5.2 Phases of Certified Compilation
To begin the certified-compilation phase of our pipeline, we
need to reify native Coq programs as terms of this AST type.
To illustrate the transformations we perform on ASTs, we
walk throughwhat the compiler does to an example program:

let (x1,x2,x3) = x in

let (y1,y2) = ((let z = x2 × 1 × x3 in z + 0),x2) in
y1 × y2 × x1

The first phase is linearize, which cancels out all intermediate
uses of tuples and immediate let-bound variables and moves
all lets to the top level.

let (x1,x2,x3) = x in

let z = x2 × 1 × x3 in
let y1 = z + 0 in
y1 × x2 × x1

Next is constant folding, which applies simple arithmetic
identities and inlines constants and variable aliases.

let (x1,x2,x3) = x in

let z = x2 × x3 in
z × x2 × x1

At this point we run the core phase, bounds inference, the
one least like the phases of standard C compilers. The phase
is parameterized over a list of available fixed-precision base
types with their ranges; for our example, assume the hard-
ware supports bit sizes 8, 16, 32, and 64. Intervals for program
inputs, like x in our running example, are given as additional
inputs to the algorithm. Let us take them to be as follows:
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x1 ∈ [0, 28],x2 ∈ [0, 213],x3 ∈ [0, 218]. The output of the algo-
rithm has annotated each variable definition and arithmetic
operator with a finite type.

let (x1 : N216 ,x2 : N216 ,x3 : N232 ) = x in

let z : N232 = x2 ×N232
x3 in

z ×N264
x2 ×N264

x1

Our biggest proof challenge here was in the interval rules
for bitwise operators applied to negative numbers, a subject
mostly missing from Coq’s standard library.

5.3 Important Design Choices
Most phases of the compiler use a term encoding called para-
metric higher-order abstract syntax (PHOAS) [9]. Briefly,
that encoding uses variables of the metalanguage (Coq’s Gal-
lina) to encode variables of the object language, to avoid most
kinds of bookkeeping about variable environments; and for
the most part we found that it lived up to that promise. How-
ever, we needed to convert to a first-order representation
(de Bruijn indices) and back for the bounds-inference phase,
essentially because it calls for a forward analysis followed by
a backward transformation: calculate intervals for variables,
then rewrite the program bottom-up with precise base types
for all variables. We could not find a way with PHOAS to
write a recursive function that returns both bounds infor-
mation and a new term, taking better than quadratic time,
while it was trivial to dowith first-order terms.We also found
that the established style of term well-formedness judgment
for PHOAS was not well-designed for large, automatically
generated terms like ours: proving well-formedness would
frequently take unreasonably long, as the proof terms are
quadratic in the size of the syntax tree. The fix was to switch
well-formedness from an inductive definition into an exe-
cutable recursive function that returns simple constraints in
propositional logic.

6 Experimental Results
Our framework has a straightforward story for formal guar-
antees of functional correctness, thanks to the use of Coq.
However, some other important questions should be an-
swered empirically: For a variety of prime moduli, how
does the performance of our generated code compare with
general-purpose arithmetic libraries? For the most popular
primes, how far off performance-wise is our generated code
from the best known implementations, and what accounts
for the gap? Is the implementation and proof effort reason-
able, to build a framework like ours? (This last question’s
answer we push to Appendix C.)

6.1 Automatic Code Generation for Many Primes
Recall that the whole framework package, presented in the
previous few sections, is meant to be used to generate new
ECC primitive routines automatically for new prime mod-
uli (new curves). The output of the final phase from the

last section is pretty-printed as C code and compiled with
off-the-shelf C compilers. Our experiments instantiate the
framework for different popular moduli, in each case bench-
marking key arithmetic routines. Here we go for breadth, do-
ing automatic compilation for all large primes scraped from
the archives of curves@moderncrypto.org, an active ECC
discussion forum1. We implement the key cryptographic
operation of a 256-bit Montgomery ladder for each one, com-
paring our automatically generated code against simple pa-
rameterized C code, whose interpretation/compilation does
not take advantage of number-theoretic optimizations keyed
off of the prime modulus. Instead, code is just recompiled
with a preprocessor macro set for the prime in question.

First, a simple Python script (under 300 lines of code)
parses the prime and generates input files with additional
parameters like which operations to synthesize, how to dis-
tribute field elements across smaller machine words, and
modular-reduction strategy. Some heuristic complexity is
embodied in the script, but bugs in it cannot compromise
soundness, just lead to failed compilation attempts, which
manifest as errors or timeouts in automatic Coq derivation.

Figure 3 shows the results of our experiments, demonstrat-
ing how running time scales with the number of bits needed
to represent a number modulo the chosen prime. For each
configuration, we compare our generated code with two
variants built using the GNU Multiple Precision Arithmetic
Library2. “GMP mpn” tests use a more performant API that
leaks numeric values through timing, while “GMP mpn_sec”
sacrifices performance for reduced leakage. Both versions
require C-language expertise to code, though only one pro-
gram each must be written, parameterized on a prime.
Our batch 64-bit trials run on an x86 Intel Haswell pro-

cessor, while 32-bit trials run on an ARMv7-A Qualcomm
Krait (LG Nexus 4). Benchmark time is measured for 1000
sequential computations of this operation. For each configu-
ration, we show whichever of our two synthesized strategies
(Solinas vs. Montgomery) gives better performance. We see
a significant performance advantage for our code, even com-
pared to the GMP version that “cheats” by leaking secrets
through timing. Speedups range between 1.25X and 10X.
In our current experiments, compilation in Coq times

out for a handful of larger primes; we continue to work
on compile-time performance improvements. Appendix B
includes the full details, with tables recording all experi-
mental data points, including with an additional comparison
implementation in C++.

6.2 X25519 Scalar Multiplication
The next benchmark tests our unsaturated-arithmetic syn-
thesis against best-known open-source code. A single bench-
mark consists of an entire X25519 scalar multiplication to

1Archives: https://moderncrypto.org/mail-archive/curves/
2https://gmplib.org/
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Figure 3. Performance comparison of our generated C code vs. handwritten using libgmp

make the benchmark end-to-end. However, all implementa-
tions that we compare against use the same scalar-multiplication
algorithm; the differences are due to elliptic curve formu-
las and field arithmetic implementation. To gain insight into
which further optimizations might be profitable to add to our
framework, we measure both the literal output of our com-
piler and a hand-modified version, inspired by inspecting
widely used assembly code, that we prove equivalent.

Implementation CPU cycles µs at 2.6GHz
amd64-64 asm 145008 56
donna-c64 C 160352 62
this work, tweaked C 168364 65
this work, generated C 182580 70
OpenSSL C 348072 134

In order, we compare against amd64-64 asm, the fastest
assembly implementation from SUPERCOP; donna-c64, the
best-known high-performance C implementation; andOpenSSL’s
cross-platform C implementation. (Most of the names are
official ones from the SUPERCOP benchmark suite [4].)
Both implementations from this work have correctness

proofs of the same strength. The generated implementation
is derived automatically from high-level templates with the
minimal curve-specific parameters explained in Section 6.1.
The tweaked implementation differs from the generated one
as follows. We first executed the high-level stages of our
pipeline, up to and including partial evaluation. Then we
replaced the code for field-element squaring and multipli-
cation with 30 lines of hand-written versions modeled after
the donna implementation, proving it equivalent to the gen-
erated code using a single tactic invocation. After that, the
pipeline continued through the lower-level phases as usual.
We believe the manual optimizations improved the per-

formance because expressions of the form 19 × (a × b) with
32-bit a and b were replaced with (19×a) ×b in cases where

19×a fits in 32 bits, reducing the number of 64-bit multiplica-
tions. Achieving this result without duplicating computation
required careful reassociation and factoring of computations.
With these manual tweaks, the compiled binaries for inner
loops of our implementation and donna contain the same
number of bitwise or arithmetic instructions (approximately
1000), but donna requires around 200 fewer moves. We leave
the remaining 5% performance difference for low-level com-
piler work to fix up.

These results were good enough to convince the maintain-
ers of Google Chrome to adopt our compiler for producing
their Curve25519 code, within their BoringSSL library. For
their preexisting Curve25519 benchmarks, we never lose on
latency by worse than 5%, usually significantly less; Appen-
dix D gives details. Our code was first adopted in Chrome
version 64.

6.3 NISTP256 Mixed Addition
Our final performance experiment benchmarks our synthe-
sized saturated arithmetic code. A single benchmark consists
of one mixed Jacobian-Affine addition of distinct points on
the NISTP256 curve.

Implementation CPU cycles µs at 2.6GHz
OpenSSL AMD64+ADX asm 544 .21
OpenSSL AMD64 asm 644 .25
this work, icc 1112 .43
this work, gcc 1808 .70
OpenSSL C 1968 .76

Our C code and the two assembly-language implementa-
tions from OpenSSL use the same overall implementation
strategy: saturated arithmetic on 4 64-bit limbs using Mont-
gomery multiplication. The two assembly-language imple-
mentations differ in what CPU features they require: the
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slower is targeted at general AMD64 processors; the faster
uses the ADX instruction-set extension that is available start-
ing with Intel Broadwell (which we used) and AMD Zen
microarchitectures, allowing for limited instruction-level
parallelism in code that uses carry-flag registers. As arith-
metic operations in our C source line up very closely with
those in the OpenSSL assembly code and the difference be-
tween icc and gcc is bigger than the difference between our
code and the fastest assembly code, we again attribute most
of the performance difference to low-level optimizations.

7 Related Work
Several projects with papers published in mid-to-late 2017
have done formal verification of performance-competitive,
low-level elliptic-curve code.
Vale [7] supports compile-time metaprogramming of as-

sembly code, with a cleaner syntax to accomplish the same
tasks done via Perl scripts in OpenSSL. There is a superfi-
cial similarity to the flexible code generation used in our
own work. However, Vale and OpenSSL use comparatively
shallow metaprogramming, essentially just doing macro sub-
stitution, simple compile-time offset arithmetic, and loop
unrolling. Vale has not been used to write code parameter-
ized on a prime modulus (and OpenSSL includes no such
code). A verified static analysis checks that assembly code
does not leak secrets, including through timing channels.
HACL∗ [22] is a cryptographic library implemented and

verified in the F∗ programming language, providing all the
functionality needed to run TLS 1.3 with the latest primitives.
Primitives are implemented in the Low∗ imperative subset
of F∗ [17], which supports automatic semantics-preserving
translation to C. As a result, while taking advantage of F∗’s
high-level features for specification, HACL∗ beats or comes
close to performance of leading C libraries. Additionally,
abstract types for secret data rule out side-channel leaks.
Jasmin [1] is a low-level language that wraps assembly-

style straightline code with C-style control flow. It has a Coq-
verified compiler to 64-bit x86 assembly (with other targets
planned), along with support for verification of memory
safety and absence of information leaks, via reductions to
Dafny. A Dafny reduction for functional-correctness proof
exists but has not yet been used in a significant case study.

Several commonalities arise in comparing with our work.
Genericity in prime modulus: Our pipeline supports push-

button generation of efficient code for new prime moduli.
These other projects require nontrivial per-modulus work
in implementation, e.g. to implement modular reduction;
and specification/proof, e.g. to annotate every function with
specialized integer-range preconditions and postconditions.
Perhaps as a consequence of the work required to add a new
modulus, the three projects taken together only implement
intricate big-integer arithmetic for Curve25519 and Poly1305.
The NISTP256 curve (among those that we generate) is both

the most widely used (as of now) and significantly more
involved to implement efficiently.

Genericity in target hardware architecture:All three projects
include minimal code reuse across hardware architectures,
without sacrificing performance-competitiveness. Every piece
of code going into a primitive implementation has built-in
an assumption about some target architecture. In contrast,
we demonstrate full code/proof reuse between 32-bit ARM
and 64-bit x86 targets.
Going beyond straightline code: For now, we only derive

straightline code, where the constant-time security property
holds by construction. Effectively, we focus on the performance-
critical inner loops of cryptographic primitives. However,
it would be valuable to expand our scope to generate and
reason about the additional code around the inner loops, at
which point it could make sense to connect to any of these
three projects.

Lowering guarantees to assembly: Our current results bot-
tom out in C-like programs, and it could be advantageous for
us to connect to Jasmin or Vale to derive theorems about gen-
uine assembly code. In fact, every one of our compiler phases
is necessary to get code low-level enough to be accepted as
input by any of the three other projects.

A few other projects have verified ECC code that must be
handwritten in advance. Chen et al. [8] verified an assembly
implementation of Curve25519, using amix of automatic SAT
solving and manual Coq proof for remaining goals. Bernstein
and Schwabe [5] explored an alternative workflow using the
Sage computer-algebra system. In a predecessor system to
HACL∗, Zinzindohoue et al. [21] verified more curves, includ-
ing P256, but in high-level F∗ code, incurring performance
overhead above 100X.
Performance-oriented synthesis of domain-specific code

(without proofs of correctness) has previously been done us-
ing explicit templates (e.g. Template Haskell [20]) and more
sophisticatedmultistage programming (e.g. LightweightMod-
ular Staging (LMS) [19]). More specialized frameworks along
these lines include FFTW [10] and Spiral [18]. Out of these,
our synthesis strategy ismost similar to LMS, differingmainly
in the choice of using existing (proof-generating) Coq facil-
ities for controlled partial evaluation and rewriting rather
than implementing them ourselves.

Myreen and Curello verified a general-purpose big-integer
library [13]. The code uses a hardcoded uniform base system,
does not include specialized modular-reduction optimiza-
tions, and does not run in constant time. However, their
verification extends all the way down to AMD64 assembly
using verified decompilation. The proof effort is roughly
similar to ours (6227 lines of HOL).

While verified compilers (e.g., CakeML [11], CompCert [12])
and translation validators [14] are useful for creating soundly
optimized versions of a reference program, we are not aware
of any that could cope with abstraction-level-collapsing syn-
thesis as done in this work or LMS.
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Verification of cryptographic protocols (e.g., CertiCrypt [2],
FCF [15]) is complementary to this work: given a good formal
specification of a protocol, it can be shown separately that
an implementation corresponds to the protocol (as we do
for EdDSA and X25519) and that the protocol is secure (out
of scope for this paper). The work by Beringer et al. [3] is a
good example of this pattern, composing a protocol-security
proof, a correctness proof for its C-level implementation,
and a correctness proof for the C compiler.

8 Future Work and Conclusion
Our compiler is already used by one very popular software
project, but a number of improvements would help broaden
its appeal. We would like to shrink our trusted base by con-
necting to a verified compiler targeting assembly. However,
existing compilers are not smart enough at applying the
constant-factor optimizations that are common in this do-
main. Thus another fruitful future-work area is studying
those optimizations, principally combined register allocation
and instruction scheduling, even independently of proof.
Finally, we believe our general approach sketched in Sec-
tion 2 ought to be a good fit for several other cryptographic
domains, including hyper-elliptic-curve cryptography, RSA
with a fixed modulus size, and lattice-based cryptography.
Especially the last of these is undergoing an exciting period
of protocol experimentation, making it especially valuable
to provide an automatic compiler from high-level protocol
descriptions to performance-competitive machine code.
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A Study of Bugs in Similar Crypto Code
The custom code that the experts write often has serious
correctness and security bugs. To get a sense of the details,
we surveyed project bug trackers and other Internet sources,
stopping after finding 27 bugs (each hyperlinked to its bug re-
port) in implementation of nontrivial cryptography-specific
optimizations. Fig. 4 summarizes our findings, in terms of 5
emergent categories. The first three categories have to do
with representing large integers using multiple machine-
word-sized integers, with custom positional number sys-
tems. Carrying is fairly analogous to the same concept in
grade-school arithmetic, and canonicalization involves con-
verting back from a custom representation into a standard
one. Elliptic curve formulas are part of high-level algebraic
optimizations, above the level of operations on single large
integers. Crypto primitives bring it all together to provide
functionality like digital signatures.

Here is a sampling of root causes behind bugs.

• Mechanical errors: One of the two bugs uncovered in
OpenSSL issue 3607 was summarized by its author as
“Got math wrong :-(”, which we think referred to a
pencil-and-paper execution of numerical range analy-
sis. The discussion was concluded when the patched
version was found to be “good for ~6B random tests”
and the reviewer saw that “there aren’t any low-hanging
bugs left.” In ed25519-amd64-64-24k, one of 16,184
repetitive (and handwritten) lines should have been
r2 += 0 + carry instead of r1 += 0 + carry [6, p.
2].
• Confusion over intermediate specifications: OpenSSL
bug 1953 was traced back to confusion between the
postconditions of exact division with remainder and
an operation that produces a q and r s.t. x = qm + r
but does not guarantee that r is the smallest possible.
The probability of a random test triggering this bug
was bounded to 10 · 2−29.
• Mathematical misconceptions: The CryptoNote dou-
blespending bug arose from use of an algorithm on a
composite-order elliptic curve when it is only applica-
ble in a prime-order group.

B Full Results of Many-Primes
Experiments

Tables 2 and 3 contain the full results of our performance
experiments on many primes. Recall the basic experimental
setup:

• Scrape all prime numbers mentioned in the archives of
the ECC mailing list at moderncrypto.org. Crucially,
we record not just the numeric values of the primes
but also the ways in which they are expressed in terms
of additions and subtractions of powers of 2 and small
multiples thereof.

• We run a small Python script (shorter than 300 lines)
to inspect the shapes of these prime formulas, using
simple heuristics to choose the parameters to our Coq
library: not just a prime modulus of arithmetic but
also how to divide a big integer into digits and which
sequence of carry operations to perform in modular
reduction. Actually, the script generates four variants,
by considering 64-bit vs. 32-bit hardware architectures
and by considering the Montgomery and Solinas arith-
metic strategies. The main operation defined in each
case is a Montgomery ladder step.
• We run our Coq pipeline on every variant, culminating
in C code pretty-printed for each one.
• 64-bit configurations are compiled and run on an x86
Linux desktopmachine, while 32-bit configurations are
compiled and run on an ARM Android mobile device.
We save the running time of each variation.
• We also compile and run fixed C and C++ implemen-
tations using libgmp.

The three comparison implementations are:

• GMP C constant-time, the best comparison with the
goals of the code we generate, since running time is
required to be independent of integer inputs
• GMP C variable time, taking advantage of additional
optimizations that leak input values through timing
• GMP C++, the only one of the comparison implemen-
tations that does not include manual memory manage-
ment

All three comparison programs are conventional in that
they are fixed C or C++ programs, where the prime modulus
is set as a preprocessor macro. It is up to GCC and libgmp
to take advantage of properties of each modulus. The final
column in each table shows how much better our special-
ized generation does. We take the ratio of variable-time C
GMP (the fastest GMP code) to whichever of our generated
variants is faster.

Some columns in the tables contain dashes in place of num-
bers of seconds needed for one trial. Those spots indicate con-
figurations where our Coq compilation currently times out
or exhausts available memory. Considering that Coq is not
designed as a platform for executing an optimizing compiler,
we are pleased that we get as many successful compilations
as we do! However, we continue working on optimizations
to our implementation, to push up the size of prime whose
code we can compile quickly. The timing bottleneck is gener-
ally in reification, where repeated inefficient manipulation of
terms and contexts by Ltac incurs significant overhead. The
memory bottleneck generally shows up at Qed-time. Note
also that some configurations are expected to fail to build,
for instance when applying the Solinas strategy to so-called
“Montgomery-friendly” primes like 2256 − 88 · 2240 − 1, where
implementation experts would never choose Solinas.
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1614

1615

1616

1617
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1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

Reference Specification Implementation Defect
Carrying
go#13515 Modular exponentiation uintptr-sized Montgomery form, Go carry handling
NaCl ed25519 (p. 2) F25519 mul, square 64-bit pseudo-Mersenne, AMD64 carry handling
openssl#ef5c9b11 Modular exponentiation 64-bit Montgomery form, AMD64 carry handling
openssl#74acf42c Poly1305 multiple implementations carry handling
nettle#09e3ce4d secp-256r1 modular reduction carry handling
CVE-2017-3732 x2 modm Montgomery form, AMD64 assembly carry, exploitable
openssl#1593 P384 modular reduction carry handling carry, exploitable
tweetnacl-U32 irrelevant bit-twiddly C ‘sizeof(long)!=32‘
Canonicalization
donna#8edc799f GF(2255 − 19) internal to wire 32-bit pseudo-Mersenne, C non-canonical
openssl#c2633b8f a + b mod p256 Montgomery form, AMD64 assembly non-canonical
tweetnacl-m15 GF(2255 − 19) freeze bit-twiddly C bounds? typo?
Misc. number system
openssl#3607 P256 field element squaring 64-bit Montgomery form, AMD64 limb overflow
openssl#0c687d7e Poly1305 32-bit pseudo-Mersenne, x86 and ARM bad truncation
CVE-2014-3570 Bignum squaring asm limb overflow
ic#237002094 Barrett reduction for p256 1 conditional subtraction instead of 2 no counterexample
go#fa09811d poly1305 reduction AMD64 asm, missing subtraction of 3 found quickly
openssl#a970db05 Poly1305 Lazy reduction in x86 asm lost bit 59
openssl#6825d74b Poly1305 AVX2 addition and reduction bounds?
ed25519.py Ed25519 accepts signatures other impls reject missing h mod l
bitcoin#eed71d85 ECDSA-secp256k1 x*B mixed addition Jacobian+Affine missing case
Elliptic Curves
openjdk#01781d7e EC scalarmult mixed addition Jacobian+Affine missing case
jose-adobe ECDH-ES 5 libraries not on curve
invalid-curve NIST ECDH Irrelevant not on curve
end-to-end#340 Curve25519 library twisted Edwards coordinates (0, 1) = ∞
openssl#59dfcabf Weier. affine <-> Jacobian Montgomery form, AMD64 and C ∞ confusion
Crypto Primitives
socat#7 DH in Z*p irrelevant non-prime p
CVE-2006-4339 RSA-PKCS-1 sig. verification irrelevant padding check
CryptoNote Anti-double-spending tag additive curve25519 curve point missed order(P ) , l

Figure 4. Survey of bugs in algebra-based cryptography implementations

Among successful compilations, time ranges between tens
of seconds and levels best run overnight.

C Weighing Our Code Base
We can also give a short quantitative summary of our code
base, as a proxy for work required to develop and maintain it.
Just the code for unsaturated arithmetic, described in Section
4, requires 160 lines (each 80 characters or less) of code and
proof, which can then trivially be used to generate all unsat-
urated reduction examples in this paper. However, trying to
synthesize a chained carry operation using this code would
result in exponential blow-up due to loss of sharing. Rewrit-
ing functions in continuation-passing style to force sharing
of subexpressions (as demonstrated in Section 2.4), the same
library grows to around 1000 lines. The extensions for satu-
rated arithmetic add 800 lines, and all proofs and code we

needed to add for Montgomery reduction total 1500 lines. For
comparison, the amd64-51 implementation of X25519 con-
tains 1900 lines of assembly code (with P256 implementations
being substantially longer), and the translator from assembly
to SMT-solver formulas used by Chen et al. [8] is 8800 lines
of OCaml. The elliptic-curves library is rather thin: a total
of 1300 lines of code for 3 curve shapes and 8 point formats,
including all equivalence proofs. Certified-compiler-phase
implementations are rather verbose and sometimes include
more lines for parameters than actual code: the largest one is
bounds inference (about 2500 lines code+proof), adding up
to a total around 15,000 lines. With another 15,000 lines of
utility lemmas and tactics that seem reasonable candidates
to move into Coq’s standard library, the total development
adds up to 38,000 lines.
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1754

1755

1756

1757

1758

1759

1760

Operation Handwritten Generated Ratio
Key generation 10965 10808 .98

Sign 10841 10807 .99
Verify signature 3056 2919 .95

Base-point × 11177 11061 .98
Arbitrary-point × 3552 3530 .99

Table 1. Performance details for Curve25519 generated code

D Performance in BoringSSL
Table 1 has more performance detail on our generated code
(for Curve25519) integrated into BoringSSL, the cryptogra-
phy library behind Google Chrome. We compare the version
with our code with the one immediately before it, relying on
handwritten code instead. Each measurement is a number
of operations per second, taken as the median of three trials
on an Intel Xeon with AVX2.
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1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

Our Code GMP Code
Prime Sol. Mont. const

time
var
time

C++ Speed
-up

2127 − 1 0.03 0.04 0.26 0.15 0.67 5.0
2129 − 25 0.03 0.07 0.38 0.27 0.8 9.0
2130 − 5 0.03 0.09 0.39 0.28 0.79 9.33
2137 − 13 0.03 0.08 0.37 0.27 0.8 9.0
2140 − 27 0.03 0.08 0.38 0.27 0.8 9.0
2141 − 9 0.03 0.08 0.39 0.27 0.83 9.0
2150 − 3 0.03 0.08 0.38 0.3 0.8 10.0
2150 − 5 0.03 0.08 0.39 0.29 0.84 9.67
2152 − 17 0.03 0.08 0.38 0.27 0.82 9.0
2158 − 15 0.03 0.08 0.37 0.27 0.76 9.0
2165 − 25 0.03 0.08 0.38 0.27 0.78 9.0
2166 − 5 0.03 0.08 0.39 0.27 0.79 9.0
2171 − 19 0.03 0.08 0.38 0.27 0.79 9.0
2174 − 17 0.03 0.08 0.38 0.28 0.78 9.33
2174 − 3 0.03 0.08 0.38 0.27 0.78 9.0
2189 − 25 0.04 0.08 0.39 0.27 0.8 6.75
2190 − 11 0.04 0.08 0.38 0.27 0.78 6.75
2191 − 19 0.04 0.09 0.36 0.26 0.78 6.5
2192 − 264 − 1 0.05 0.07 0.31 0.24 0.79 4.8
2194 − 33 0.04 0.12 0.5 0.34 0.93 8.5
2196 − 15 0.04 0.12 0.5 0.34 0.89 8.5
2198 − 17 0.04 0.12 0.51 0.34 0.87 8.5
2205 − 45 · 2198 − 1 - 0.14 0.51 0.34 0.87 2.43
2206 − 5 0.04 0.14 0.5 0.34 0.84 8.5
2212 − 29 0.05 0.12 0.49 0.35 0.87 7.0
2213 − 3 0.04 0.13 0.49 0.37 0.88 9.25
2216 − 2108 − 1 0.04 0.12 0.51 0.35 0.88 8.75
2221 − 3 0.05 0.15 0.51 0.36 0.89 7.2
2222 − 117 0.05 0.12 0.53 0.35 0.91 7.0
2224 − 296 + 1 - 0.13 0.5 0.35 0.88 2.69
2226 − 5 0.04 0.13 0.5 0.35 0.92 8.75
2230 − 27 0.05 0.13 0.54 0.35 0.91 7.0
2235 − 15 0.06 0.13 0.5 0.34 0.89 5.67
2243 − 9 0.06 0.13 0.5 0.34 0.89 5.67
2251 − 9 0.06 0.13 0.5 0.35 0.94 5.83
2254 − 127 · 2240 − 1 - 0.12 0.5 0.35 0.92 2.92
2255 − 19 0.06 0.13 0.48 0.35 0.9 5.83
2255 − 765 0.06 0.13 0.52 0.34 0.9 5.67
2256 − 189 0.06 0.14 0.38 0.34 0.87 5.67
2256 − 2224 + 2192 + 296 − 1 - 0.11 0.38 0.33 0.84 3.0
2256 − 232 − 977 0.1 0.12 0.38 0.34 0.87 3.4
2256 − 4294968273 0.14 0.13 0.37 0.34 0.86 2.62
2256 − 88 · 2240 − 1 - 0.11 0.39 0.34 0.88 3.09
2266 − 3 0.06 0.18 0.66 0.45 1.13 7.5
2285 − 9 0.06 0.18 0.73 0.43 0.97 7.17
2291 − 19 0.07 0.18 0.68 0.42 1.0 6.0
2321 − 9 0.1 0.26 0.8 0.54 1.18 5.4

Our Code GMP Code
Prime Sol. Mont. const

time
var
time

C++ Speed
-up

2322 − 2161 − 1 0.07 0.27 0.83 0.53 1.15 7.57
2336 − 17 0.1 0.27 0.8 0.53 1.11 5.3
2336 − 3 0.09 0.27 0.86 0.53 1.08 5.89
2338 − 15 0.1 0.25 0.8 0.54 1.06 5.4
2369 − 25 0.13 0.26 0.79 0.52 1.1 4.0
2379 − 19 0.12 0.26 0.79 0.55 1.07 4.58
2382 − 105 0.13 0.25 0.92 0.57 1.11 4.38
2383 − 187 0.13 0.28 0.75 0.5 1.05 3.85
2383 − 31 0.13 0.26 0.75 0.51 1.05 3.92
2383 − 421 0.13 0.25 0.76 0.51 1.06 3.92
2384 − 2128 − 296 + 232 − 1 - 0.25 0.64 0.47 0.98 1.88
2384 − 317 0.13 0.26 0.67 0.48 1.0 3.69
2384 − 5 · 2368 − 1 - 0.23 0.63 0.46 0.99 2.0
2384 − 79 · 2376 − 1 - 0.23 0.62 0.46 0.99 2.0
2389 − 21 0.13 - 0.97 0.6 1.22 4.62
2401 − 31 0.14 - 0.97 0.61 1.17 4.36
2413 − 21 0.16 - 0.99 0.62 1.22 3.88
2414 − 17 0.15 - 0.98 0.6 1.21 4.0
2416 − 2208 − 1 0.14 - 0.98 0.6 1.16 4.29
2444 − 17 0.17 - 0.96 0.6 1.2 3.53
2448 − 2224 − 1 0.12 - 0.79 0.52 1.06 4.33
2450 − 2225 − 1 0.13 - 1.22 0.74 1.34 5.69
2452 − 3 0.16 - 1.24 0.71 1.32 4.44
2468 − 17 0.16 - 1.23 0.71 1.29 4.44
2480 − 2240 − 1 0.13 - 1.18 0.71 1.28 5.46
2488 − 17 0.19 - 1.2 0.7 1.28 3.68
2489 − 21 0.2 - 1.17 0.69 1.27 3.45
2495 − 31 0.19 - 1.17 0.69 1.3 3.63
2510 − 290 · 2496 − 1 - - 1.2 0.7 1.28 -
2511 − 187 0.25 - 1.13 0.66 1.21 2.64
2511 − 481 0.25 - 1.12 0.66 1.24 2.64
2512 − 491 · 2496 − 1 - - 0.99 0.62 1.15 -
2512 − 569 0.24 - 0.95 0.62 1.14 2.58
2521 − 1 0.18 - 1.4 0.81 1.44 4.5

Table 2. Full 64-bit benchmark data. Our code tried both Soli-
nas and Montgomery implementations for each prime, and
we test against three GMP-based implementations: one that
is constant-time (gmpsec), one that is variable time (gmpvar),
and GMP’s C++ API. Our code is constant-time, so gmpsec
is the best comparison; however, even with that constraint
removed from GMP and not us, we compare favorably to
gmpvar.
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Our Code GMP Code
Prime Solinas Mont. const

time
var
time

Speedup

2127 − 1 0.3 1.19 2.86 3.23 9.53
2129 − 25 0.35 1.7 3.38 3.77 9.66
2130 − 5 0.44 1.87 3.56 3.79 8.09
2137 − 13 0.48 2.06 3.41 3.78 7.1
2140 − 27 0.51 1.98 3.43 3.77 6.73
2141 − 9 0.51 2.0 3.43 3.81 6.73
2150 − 3 0.42 2.0 3.56 3.79 8.48
2150 − 5 0.49 1.99 3.38 3.8 6.9
2152 − 17 0.5 1.96 3.4 3.82 6.8
2158 − 15 0.52 2.04 3.4 3.77 6.54
2165 − 25 0.59 2.46 4.02 4.45 6.81
2166 − 5 0.61 2.43 4.02 4.43 6.59
2171 − 19 0.57 2.68 4.04 4.51 7.09
2174 − 17 0.58 2.63 4.03 4.39 6.95
2174 − 3 0.61 2.62 4.02 4.4 6.59
2189 − 25 0.7 2.65 4.05 4.4 5.79
2190 − 11 0.71 2.64 4.1 4.42 5.77
2191 − 19 0.66 2.69 4.03 4.4 6.11
2192 − 264 − 1 - 2.41 3.56 4.23 1.48
2194 − 33 0.75 - 4.66 4.94 6.21
2196 − 15 0.77 - 4.64 4.94 6.03
2198 − 17 0.76 - 4.72 4.97 6.21
2205 − 45 · 2198 − 1 - - 4.66 5.03 -
2206 − 5 0.76 - 4.62 4.91 6.08
2212 − 29 0.86 - 4.68 4.91 5.44
2213 − 3 0.7 - 4.68 4.94 6.69
2216 − 2108 − 1 0.7 - 4.67 4.92 6.67
2221 − 3 0.8 - 4.68 4.92 5.85
2222 − 117 0.87 - 4.72 4.87 5.43
2224 − 296 + 1 - - 4.13 4.85 -
2226 − 5 0.87 - 5.25 5.65 6.03
2230 − 27 0.83 - 5.29 5.71 6.37
2235 − 15 0.9 - 5.31 5.69 5.9
2243 − 9 0.86 - 5.29 5.62 6.15
2251 − 9 1.12 - 5.3 5.65 4.73
2254 − 127 · 2240 − 1 - 3.97 5.26 5.7 1.32
2255 − 19 1.01 - 5.25 5.7 5.2
2255 − 765 1.43 - 5.27 5.71 3.69
2256 − 189 1.2 - 4.71 5.49 3.93
2256 − 2224 + 2192 + 296 − 1 - - 4.7 5.46 -
2256 − 232 − 977 1.65 - 4.72 5.45 2.86
2256 − 4294968273 - - 4.77 5.48 -
2256 − 88 · 2240 − 1 - - 4.78 5.46 -
2266 − 3 1.01 - 6.1 6.32 6.04
2285 − 9 1.13 - 6.13 6.34 5.42
2291 − 19 1.33 - 6.94 6.98 5.22
2321 − 9 1.72 - 7.6 7.66 4.42

Our Code GMP Code
Prime Solinas Mont. const

time
var
time

Speedup

2322 − 2161 − 1 1.37 - 7.66 7.74 5.59
2336 − 17 1.67 - 7.64 7.74 4.57
2336 − 3 1.59 - 7.58 7.69 4.77
2338 − 15 1.7 - 7.66 7.67 4.51
2369 − 25 2.44 - 8.41 9.03 3.45
2379 − 19 2.47 - 8.44 9.25 3.42
2382 − 105 2.66 - 8.41 9.04 3.16
2383 − 187 2.63 - 8.44 9.11 3.21
2383 − 31 2.6 - 8.47 9.13 3.26
2383 − 421 3.58 - 8.45 9.11 2.36
2384 − 2128 − 296 + 232 − 1 - - 7.62 8.8 -
2384 − 317 3.95 - 7.62 8.82 1.93
2384 − 5 · 2368 − 1 - - 7.64 8.94 -
2384 − 79 · 2376 − 1 - - 7.66 8.84 -
2389 − 21 2.89 - 9.41 9.93 3.26
2401 − 31 2.85 - 9.35 9.92 3.28
2413 − 21 3.53 - 9.48 9.93 2.69
2414 − 17 3.72 - 9.4 9.86 2.53
2416 − 2208 − 1 2.48 - 8.54 9.67 3.44
2444 − 17 3.7 - 10.31 10.89 2.79
2448 − 2224 − 1 3.18 - 9.57 10.51 3.01
2450 − 2225 − 1 - - 11.37 11.63 -
2452 − 3 3.23 - 11.33 11.63 3.51
2468 − 17 3.2 - 11.37 11.63 3.55
2480 − 2240 − 1 3.58 - 10.47 11.33 2.92
2488 − 17 7.99 - 12.23 12.92 1.53
2489 − 21 7.7 - 12.26 12.81 1.59
2495 − 31 6.07 - 12.2 13.1 2.01
2510 − 290 · 2496 − 1 - - 12.17 12.9 -
2511 − 187 9.73 - 12.21 13.07 1.25
2511 − 481 - - 12.23 12.9 -
2512 − 491 · 2496 − 1 - - 11.26 12.58 -
2512 − 569 - - 11.23 12.55 -
2521 − 1 3.9 - 13.3 13.91 3.41

Table 3. Full 32-bit benchmark data. Many of the 32-bit
Montgomery implementations exceeded the one-hour time-
out for proofs, because 32-bit code involves approximately
twice as many operations. The C++ GMP program was not
benchmarked on 32-bit.
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