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Abstract. We present a new strategy for performing reification in Coq.
That is, we show how to generate first-class abstract syntax trees from
“native” terms of Coq’s logic, suitable as inputs to verified proof pro-
cedures in the proof by reflection style. Our new strategy, based on the
pattern tactic, is simple, short, and fast. We survey the existing meth-
ods of reification, describing various design choices and tricks that can be
used to speed them up, as well as various limitations. Our strategy is not
a good fit, for example, when a term must be reified without performing
βιζ reduction. We describe the results of benchmarking 18 variants of
reification, in addition to our own, finding that our own reification out-
performs 16 of these methods in all cases, and one additional method
in some cases; the fastest method of reification we tested is writing an
OCaml plugin. Our method is the most concise of the strategies we con-
sidered, requiring only two to four lines of Ltac—beyond lists of the
identifiers to reify and their reified variants—to reify a term. Addition-
ally, our strategy automatically provides error messages which are no less
helpful than Coq’s own error messages.

1 Introduction

Proof by reflection [2] is an established method for employing verified proof
procedures, within larger proofs. There are a number of benefits to using veri-
fied functional programs written in the proof assistant’s logic instead of tactic
scripts. We can often prove that procedures always terminate without attempt-
ing fallacious proof steps, and perhaps we can even prove that a procedure gives
logically complete answers, for instance telling us definitively whether a proposi-
tion is true or false. In contrast, tactic-based procedures may encounter runtime
errors or loop forever. As a consequence, those procedures must output proof
terms, justifying their decisions, and these terms can grow large, making for
slower proving and requiring transmission of large proof terms to be checked
slowly by others. A verified procedure need not generate a certificate for each
invocation.



The starting point for proof by reflection is reification: translating a “native”
term of the logic into an explicit abstract syntax tree. We may then feed that tree
to verified procedures or any other functional programs in the logic. The benefits
listed above are particularly appealing in domains where goals are very large.
For instance, consider verification of large software systems, where we might
want to reify thousands of lines of source code. Popular methods turn out to be
surprisingly slow, often to the point where, counter-intuitively, the majority of
proof-execution time is spent in reification – unless the proof engineer invests in
writing a plugin directly in the proof assistant’s metalanguage (e.g., OCaml for
Coq).

In this paper, we show that reification can be both simpler and faster than
with standard methods. Perhaps surprisingly, we demonstrate how to reify terms
almost entirely through reduction in the logic, with a small amount of tactic code
for setup, and no ML programming. Though our techniques should be broadly
applicable, especially in proof assistants based on type theory, our experience
is with Coq, and we review the requisite background in the remainder of this
introduction. In section 2, we then survey prior approaches to reification, serving
a tutorial function independent of our new contributions. Experts on the subject
might want to skip directly to section 3, which explains our alternative technique.
We benchmark our approach against 18 competitors in section 4.

1.1 Proof-Script Primer

Basic Coq proofs are often written as lists of steps such as induction on some
structure, rewrite using a known equivalence, or unfold of a definition. Very
quickly, proofs can become long and tedious, both to write and to read, and hence
Coq provides Ltac, a scripting language for proofs. As theorems and proofs grow
in complexity, users frequently run into performance and maintainability issues
with Ltac. Consider the case where we want to prove that a large algebraic
expression, involving many let ... in ... expressions, is even:

Inductive is_even : nat -> Prop :=

| even_O : is_even O

| even_SS : forall x, is_even x -> is_even (S (S x)).

Goal is_even (let x := 100 * 100 * 100 * 100 in

let y := x * x * x * x in

y * y * y * y).

Coq stack-overflows if we try to reduce this goal. As a workaround, we might
write a lemma that talks about evenness of let ... in ..., and one about
evenness of multiplication, and we might then write a tactic that composes such
lemmas.

Even on smaller terms, though, proof size can quickly become an issue. If we
give a naive proof that 7000 is even, the proof term will contain all of the even
numbers between 0 and 7000, giving a proof-term size blow-up at least quadratic
in size (recalling that natural numbers are represented in unary; the challenges



remain for more efficient base encodings). Clever readers will notice that Coq
could share subterms in the proof tree, recovering a term that is linear in the size
of the goal. However, such sharing would have to be very carefully preserved, to
prevent unexpected blow-up from unexpected loss of sharing, and today’s Coq
version does not do that sharing. Even if it did, tactics that rely on assumptions
about Coq’s sharing strategy become harder to debug, rather than easier.

1.2 Reflective-Automation Primer

Enter reflective automation, which simultaneously solves both the problem of
performance and the problem of debuggability. Proof terms, in a sense, are traces
of a proof script. They provide Coq’s kernel with a term that it can check to
verify that no illegal steps were taken. Listing every step results in large traces.

Fixpoint check_is_even

(n : nat) : bool

:= match n with

| 0 => true

| 1 => false

| S (S n)

=> check_is_even n

end.

Fig. 1. Eveness Checking

The idea of reflective automation is that,
if we can get a formal encoding of our goal,
and an algorithm to check the property we care
about, then we can do much better than stor-
ing the entire trace of the program. We can
prove that our checker is correct once and for
all, removing the need to trace its steps.

A simple evenness checker can just oper-
ate on the unary encoding of natural numbers
(Figure 1). We can use its correctness theorem to prove goals much more quickly:

Theorem soundness : forall n, check_is_even n = true -> is_even n.

Goal is_even 2000.

Time repeat (apply even_SS || apply even_O). (* 1.8 s *)

Undo.

Time apply soundness; vm_compute; reflexivity. (* 0.004 s *)

The tactic vm compute tells Coq to use its virtual machine for reduction, to
compute the value of check is even 2000, after which reflexivity proves
that true = true. Note how much faster this method is. In fact, the asymptotic
complexity is better; this new algorithm is linear in n, rather than quadratic.

However, even this procedure takes a bit over three minutes to prove is even

(10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10). To do better, we need a
formal representation of terms or expressions.

1.3 Reflective-Syntax Primer

Sometimes, to achieve faster proofs, we must be able to tell, for example, whether
we got a term by multiplication or by addition, and not merely whether its
normal form is 0 or a successor. Inductive expr :=

| NatO : expr

| NatS (x : expr) : expr

| NatMul (x y : expr) : expr.

Fig. 2. Simple Expressions

Reflective automation procedures gener-
ally have two steps: the first step is to reify
the goal into some abstract syntactic repre-
sentation, which we call the term language or



an expression language. The second step is to run the algorithm on the reified
syntax.

What should our expression language include? At a bare minimum, we must
have multiplication nodes, and we must have nat literals. If we encode S and O

separately, a decision which will become important later in section 3, we get the
inductive type of Figure 2.

Before diving into methods of reification, let us write the evenness checker.

Fixpoint check_is_even_expr (t : expr) : bool

:= match t with

| NatO => true

| NatS x => negb (check_is_even_expr x)

| NatMul x y => orb (check_is_even_expr x) (check_is_even_expr y)

end.

Before we can state the soundness theorem, that whenever this checker re-
turns true, the represented number is even, we must write the function that tells
us what number our expression represents, called denotation or interpretation:

Fixpoint denote (t : expr) : nat

:= match t with

| NatO => O

| NatS x => S (denote x)

| NatMul x y => denote x * denote y

end.

Theorem check_is_even_expr_sound (e : expr)

: check_is_even_expr e = true -> is_even (denote e).

Given a tactic Reify which produces a reified term from a nat, we can time
check_is_even_expr. It is instant on the last example.

Before we proceed to reification, we will introduce one more complexity. If we
want to support our initial example with let ... in ... efficiently we must
also have let-expressions. Our current procedure which inlines let-expressions
takes 19 seconds, for example, on let x0 := 10 * 10 in let x1 := x0 * x0

in ... let x24 := x23 * x23 in x24. The choices of representation include
higher-order abstract syntax (HOAS) [13], parametric higher-order abstract syn-
tax (PHOAS) [4], and de Bruijn indices [3]. The PHOAS representation is par-
ticularly convenient. In PHOAS, expression binders are represented by binders
in Gallina, the functional language of Coq, and the expression language is pa-
rameterized over the type of the binder. Finally, because much of Coq ζ-reduces
terms freely (i.e., inlines let binders), we define a constant and notation for let
expressions as definitions. We thus have:

Inductive expr {var : Type} :=

| NatO : expr

| NatS : expr -> expr

| NatMul : expr -> expr -> expr



| Var : var -> expr

| LetIn : expr -> (var -> expr) -> expr.

Definition Let_In {A B} (v : A) (f : A -> B) := let x := v in f x.

Notation "'dlet' x := v 'in' f" := (Let_In v (fun x => f)).

Notation "'elet' x := v 'in' f" := (LetIn v (fun x => f)).

Fixpoint denote (t : expr nat) : nat

:= match t with

| NatO => O

| NatS x => S (denote x)

| NatMul x y => denote x * denote y

| Var v => v

| LetIn v f => dlet x := denote v in denote (f x)

end.

A full treatment of evenness checking for PHOAS would require proving well-
formedness of syntactic expressions; for a more complete discussion of PHOAS,
we refer the reader elsewhere [4].

2 Methods of Reification

We proceed now to discussing the various ways of reifying terms. See section 4 for
a performance comparison of these methods. We expect the reader to be struck
by the seemingly needless complexity of some of these methods, even for the
few where we have chosen to show moderate code detail here; we feel the same
way! It is certainly fine to give up on following some of these details, in advance
of reaching the much simpler presentation of our new method in section 3. Our
supplementary code, most of which can also be found in Appendix E, contains
full, commented implementations of this whole menagerie, both for educational
purposes and to use in our performance experiments.

2.1 Typeclasses

Coq’s typeclasses [14] provide a mechanism for running tactics during type infer-
ence. It turns out that typeclass-based reification is one of the simplest methods
(even simpler than Ltac when binders are required). It allows more open or
modular reification, but it can be harder to debug.

Local Generalizable Variables x y rx ry f rf.

Section with_var.

Context {var : Type}.

Class reify_of (term : nat) (rterm : @expr var) := {}.

Global Instance reify_O : reify_of O NatO.

Global Instance reify_S `{reify_of x rx} : reify_of (S x) (NatS rx).

Global Instance reify_NatMul `{reify_of x rx, reify_of y ry}

: reify_of (x * y) (NatMul rx ry).

Global Instance reify_LetIn `{reify_of x rx}



`{forall y ry, reify_of y (Var ry) -> reify_of (f y) (rf ry)}

: reify_of (dlet y := x in f y) (elet ry := rx in rf ry).

End with_var.

Ltac reify var x :=

let c := constr:(_ : @reify_of var x _) in

lazymatch type of c with reify_of _ ?rx => rx end.

Unfortunately, the size of the output of this typeclass resolution is quadratic
in the size of the input, making it slower than most alternative strategies.

2.2 Ltac

Ltac reification is one of the simplest methods of reification, if binders are not
needed. The idea is to recurse over the structure of the term, in Ltac. These
procedures are generally easy to write and suffer mainly in performance and
complexity around reifying binders. Most of the time in binder-heavy code seems
to result from the overhead of switching back and forth between term checking
and tactic evaluation. If we do not need binders, we can write the Ltac in
Figure 3. Note that we use lazymatch rather than match to propagate error
messages and prevent unwanted backtracking.

Ltac reify var x :=

lazymatch x with

| O

=> constr:(@NatO var)

| S ?x

=> let rx := reify var x in

constr:(@NatS var rx)

| ?x * ?y

=> let rx := reify var x in

let ry := reify var y in

constr:(@NatMul var rx ry)

end.
Fig. 3. Ltac Reification

However, if we want binders, we
must recurse under binders, and we
have seven options. One option is to
uncurry functions as we go, so that
we always reify functions of exactly
one binder. If we do not do that,
we have to make two choices: (1)
how do we recurse under binders?
and (2) how do we keep track of the
PHOAS Var node corresponding to
each binder? We present what we
believe is the simplest of these, and
then we briefly describe the others.

Tracking variables with Coq hypotheses and using typeclasses to re-
curse under binders (LtacTCGallinaCtx.v). We have already seen how to
do reification with typeclasses. We can instead use typeclasses only for recursing
under binders. Much like typeclass-based reification, we track which nat binders
reify to which var binders by adding instances of a marker definition var for

in the context. We proceed in three steps: we must declare the class; we must
write the code to invoke the typeclass to recurse under binders; and we must
add a typeclass resolution hint to invoke our tactic to solve this class.

Class reify_helper_cls (var : Type) (term : nat)

:= do_reify_helper : @expr var.

Definition var_for {var : Type} (n : nat) (v : var) := False.



Ltac reify var term :=

lazymatch goal with H:var_for term ?v |-_ => constr:(@Var var v)

|_ => lazymatch term with

| (dlet x := ?v in ?f) =>

let rv := reify var v in

let not_x := fresh in

let rf := lazymatch constr:(_ : forall (x : nat) (not_x : var)

(_ : @var_for var x not_x), @reify_cls var f) with

| fun _ v' _ => @?f v' => f

| ?f => error_cant_elim_deps f

end in constr:(@LetIn var rv rf)

| (* ... non-binders reified as in Ltac ... *) end end.

Global Hint Extern 0 (@reify_helper_cls _ _)

=> (intros; lazymatch goal with |- @reify_helper_cls ?var ?term

=> let res := reify var term in exact res end) : typeclass_instances.

The last lazymatch in reify serves two purposes: (1) it removes the nat and
var for binders, which are required for recursive reification but which must be
unused in the resulting term if the reified term is to be valid; and (2) it strips
off the type cast used to invoke typeclass resolution, keeping term size linear.

Other Methods For Recursing Under Binders

Uncurrying (LtacPrimUncurry.v). As in CPDT [5], we can uncurry functions
on the fly and use @? patterns to look under a single binder. For speed, we
avoid implicit argument inference, use primitive projections [6], and trigger
local β-reduction by feeding the Coq elaborator single-case matches [10].

Recursing under binders with typeclasses (LtacTC*.v). As explained above.
If we choose to track variables with explicit contexts, the context will be an
argument of the type class.

Recursing under binders with tactics in terms (LtacTacInTerm*.v). Since
Coq 8.5, ltac:(. . .) can be used insert tactic-generated terms directly into
Gallina code, even under binders. There are a number of bugs and misfea-
tures to be wary of when using this method; the attached implementations
were developed by working around one unexpected behavior after another.

Other Methods For Tracking Variables

Pairs (Ltac*PrimPair.v).
We can handle binders by pairing variables with newly introduced binders of
type var and then reify fst (?term, ?v) to @Var var v whenever possible.

Coq hypotheses (Ltac*GallinaCtx.v). As in typeclass-based reification, we
can introduce a definition to track which nat binders reify to which var

binders, searching the context for such hypotheses.
Explicit context (Ltac*ExplicitCtx.v).

Finally, rather than relying on Coq’s contexts, we can pass around an asso-
ciation list explicitly.



2.3 Canonical Structures

Automation via canonical structures was pioneered by Gonthier et. al. [9] It
is fairly concise but an enormous pain to debug4 and takes a bit of work to
wrap one’s head around. The basic idea is that, when Coq’s unification engine
encounters a unification problem of the form projection e = term, if e is a
term of record type with holes, and if there is a canonical structure declared
for that record with the head constant of term in the field projection, then
Coq will try to solve ?e by unifying term with an application of the canonical
structure.

Canonical-structure reification is much faster than Ltac reification for small
terms without binders. For large terms, we get bitten by the fact that canonical-
structure resolution generates quadratically sized terms, much like typeclass res-
olution. For more detail on canonical-structure reification, see Appendix C. For
full implementations, see Appendix E.8, the CanonicalStructures*.v files.

2.4 Mtac (Mtac2.v)

Created by the authors of How to Make Ad Hoc Proof Automation Less Ad
Hoc [9] in part to deal with the fact that canonical structures are painful,
Mtac [15] is a monadic tactic language whose tactics are Gallina terms. In-
experienced as we are with Mtac, we have only two suggestions for speeding
up Mtac-based reification: (1) avoid unnecessary normalization; and (2) handle
fresh binder names manually rather than invoking M.fresh binder name, which
produces a string with length linear in the number of times it has been called so
far, rather than logarithmic.

2.5 Ltac2 (Ltac2LowLevel.v, Ltac2.v)

In upcoming versions of Coq, there is a new, saner replacement for Ltac called
Ltac2. Its main benefits are a less exciting execution model, more fine-grained
control over manipulation of terms, and static typechecking.

A relatively straightforward transcription to Ltac2 of the reification routine
that explicitly tracks variables and uses tactics-in-terms to recurse is about 2X
slower than the corresponding Ltac, likely due to allocating twice as many evars.
However, the real benefit of Ltac2 comes from being able to write low-level term-
manipulation code without incurring the overhead normally associated with term
manipulation in Ltac1.5 One key insight here is that we do not need to track
variable contexts at all ! We can instead retype the same binders with type var.
By writing such low-level code, we get a 50X speedup over naive Ltac2 code.

4 Primarily due to an inability to insert print statements, plus near incomprehensibility
of Set Debug Unification. We have heard that UniCoq [16] makes unification more
debuggable, though we have not yet tried it ourselves.

5 It is not entirely clear to us where this overhead comes from. Our hypotheses, from
dialogue with Coq developers, include (re)typechecking terms, memory allocation,
and evar normalization, a procedure in which Coq makes sure to give a consistent
view of which evars have been filled and which have not.



2.6 OCaml

The upper bound on reification performance (as for so many other Coq pro-
cedures) is attained by writing an OCaml plugin. Faster even than parsing a
pre-reified term, a line-by-line translation of the low-level Ltac2 reification pro-
cedure into OCaml results in another 50X speedup. Pierre-Marie Pédrot, the
author of Ltac2, said that essentially all of the slowness of Ltac2 over OCaml
comes from the overhead of Ltac2 being interpreted. We look forward to the
day when this straightforward compilation is built into the Ltac2 plugin.

One might ask: why not write all reification in OCaml? Our answers are that:

1. Historically, Coq’s OCaml API has been rather unstable between versions.
The situation is improving, but we are not yet at a point where porting a
plugin from one version of Coq to another is easy to do without knowledge
of the arcana of Coq’s internals.

2. Coq gives interactive, line-by-line feedback on tactic scripts.

In our comparison in section 4, we include two additional OCaml plugins of
note. The standard library’s quote plugin [7] inverts a simple denotation func-
tion to construct an OCaml reification routine; it does not handle binders. The
template-coq plugin [1] is an OCaml reification plugin to an inductive datatype
that mirrors Coq’s underlying representation of terms. The biggest overhead in
this method of reification is allocation, but reifying to template-coq’s de Bruijn
AST and then compiling from there to PHOAS is still quite fast.

3 Reification by Parametricity

So far, all of the reification we have seen operates by walking the Gallina syntax
tree, reifiying each node into a PHOAS syntax tree node. There is a way of fac-
toring this process into two passes over the syntax tree, both of which essentially
have robust, built-in implementations in Coq: abstraction or generalization, and
substitution or specialization.

term

generalize

��

reify
//
reified
syntax

denoteoo
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ner
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~~

abstracted term

specialize

__
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>>

Fig. 4. Abstraction and Reification

The key insight to this factoring
is that the shape of a reified term is
essentially the same as the shape of
the term that we start with. We can
make precise the way these shapes
are the same by abstracting over
the parts that are different, obtain-
ing a function that can be special-
ized to give either the original term
or the reified term.

That is, we have the commutative triangle in Figure 4.

3.1 Explanation By Examples



Reification Without Binders. Consider the example of reifying 2×2. In this
case, the term is 2× 2 or (mul (S (S O)) (S (S O))).

To reify, we first generalize or abstract the term 2 × 2 over the successor
function S, the zero constructor O, the multiplication function mul, and the
type N of natural numbers. We get a function taking one type argument and
three value arguments:

ΛN. λ(Mul : N → N → N) (O : N) (S : N → N).Mul (S (S O)) (S (S O))

We can now specialize this term in one of two ways: we may substitute N,
mul, O, and S, to get back the term we started with; or we may substitute expr,
NatMul, NatO, and NatS to get the reified syntax tree

NatMul (NatS (NatS NatO)) (NatS (NatS NatO))

This simple two-step process is the core of our algorithm for reification.

Reification With Binders. We can also reify expressions involving binders
with this method. If we start with the expression

dlet x := 1 in x× x
we can take advantage of the fact that we are using a definition for let ... in

.... We can abstract over our definition (@Let In N N), S, O, mul, and N. We
get a function of one type argument and four value arguments:

ΛN. λ (Mul : N → N → N). λ(O : N). λ(S : N → N).

λ(LetIn : N → (N → N)→ N). LetIn (S O) (λx. Mul x x)

We may once again specialize this term to obtain either our original term or the
reified syntax. Note that to obtain reified PHOAS syntax, we must include a Var

node in the LetIn expression; we substitute (λv f. LetIn v (λx. f (Var x))) for
LetIn to obtain the PHOAS syntax tree

LetIn (NatS NatO) (λx. NatMul (Var x) (Var x))

3.2 Commuting Abstraction and Reduction

Sometimes, the term we want to reify is the result of reducing another term. For
example, we might have a function that reduces to a term with a variable number
of let binders.6 We might have an inductive type that counts the number of
let ... in ... nodes we want in our output.

Inductive count := none | one_more (how_many : count).

It is important that this type be syntactically distinct from N for reasons we will
see shortly.

6 More realistically, we might have a function that represents big numbers using mul-
tiple words of a user-specified width. In this case, we may want to specialize the
procedure to a couple of different bitwidths, and then reify the resulting partially
reduced term.
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Fig. 5. Abstraction, Reification, Reduction

We can then define a recursive
function that constructs some num-
ber of nested let binders:

Fixpoint big (x:nat) (n:count)

: nat

:= match n with

| none => x

| one_more n'

=> dlet x' := x * x in

big x' n'

end.

Our commutative diagram in Fig-
ure 4 now has an additional node, becoming Figure 5. Since generalization and
specialization are proportional in speed to the size of the term begin handled,
we can gain a significant performance boost by performing generalization before
reduction. To explain why, we split apart the commutative diagram a bit more;
in reduction, there is a δ or unfolding step, and a βι step that reduces applica-
tions of λs to variables and evaluates recursive calls. In specialization, there is an
application step, where the λ is applied to arguments, and a β-reduction step,
where the arguments are substituted. To obtain reified syntax, we may perform
generalization after δ-reduction (before βι-reduction), and we are not required to
perform the final β-reduction step of specialization to get a well-typed term. It
is important that unfolding big results in exposing the body for generalization,
which we accomplish in Coq by exposing the anonymous recursive function; in
other languages, the result may be a primitive eliminator applied to the body of
the fixpoint. Either way, our commutative diagram thus becomes

unreduced term
δ��

small partially
reduced term

βι
//

''

reduced
term

''

//
reduced

reified syntax

oo

vv

abstracted
term

gg
66

unreduced
reified syntax

vv
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OO

unreduced
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gg
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Let us step through this alternate path of reduction using the example of the
unreduced term big 1 100, where we take 100 to mean the term represented
by (one more · · · (one more︸ ︷︷ ︸

100

none ) · · · )︸ ︷︷ ︸
100

.

Our first step is to unfold big, rendered as the arrow labeled δ in the dia-
gram. In Coq, the result is an anonymous fixpoint; here we will write it using
the recursor count rec of type ΛT. T → (count→ T → T )→ count→ T . Per-



forming δ-reduction, that is, unfolding big, gives us the small partially reduced
term(

λ(x : N). λ(n : count).

count rec (N→ N) (λx. x) (λn′. λbign′ . λx. dlet x′ := x×x in bign′ x′
)

1 100

We call this term small, because performing βι reduction gives us a much
larger reduced term:

dlet x1 := 1× 1 in · · · dlet x100 := x99 × x99 in x100

Abstracting the small partially reduced term over (@Let In N N), S, O, mul,
and N gives us the abstracted unreduced term

ΛN. λ(Mul : N → N → N)(O : N)(S : N → N)(LetIn : N → (N → N)→ N).(
λ(x : N). λ(n : count). count rec (N → N) (λx. x)

(λn′. λbign′ . λx. LetIn (Mul x x) (λx′. bign′ x′))
)

(S O) 100

Note that it is essential here that count is not syntactically the same as
N; if they were the same, the abstraction would be ill-typed, as we have not
abstracted over count rec. More generally, it is essential that there is a clear
separation between types that we reify and types that we do not, and we must
reify all operations on the types that we reify.

We can now apply this term to expr, NatMul, NatS, NatO, and, finally,
(λv f. LetIn v (λx. f (Var x))). We get an unreduced reified syntax tree of
type expr. If we now perform βι reduction, we get our fully reduced reified
term.

We take a moment to emphasize that this technique is not possible with
any other method of reification. We could just as well have not specialized the
function to the count of 100, yielding a function of type count → expr, despite
the fact that our reflective language knows nothing about count!

This technique is especially useful for terms that will not reduce without
concrete parameters, but which should be reified for many different parameters.
Running reduction once is slightly faster than running OCaml reification once,
and it is more than twice as fast as running reduction followed by OCaml reifi-
cation. For sufficiently large terms and sufficiently many parameter values, this
performance beats even OCaml reification.7

3.3 Implementation in Ltac

Unfortunately, Coq does not have a tactic that performs abstraction.8 However,
the pattern tactic suffices; it performs abstraction followed by application, and

7 We discovered this method in the process of needing to reify implementations of
cryptographic primitives for a couple hundred different choices of numeric param-
eters (e.g., prime modulus of arithmetic). A couple hundred is enough to beat the
overhead.

8 The generalize tactic returns ∀ rather than λ, and it only works on types.



is a sort-of one-sided inverse to β-reduction. By chaining pattern with an Ltac-
match statement to peel off the application, we can get the abstracted function.

Ltac Reify x :=

match (eval pattern nat, Nat.mul, S, O, (@Let_In nat nat) in x) with

| ?rx _ _ _ _ _ =>

constr:( fun var => rx (@expr var) NatMul NatS NatO

(fun v f => LetIn v (fun x => f (Var x))) )

end.

Note that if @expr var lives in Type rather than Set, an additional step involv-
ing retyping the term is needed; we refer the reader to Appendix D.

3.4 Advantages and Disadvantages

This method is faster than all but Ltac2 and OCaml reification, and commuting
reduction and abstraction makes this method faster even than the low-level
Ltac2 reification in many cases. Additionally, this method is much more concise
than nearly every other method we have examined, and it is very simple to
implement.

We will emphasize here that this strategy shines when the initial term is
small, the partially computed terms are big (and there are many of them), and
the operations to evaluate are mostly well-separated by types (e.g., evaluate all
of the count operations and none of the nat ones).

For reification of match (rather than eliminators) or let ... in ... (rather
than a definition that unfolds to let ... in ...), or when reification should
not be modulo βιζ-reduction, this strategy is not directly applicable.

4 Performance Comparison

We have performed a performance comparison of the various methods of reifi-
cation to the PHOAS language @expr var from Figure 1.3. A typical reifi-
cation routine will obtain the term to be reified from the goal, reify it, run
transitivity (denote reified term) (possibly after normalizing the reified
term), and solve the side-condition with something like lazy [denote]; reflexivity.
Our testing on a few samples indicated that using change rather than transitivity;

lazy [denote]; reflexivity can be around 3X slower; note that we do not
test the time of Defined.

There are two interesting metrics to consider: (1) how long does it take to
reify the term? and (2) how long does it take get a normalized reified term, i.e.,
how long does it take both to reify the term and normalize the reified term? We
have chosen to consider (1), because it provides the most fine-grained analysis
of the actual reification method.



4.1 Without Binders

We look at terms of the form 1 * 1 * 1 * ... where multiplication is asso-
ciated to create a balanced binary tree. We say that the size of the term is
the number of 1s. We refer the reader to the attached code tarball or to Ap-
pendix E for the exact code of each reification method being tested; the definition
big flat in Appendix E.17 (BenchmarkUtil.v) defines the term being reified.

We found that the performance of all methods is linear in term size.
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Fig. 6. Performance of Reification without Binders

Sorted from slowest to fastest, most of the labels in Figure 6 should be self-
explanatory and are found in similarly named .v files in the associated code
tarball and Appendix E; we call out a few potentially confusing ones:

– The “Parsing” benchmark is “reification by copy-paste”: a script generates a
.v file with notation for an already reified term; we benchmark the amount
of time it takes to parse and typecheck that term. The “ParsingElaborated”
benchmark is similar, but instead of giving notation for an already reified
term, we give the complete syntax tree with no holes. Note that these bench-
marks cut off at around 5000 rather than at around 20 000, because on large
terms, Coq crashes with a stack overflow in parsing.

– We have four variants starting with CanonicalStructures here. The Flat vari-
ants reify to @expr nat rather than to forall var, @expr var and benefit
from fewer function binders and application nodes. The HOAS variants do
not include a case for let ... in ... nodes, while the PHOAS variants do.
Unlike most other reification methods, there is a significant cost associated
with handling more sorts of identifiers in canonical structures.

We note that on this benchmark our method is slightly faster than template-
coq, which reifies to de Bruijn indices, and slightly slower than the quote plugin
in the standard library and the OCaml plugin we wrote by hand.



■ Mtac2

■ CanonicalStructuresPHOAS

■ CanonicalStructuresHOAS

■ TypeClasses

■ LtacPrimUncurry

■ Ltac2

■ LtacTCGallinaCtx

■ LtacTacInTermPrimPair

■ LtacTacInTermExplicitCtx

■ LtacTacInTermGallinaCtx

■ LtacTCExplicitCtx

■ LtacTCPrimPair

■ TypeClassesBodyHOAS

■ Parsing

■ ParsingElaborated

■ Ltac2LowLevel

■ TemplateCoq

■ Parametricity (reduced term)

■ Parametricity (unreduced term)

■ OCaml
50 100 150 200 250 300

n

1

2

3

4

5

Time (s)
Size of term (with binders) vs Reification time

■ ParsingElaborated

■ Parametricity (reduced term)

 lazy Denote

■ Ltac2LowLevel

■ TemplateCoq

 transitivity

■ Parametricity (unreduced term)

■ OCaml

 identity lazy

100 500 1000 5000 104
n

10-4

0.001

0.010

0.100

1

10

Time (s)
Size of term (with binders) vs Reification time (log-log)

Fig. 7. Performance of Reification with Binders

4.2 With Binders

We look at terms of the form dlet a1 := 1 * 1 in dlet a2 := a1 * a1 in

... dlet an := an−1 * an−1 in an, where n is the size of the term. The first
graph shown here includes all of the reification variants at linear scale, while the
next step zooms in on the highest-performance variants at log-log scale.

In addition to reification benchmarks, the graph in Figure 7 includes as a
reference (1) the time it takes to run lazy reduction on a reified term already in
normal form (“identity lazy”) and (2) the time it takes to check that the reified
term matches the original native term (“lazy Denote”). The former is just barely
faster than OCaml reification; the latter often takes longer than reification itself.
The line for the template-coq plugin cuts off at around 10 000 rather than around
20 000 because at that point template-coq starts crashing with stack overflow.

A nontrivial portion of the cost of “Parametricity (reduced term)” seems to
be due to the fact that looking up the type of a binder is linear in the number of



binders in the context, thus resulting in quadratic behavior of the retyping step
that comes after abstraction in the pattern tactic. In Coq 8.8, this lookup will
be log n, and so reification will become even faster [12].

5 Future Work, Concluding Remarks

We identify one remaining open question with this method that has the potential
of removing the next largest bottleneck in reification: using reduction to show
that the reified term is correct.

unreduced term
δ��

small partially
reduced term

&&

unreduced
reified syntax

???

xx
unreduced

abstracted term

ff
88

Fig. 8. Completing the commutative triangle

Recall our reification pro-
cedure and the associated di-
agram, from Figure 3.2. We
perform δ on an unreduced
term to obtain a small, par-
tially reduced term; we then
perform abstraction to get
an abstracted, unreduced
term, and application to get
unreduced reified syntax. These steps are all fast. Finally, we perform βι-
reduction to get reduced, reified syntax, and perform βιδ reduction to get back
a reduced form of our original term. These steps are slow, but we must do them
if we are to have verified reflective automation.

It would be nice if we could prove this equality without ever reducing our
term. That is, it would be nice if we could have the diagram in Figure 8.

The question, then, is how to connect the small partially reduced term with
denote applied to the unreduced reified syntax. That is, letting F denote the
unreduced abstracted term, how can we prove, without reducing F , that

F N Mul O S (@Let In N N) = denote (F expr NatMul NatO NatS LetIn)

We hypothesize that a form of internalized parametricity would suffice for
proving this lemma. In particular, we could specialize F ’s type argument with
N× expr. Then we would need a proof that for any function F of type

∀(T : Type), (T → T → T )→ T → T → (T → (T → T )→ T )→ T

and any types A and B, and any terms fA : A → A → A, fB : B → B → B,
a : A, b : B, a′ : A, b′ : B, gA : A→ (A→ A)→ A, and gB : B → (B → B)→ B,
using f × g to denote lifting a pair of functions to a function over pairs:

fst (F (A×B) (fA × fB) (a, b) (a′, b′) (gA × gB)) = F A fA a a′ gA ∧
snd (F (A×B) (fA × fB) (a, b) (a′, b′) (gA × gB)) = F B fB b b′ gB

This theorem is a sort of parametricity theorem.

Despite this remaining open question, we hope that our performance results
make a strong case for our method of reification; it is fast, concise, and robust.
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For those interested in history, our method of reification by parametricity was
inspired by the evm compute tactic. [11] We first made use of pattern to allow
vm compute to replace cbv with an explicit blacklist when we discovered cbv

was too slow and the blacklist too hard to maintain. We then noticed that in the
sequence of doing abstraction; vm compute; application; β-reduction; reification,
we could move β-reduction to the end of the sequence if we fused reification with
application, and reification by parametricity was born.

B More Detailed Performance Graphs

B.1 Without Binders

We look at terms of the form 1 * 1 * 1 * .... When we use n to denote the
size of the term, we are taking n to be the number of 1s.

B.1.1 Baseline. We start by taking a look at some standard operations, to
establish a baseline.

We can time the various reduction machines (cbv, lazy, simpl, cbn, vm compute,
native compute) on an already-fully-normalized reified term. We can time the
various customizable reduction machines (cbv, lazy, simpl, cbn) on unfolding
the denotation function. We can time the transitivity step mentioned above.
We can time how long it takes to parse and typecheck a reified term (“reifica-
tion by copy-paste”), either when we have fully elaborated it to have no holes or
when we have left holes and given it to Coq via notations. Finally, we can time
how long it takes to print (e.g., with idtac) a reified term.

9 https://github.com/coq/coq/issues/5996#issuecomment-338405694
10 https://github.com/coq/coq/issues/6252

https://github.com/coq/coq/issues/5996#issuecomment-338405694
https://github.com/coq/coq/issues/6252
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B.1.2 Reification We present more complete versions (both log-log and lin-
ear) of the graph in subsection 4.1.
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Note that native compute is roughly constant, before it drops at large terms.
This drop corresponds to one of the term size where we restart Coq before
continuing (12 500), but we have no explanation for this behavior.

B.2 With Binders

We look at terms of the form dlet a1 := 1 * 1 in dlet a2 := a1 * a1 in

... dlet an := an−1 * an−1 in an.

B.2.1 Baseline. We once again look at the baseline operations.
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Note that native compute once again has discontinuous drops at the loca-
tion where we restart Coq (term size 800).

B.2.2 Reification We present more complete versions (both log-log and lin-
ear) of the graphs in subsection 4.2.



■ Mtac2

■ CanonicalStructuresPHOAS

■ CanonicalStructuresHOAS

■ TypeClasses

■ LtacPrimUncurry

■ Ltac2

■ LtacTCGallinaCtx

■ LtacTacInTermPrimPair

■ LtacTacInTermExplicitCtx

■ LtacTacInTermGallinaCtx

■ LtacTCExplicitCtx

■ LtacTCPrimPair

■ TypeClassesBodyHOAS

■ Parsing

■ ParsingElaborated

■ Ltac2LowLevel

■ TemplateCoq

■ Parametricity (reduced term)

■ Parametricity (unreduced term)

■ OCaml
50 100 150 200 250 300

n

1

2

3

4

5

Time (s)
Size of term (with binders) vs Reification time

■ Mtac2

■ CanonicalStructuresPHOAS

■ CanonicalStructuresHOAS

■ TypeClasses

■ LtacPrimUncurry

■ Ltac2

■ LtacTCGallinaCtx

■ LtacTacInTermPrimPair

■ LtacTacInTermGallinaCtx

■ LtacTacInTermExplicitCtx

■ LtacTCPrimPair

■ TypeClassesBodyHOAS

■ LtacTCExplicitCtx

■ Parsing

■ ParsingElaborated

■ Ltac2LowLevel

■ Parametricity (reduced term)

■ TemplateCoq

■ Parametricity (unreduced term)

■ OCaml

1 5 10 50 100 500 1000
n

10-4

0.01

1

100

Time (s)
Size of term (with binders) vs Reification time (log-log)

■ ParsingElaborated

■ Parametricity (reduced term)

■ Ltac2LowLevel

■ TemplateCoq

■ Parametricity (unreduced term)

■ OCaml
5000 10000 15000 20000

n

1

2

3

4

5

6

7

Time (s)
Size of term (with binders) vs Reification time (large terms only)



■ ParsingElaborated

■ Parametricity (reduced term)

■ Ltac2LowLevel

■ TemplateCoq

■ Parametricity (unreduced term)

■ OCaml

2000 5000 1×104 2×104
n

0.001

0.010

0.100

1

10

Time (s)
Size of term (with binders) vs Reification time (log-log, large terms only)

Note that Ltac2 is about 2X slower than Ltac reificiation; we hypothesize
that this difference is due to the overhead of allocating twice as many evars
(Constr.in context allocates two evars, while we are careful to only allocate
one evar per recursive call in the Ltac reification methods).

B.2.3 Reification to normal form We present versions of the graphs from
subsection 4.2 which include the time it takes to normalize the reified term.
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C Canonical Structures Reification in Detail

Let us walk through a simple reification problem. Note that canonical structures
cannot be overlapping: for each field, the head constant of that field must be
distinct across all definitions declared canonical for that field. We set up a number
of tags and structures (code also in CanonicalStructuresFlatHOAS.v):

Structure tagged_nat := tag { untag : nat }.

Structure reified_of var :=

reify { nat_of : tagged_nat ; reified_nat_of : @expr var }.

(* tags to control the order of application *)

Definition S_tag := tag.

Definition O_tag := S_tag.

Canonical Structure mul_tag n := O_tag n.

Canonical Structure reify_O var

:= reify (O_tag O) (@NatO var).

Canonical Structure reify_S var x

:= reify (S_tag (S (untag (nat_of x)))) (@NatS var (reified_nat_of x)).

Canonical Structure reify_mul var x y

:= reify (mul_tag (untag (nat_of x) * untag (nat_of y)))

(@NatMul var (reified_nat_of x) (reified_nat_of y)).

Suppose we are faced with the goal

untag (@nat of var ?e) = S (0 * 0)

We solve this goal with refine eq refl, but let us step through the beginning
of what Coq does.

1. It sees untag = and so applies the canonical structure mul tag to the
right hand side, trying to solve the unification problem:



2. nat of ?e = mul tag (S (0 * 0)) results in attempting to apply the canon-
ical structure reify mul. However, mul tag (untag (nat of ?x) * untag

(nat of ?y)) does not unify with mul tag (S (0 * 0)), and so unifica-
tion backtracks, unfolding mul tag, giving:

3. nat of ?e = O tag (S (0 * 0)), which results in attempting to apply the
canonical structure reify O for O tag. This, too, fails unification, and so
O tag is unfolded, giving:

4. nat of ?e = S tag (S (0 * 0)), which results in attempting to apply the
canonical structure reify S for S tag. This succeeds at the first level, in-
stantiating ?e with S tag (S (untag (nat of ?x))) for a fresh evar ?x,
spawning a new unification problem:

5. untag (nat of ?x) = 0 * 0. Here we again insert the canonical structure
mul tag and again try the canonical structure reify mul, which this time
succeeds, spawning two new problems where untag (nat of ) must be
unified with 0. These, too, eventually succeed, through a somewhat drawn-
out (but very fast) process.

To reify binders, we can do something similar but pass around an explicit
list of binders that exist in the context. Note that the order of tags is important;
var tl tag should be the last one checked, because it is the only one with a
recursive call that can be expected to fail. Note that reification by canonical
structures for terms with binders tends to be fairly slow. Additionally, it suffers
from an additional complexity: reifying let ... in ... nodes seems to require
“locking” the definition for Let In.11 If we do not block reduction with an
opaque constant, Coq’s unification will loop on inferring the identity function
again and again.

As we are inexperienced with reification by canonical structures, especially in
the presence of binders, there are likely more opportunities to optimize this code,
especially by playing with the tag order. Code can be found in Appendix E.8.4.

D Reification by Parametricity in Ltac

We have glossed over two points in this description.
First: if the type to be reified lives in Set while the expression type lives

in Type, Coq will report a universe inconsistency. Thus we have to dynamically
change the Set binder for a Type binder, after which we invoke Ltac’s type of

construct for its side effect of propagating universe constraints.
This gives us the tactic:

Ltac Reify x :=

let rx :=

lazymatch (eval pattern nat, O, S, Nat.mul, (@Let_In nat nat) in x) with

| ?rx _ _ _ _ _ => rx

11 See “Locking, unlocking” in A Small Scale Reflection Extension for the Coq sys-
tem. [8]



end in

let rx :=

lazymatch rx with fun N : Set => ?rx => constr:(fun N : Type => rx) end in

let __ := type of rx in (* propagate universe constraints *)

let rx := constr:(fun var : Type

=> rx (@expr var) (@NatO var) (@NatS var) (@NatMul var)

(fun x' f' => @LetIn var x' (fun v => f' (@Var var v)))) in

rx.

Second: we have tacitly taken advantage of the fact that we had constructors
for O and S. That is, we have taken advantage of the fact that our expression
language is

Inductive expr {var : Type} :=

| NatO : expr

| NatS : expr -> expr

| NatMul : expr -> expr -> expr

| Var : var -> expr

| LetIn : expr -> (var -> expr) -> expr.

rather than

Inductive expr {var : Type} :=

| NatConst : nat -> expr

| NatMul : expr -> expr -> expr

| Var : var -> expr

| LetIn : expr -> (var -> expr) -> expr.

This language gives us a bit more trouble, because there are some terms that
show up in our pre-reified expression which we do not directly reify (for example
S). Thus, if we simply try to abstract over S and O, we cannot find reified terms
to substitute them with, and if we do not abstract over S, then we need to list
out all of the constants that show up.

For completeness, we present a recursive Ltac routine that does this, though
we advise users of this method to cleanly separate between recursive types that
are reified and recursive types that are not.12

(** expects:

- [var] - the PHOAS var type

- [find_const term found_tac not_found_tac], a tactical which

looks for constants in [term], invokes [found_tac] with the

constant if it finds one, and invokes [not_found_tac ()] if it

finds none.

- [plug_const var term const], a tactic which takes a term and a

12 For example, if we had been reifying Z expressions rather than nat expressions, we
could have a single constant node, and reify the constructors Z0, Zpos, and Zneg,
without reifying positive.



constant, and plugs in the reified version of [const] *)

Ltac reify_with_consts var find_const plug_const term :=

find_const

term

ltac:(fun c

=> let rx := lazymatch (eval pattern c in term) with

| ?term _ => term

end in

let rx := reify_with_consts find_const plug_const term in

plug_const var rx c)

ltac:(fun _

=> let rx :=

match (eval pattern nat, Nat.mul, O, S, (@Let_In nat nat) in term) with

| ?rx _ _ _ _ _ => rx

end in

let rx :=

lazymatch rx with fun N : Set => ?rx => constr:(fun N : Type => rx) end in

let __ := type of rx in (* propagate universe constraints *)

constr:(rx (@expr var) (@NatMul var) (@NatO var) (@NatS var)

(fun x' f' => @LetIn var x' (fun v => f' (@Var var v))))).

As we are advising against using recursion to reify constants, we do not eval-
uate the performance of this more complicated variant of reification by para-
metricity.



E Detailed Code Examples

All code found in this section is available in the associated code tarball.
For completeness, we include the introductory code necessary to compile the

rest of the code.

E.1 Common Notations for Reification By Parametricity (Common.v)

E.1.1 Introductory Notations

Global Set Implicit Arguments.

Reserved Notation "’dlet’ x := v ’in’ f"

(at level 200, f at level 200,

format "’dlet’ x := v ’in’ ’//’ f").

Reserved Notation "’nllet’ x := v ’in’ f"

(at level 200, f at level 200,

format "’nllet’ x := v ’in’ ’//’ f").

Reserved Notation "’elet’ x := v ’in’ f"

(at level 200, f at level 200,

format "’elet’ x := v ’in’ ’//’ f").

Definition Let In {A B} (v : A) (f : A → B) : B

:= let x := v in f x.

Notation "’dlet’ x := v ’in’ f" := (Let In v (fun x ⇒ f)).

Definition key : unit. exact tt. Qed.

Definition lock {A} (v : A) : A := match key with tt ⇒ v end.

Lemma unlock {A} (v : A) : lock v = v.

Proof. unfold lock; destruct key; reflexivity. Qed.

Definition LockedLet In nat : nat → (nat → nat) → nat

:= lock (@Let In nat nat).

Definition locked nat mul := lock Nat.mul.

Notation "’nllet’ x := v ’in’ f"

:= (LockedLet In nat v (fun x ⇒ f)).

Definition lock Let In nat : @Let In nat nat = LockedLet In nat

:= eq sym (unlock ).

Definition lock Nat mul : Nat.mul = locked nat mul

:= eq sym (unlock ).



E.2 Expression trees in PHOAS (PHOAS.v)

Require Import Reify.Common.

Inductive expr {var : Type} : Type :=

| NatO : expr

| NatS : expr → expr

| LetIn (v : expr) (f : var → expr)

| Var (v : var)

| NatMul (x y : expr).

Bind Scope expr scope with expr.

Delimit Scope expr scope with expr.

Infix "*" := NatMul : expr scope.

Notation "’elet’ x := v ’in’ f" := (LetIn v (fun x ⇒ f%expr)) : expr scope.

Notation "$$ x" := (Var x) (at level 9, format "$$ x") : expr scope.

Fixpoint denote (e : @expr nat) : nat

:= match e with

| NatO ⇒ O

| NatS x ⇒ S (denote x)

| LetIn v f ⇒ dlet x := denote v in denote (f x)

| Var v ⇒ v

| NatMul x y ⇒ denote x × denote y

end.

Definition Expr := ∀ var, @expr var.

Definition Denote (e : Expr) := denote (e ).



E.3 Factored code common to many variants of reification
(ReifyCommon.v)

Require Import Reify.NamedTimers.

Require Export Reify.Common.

Require Export Reify.PHOAS.

Notation do transitivity := false (only parsing).

We provide a tactic to run a tactic in a constr context.

Ltac crun tac :=

match goal with

| ⇒ tac

end.

Note: If you want to preserve variable names on reification, there are many
hoops to jump through. We write a refresh tactic which permits preserving
binder names at a nontrivial performance overhead.

c.f. https://github.com/coq/coq/issues/5448, https://github.com/coq/
coq/issues/6315, https://github.com/coq/coq/issues/6559

Ltac require same var n1 n2 :=

let c1 := constr:(fun n1 n2 : Set ⇒ ltac:(exact n1)) in

let c2 := constr:(fun n1 n2 : Set ⇒ ltac:(exact n2)) in

first [ constr eq c1 c2

| fail 1 "Not the same var:" n1 "and" n2 "(via constr eq" c1 c2 ")" ].

Ltac is same var n1 n2 :=

match goal with

| ⇒ let := match goal with ⇒ require same var n1 n2 end in

true

| ⇒ false

end.

Ltac is underscore v :=

let v’ := fresh v in

let v’ := fresh v’ in

is same var v v’.

Note that fresh tac must be ltac:(fun n⇒ fresh n); c.f. https://github.
com/coq/coq/issues/6559

Ltac refresh n fresh tac :=

let n is underscore := is underscore n in

let n’ := lazymatch n is underscore with

| true ⇒ fresh

| false ⇒ fresh tac n

end in

let n’ := fresh tac n’ in

n’.

However, this comes at a significant cost in speed, so we do not try to preserve
variable names, and this tactic is unused in our benchmark.

https://github.com/coq/coq/issues/5448
https://github.com/coq/coq/issues/6315
https://github.com/coq/coq/issues/6315
https://github.com/coq/coq/issues/6559
https://github.com/coq/coq/issues/6559
https://github.com/coq/coq/issues/6559


Ltac Reify of reify x :=

constr:(fun var : Type ⇒ ltac:(let v := reify var x in exact v)).

Ltac if doing trans tac :=

let do trans := constr:(do transitivity) in

lazymatch do trans with

| true ⇒ tac ()

| false ⇒ idtac

end.

We ask for dummy arguments for most things, because it is good practice to
indicate that this tactic should not be run at the call-site (when it’s passed to
another tactic), but at the use-site.

Ltac do Reify rhs of cps with denote Reify cps Denote :=

let v := lazymatch goal with ` ?LHS = ?v ⇒ v end in

let := crun ltac:(restart timer "norm reif") in

let := crun ltac:(restart timer "actual reif") in

Reify cps v ltac:(

fun rv

⇒ let := crun ltac:(finish timing ("Tactic call") "actual reif") in

let := crun ltac:(restart timer "eval lazy") in

let rv := (eval lazy in rv) in

let := crun ltac:(finish timing ("Tactic call") "eval lazy") in

let := crun ltac:(finish timing ("Tactic call") "norm reif") in

time "lazy beta iota" lazy beta iota;

if doing trans

ltac:(fun

⇒ time "transitivity (Denote rv)"

transitivity (Denote rv))).

Ltac do Reify rhs of cps Reify cps :=

do Reify rhs of cps with denote Reify cps Denote ().

Ltac do Reify rhs of with denote Reify Denote :=

do Reify rhs of cps with denote

ltac:(fun v tac ⇒ let rv := Reify v in tac rv) Denote ().

Ltac do Reify rhs of Reify :=

do Reify rhs of with denote Reify Denote ().

Ltac post Reify rhs :=

[ > ..

| if doing trans ltac:(fun ⇒ lazy [Denote denote]; reflexivity) ].

Ltac Reify rhs of cps Reify cps :=

do Reify rhs of cps Reify cps (); post Reify rhs ().

Ltac Reify rhs of Reify :=

do Reify rhs of Reify (); post Reify rhs ().

Ltac error cant elim deps f :=

let := match goal with

| ⇒ idtac "Failed to eliminate functional dependencies in" f



end in

constr:(I : I).

Ltac error bad function f :=

let := match goal with

| ⇒ idtac "Bad let-in function" f

end in

constr:(I : I).

Ltac error bad term term :=

let := match goal with

| ⇒ idtac "Unrecognized term:" term

end in

let ret := constr:(term : I) in

constr:(I : I).



E.4 Define a primitive pairing type (PrimPair.v)

Set Primitive Projections.

Record prod A B := pair { fst : A ; snd : B }.
Add Printing Let prod.

Arguments pair {A B} .

Arguments fst {A B} .

Arguments snd {A B} .

Notation "x * y" := (prod x y) : type scope.

Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core scope.



E.5 Reification by canonical structures
(CanonicalStructuresReifyCommon.v)

Require Import Reify.NamedTimers.

Require Import Reify.Common.

Require Export Reify.ReifyCommon.

Require Import Reify.PHOAS.

Take care of initial locking of mul, letin, etc.

Ltac make pre Reify rhs nat of untag do lock letin do lock natmul :=

let RHS := lazymatch goal with ` = ?RHS ⇒ RHS end in

let e := fresh "e" in

let T := fresh in

evar (T : Type);

evar (e : T);

subst T;

cut (untag (nat of e) = RHS);

[ subst e

| lazymatch do lock letin with

| true ⇒ rewrite ?lock Let In nat

| false ⇒ idtac

end;

lazymatch do lock natmul with

| true ⇒ rewrite ?lock Nat mul

| false ⇒ idtac

end;

cbv [e]; clear e ].

N.B. we must thunk the constants so as to not focus the goal

Ltac make do Reify rhs denote reified nat of postprocess :=

[ >

| restart timer "norm reif";

time "actual reif" refine eq refl ];

let denote := denote () in

let reified nat of := reified nat of () in

let e := lazymatch goal with ` ?untag (?nat of ?e) = → ?LHS = ⇒ e end in

let := crun ltac:(restart timer "eval lazy") in

let e’ := (eval lazy in (reified nat of e)) in

let := crun ltac:(finish timing ("Tactic call") "eval lazy") in

let := crun ltac:(restart timer "postprocess") in

let e’ := postprocess e’ in

let := crun ltac:(finish timing ("Tactic call") "postprocess") in

let := crun ltac:(finish timing ("Tactic call") "norm reif") in

time "intros " intros ;

time "lazy beta iota" lazy beta iota;

if doing trans ltac:(fun ⇒ time "transitivity (Denote rv)"

transitivity (denote e’)).



E.6 Typeclass-based Reification

E.6.1 Typeclass-based reification (TypeClasses.v)

Require Import Reify.ReifyCommon.

Local Generalizable Variables x y rx ry f rf.

Section with var.

Context {var : Type}.
Class reify of (term : nat) (rterm : @expr var) := {}.
Global Instance reify NatMul ‘{reify of x rx, reify of y ry}
: reify of (x × y) (rx × ry).

Global Instance reify LetIn ‘{reify of x rx}
‘{∀ y ry, reify of y (Var ry) → reify of (f y) (rf ry)}

: reify of (dlet y := x in f y) (elet ry := rx in rf ry).

Global Instance reify S ‘{reify of x rx}
: reify of (S x) (NatS rx).

Global Instance reify O

: reify of O NatO.

End with var.

This must be commented out pre-8.6; it tells Coq to not try to infer reifica-
tions if it doesn’t fully know what term it’s reifying.

Hint Mode reify of - ! - : typeclass instances.

Hint Opaque Nat.mul Let In : typeclass instances.

Ltac reify var x :=

let c := constr:( : @reify of var x ) in

lazymatch type of c with

| reify of ?rx ⇒ rx

end.

Ltac Reify x :=

let c := constr:(fun var ⇒ ( : @reify of var x )) in

lazymatch type of c with

| ∀ var, reify of (@?rx var) ⇒ rx

end.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().



E.6.2 Typeclass-based reification (TypeClassesBodyFlatPHOAS.v)

We can also do typeclass-based reification where we return the reified term
in the body rather than in the type. However, this method does not work well
with binders, because there’s no easy way to eliminate the dependency on the
unreified binder when reifying to PHOAS.

Require Import Reify.ReifyCommon.

Local Generalizable Variables x y rx ry f rf.

Section with var.

Context {var : Type}.
Class reify of (term : nat) := rterm : @expr var.

Global Instance reify NatMul ‘{rx : reify of x, ry : reify of y}
: reify of (x × y) := (rx × ry)%expr.

Global Instance reify S ‘{rx : reify of x}
: reify of (S x) := NatS rx.

Global Instance reify O

: reify of O := NatO.

End with var.

This must be commented out pre-8.6; it tells Coq to not try to infer reifica-
tions if it doesn’t fully know what term it’s reifying.

Hint Mode reify of - ! : typeclass instances.

Hint Opaque Nat.mul : typeclass instances.

Ltac reify var x :=

constr:( : @reify of var x).

Ltac Reify x :=

constr:( : ∀ var, @reify of var x).

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().



E.6.3 Typeclass-based reification (TypeClassesBodyHOAS.v)

We can also do typeclass-based reification where we return the reified term
in the body rather than in the type. However, this method does not work well
with PHOAS binders, because there’s no easy way to eliminate the dependency
on the unreified binder when reifying to PHOAS.

Require Import Reify.ReifyCommon.

Local Generalizable Variables x y rx ry f rf.

Class reify of (term : nat) := rterm : @expr nat.

We use | 100 so this gets triggered late.

Global Instance reify Var {x} : reify of x | 100 := Var x.

Global Instance reify NatMul ‘{rx : reify of x, ry : reify of y}
: reify of (x × y) := (rx × ry)%expr.

Global Instance reify S ‘{rx : reify of x}
: reify of (S x) := NatS rx.

Global Instance reify O

: reify of O := NatO.

Global Instance reify LetIn ‘{rx : reify of x}
‘{rf : ∀ y, reify of (f y)}

: reify of (dlet y := x in f y) := (elet ry := rx in rf ry)%expr.

This must be commented out pre-8.6; it tells Coq to not try to infer reifica-
tions if it doesn’t fully know what term it’s reifying.

Hint Mode reify of ! : typeclass instances.

Hint Opaque Nat.mul Let In : typeclass instances.

Ltac Reify x :=

constr:( : @reify of x).

Ltac do Reify rhs := do Reify rhs of with denote Reify denote ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().



E.7 Ltac Reification

E.7.1 Ltac-based reification, using uncurrying to reucurse under binders
(LtacPrimUncurry.v)

Require Import Reify.ReifyCommon.

Require Import Reify.PrimPair.

Points of note:

– We use primitive projections for pairing to speed up typing.
– Because we track variables by pairing nat binders with fresh var nodes, we

use a phantom axiom of type nat to fill in the now-unused nat binder after
reification.

– We make sure to fill in all implicit arguments explicitly, to minimize the
number of evars generated; evars are one of the main bottlenecks.

– We make use of a trick from “[coqdev] beta1 and zeta1 reduction”13 to bind
names with a single-branch match statement without incurring extra β or ζ
reductions.

– We give the return clause on the match statement explicitly to work around
https://github.com/coq/coq/issues/6252#issuecomment-347041995 and
prevent extra backtracking, as well as preventing extra evar allocation.

Axiom phantom : nat.

Ltac reify var term :=

let reify rec term := reify var term in

lazymatch term with

| (fun args : ?T ⇒ O)

⇒ constr:(fun args : T ⇒ @NatO var)

| (fun args : ?T ⇒ S (@?x args))

⇒ let rx := reify rec x in

constr:(fun args : T ⇒ @NatS var (rx args))

| fun args : ?T ⇒ @?x args × @?y args

⇒ let rx := reify rec x in

let ry := reify rec y in

constr:(fun args : T ⇒ @NatMul var (rx args) (ry args))

| (fun args : ?T ⇒ dlet x := @?v args in ?f)

⇒ let rv := reify rec v in

let args2 := fresh in

let rf :=

reify rec

(fun args2 : (nat × var) × T

⇒ match @snd (nat × var) T args2,

@fst nat var (@fst (nat × var) T args2)

return nat

13 https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html

https://github.com/coq/coq/issues/6252#issuecomment-347041995
https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html


with

| args, x ⇒ f

end) in

constr:(fun args : T

⇒ @LetIn

var

(rv args)

(fun x : var

⇒ rf (@pair (nat × var) T (@pair nat var phantom x) args)))

| (fun args : ?T ⇒ @fst ?A ?B (@fst ?C ?D ?args’))

⇒ constr:(fun args : T ⇒ @Var var (@snd A B (@fst C D args’)))

| (fun args : ?T ⇒ )

⇒ error bad term term

| ?v
⇒ let rv := reify rec (fun dummy : unit ⇒ v) in

(eval lazy beta iota delta [fst snd] in (rv tt))

end.

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().



E.7.2 Recursing under binders with typeclasses, tracking variables
by pairing (LtacTCPrimPair.v)

Require Import Reify.ReifyCommon.

Require Import Reify.PrimPair.

Points of note:

– We use primitive projections for pairing to speed up typing.
– We make sure to fill in all implicit arguments explicitly, to minimize the

number of evars generated; evars are one of the main bottlenecks.
– We make use of a trick from “[coqdev] beta1 and zeta1 reduction”14 to bind

names with a single-branch match statement without incurring extra β or ζ
reductions.

– We give the return clause on the match statement explicitly to work around
https://github.com/coq/coq/issues/6252#issuecomment-347041995 and
prevent extra backtracking, as well as preventing extra evar allocation.

– In the Hint used to tie the recursive knot, we run intros before binding any
terms to avoid playing fast and loose with binders, because we will sometimes
be presented with goals with unintroduced binders. If we did not call intros
first, instead binding ?var and ?term in the hint pattern rule, they might
contain unbound identifiers, causing reification to fail when it tried to deal
with them.

Class reify cls (var : Type) (term : nat) := do reify : @expr var.

Ltac reify var term :=

let reify rec term := reify var term in

lazymatch term with

| fst (?term, ?v)

⇒ constr:(@Var var v)

|
⇒
lazymatch term with

| O ⇒ constr:(@NatO var)

| S ?x

⇒ let rx := reify rec x in

constr:(@NatS var rx)

| ?x × ?y

⇒ let rx := reify rec x in

let ry := reify rec y in

constr:(@NatMul var rx ry)

| (dlet x := ?v in ?f)

⇒ let rv := reify rec v in

let not x := fresh in

let not x2 := fresh in

14 https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html

https://github.com/coq/coq/issues/6252#issuecomment-347041995
https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html


let rf

:=

lazymatch

constr:( : ∀ (not x : nat) (not x2 : var),

@reify cls

var

match @fst nat var (@pair nat var not x not x2)

return nat

with

| x ⇒ f

end)

with

| fun ⇒ ?f ⇒ f

| ?f ⇒ error cant elim deps f

end in

constr:(@LetIn var rv rf)

| ?v
⇒ error bad term v

end

end.

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().

Global Hint Extern 0 (@reify cls )

⇒ (intros;

lazymatch goal with

| [ ` @reify cls ?var ?term ]

⇒ let res := reify var term in

exact res

end) : typeclass instances.



E.7.3 Recursing under binders with typeclasses, tracking variables
with Gallina contexts (LtacTCGallinaCtx.v)

Require Import Reify.ReifyCommon.

Points of note:

– We make sure to fill in all implicit arguments explicitly, to minimize the
number of evars generated; evars are one of the main bottlenecks.

– We do not use a typeclass for the variable case to avoid typeclass search
when it’s not needed.

– In the Hint used to tie the recursive knot, we run intros before binding any
terms to avoid playing fast and loose with binders, because we will sometimes
be presented with goals with unintroduced binders. If we did not call intros
first, instead binding ?var and ?term in the hint pattern rule, they might
contain unbound identifiers, causing reification to fail when it tried to deal
with them.

Class reify cls (var : Type) (term : nat) := do reify : @expr var.

Much like typeclass-based reification, we introduce a definition to track which
nat binders reify to which var binders, searching the context for such hypothe-
ses.

Definition var for {var : Type} (n : nat) (v : var) := False.

Ltac reify var term :=

let reify rec term := reify var term in

lazymatch goal with

| [ H : var for term ?v ` ]

⇒ constr:(@Var var v)

|
⇒
lazymatch term with

| O ⇒ constr:(@NatO var)

| S ?x

⇒ let rx := reify rec x in

constr:(@NatS var rx)

| ?x × ?y

⇒ let rx := reify rec x in

let ry := reify rec y in

constr:(@NatMul var rx ry)

| (dlet x := ?v in ?f)

⇒ let rv := reify rec v in

let not x := fresh in

let rf

:=

lazymatch

constr:( : ∀ (x : nat) (not x : var)



( : @var for var x not x),

@reify cls var f)

with

| fun v’ ⇒ @?f v’ ⇒ f

| ?f ⇒ error cant elim deps f

end in

constr:(@LetIn var rv rf)

| ?v
⇒ error bad term v

end

end.

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().

Global Hint Extern 0 (@reify cls )

⇒ (intros;

lazymatch goal with

| [ ` @reify cls ?var ?term ]

⇒ let res := reify var term in

exact res

end) : typeclass instances.



E.7.4 Recursing under binders with typeclasses, tracking variables
with explicit contexts (LtacTCExplicitCtx.v)

Require Import Reify.ReifyCommon.

Points of note:

– We make sure to fill in all implicit arguments explicitly, to minimize the
number of evars generated; evars are one of the main bottlenecks.

– In the Hint used to tie the recursive knot, we run intros before binding any
terms to avoid playing fast and loose with binders, because we will sometimes
be presented with goals with unintroduced binders. If we did not call intros
first, instead binding ?var and ?term in the hint pattern rule, they might
contain unbound identifiers, causing reification to fail when it tried to deal
with them.

Module var context.

Inductive var context {var : Type} :=

| nil
| cons (n : nat) (v : var) (xs : var context).

End var context.

Class reify helper cls (var : Type) (term : nat)

(ctx : @var context.var context var)

:= do reify helper : @expr var.

Ltac reify helper var term ctx :=

let reify rec term := reify helper var term ctx in

lazymatch ctx with

| context[var context.cons term ?v ]

⇒ constr:(@Var var v)

|
⇒
lazymatch term with

| O ⇒ constr:(@NatO var)

| S ?x

⇒ let rx := reify rec x in

constr:(@NatS var rx)

| ?x × ?y

⇒ let rx := reify rec x in

let ry := reify rec y in

constr:(@NatMul var rx ry)

| (dlet x := ?v in ?f)

⇒ let rv := reify rec v in

let not x := fresh in

let rf

:=

lazymatch



constr:( : ∀ (x : nat) (not x : var),

@reify helper cls

var f (@var context.cons var x not x ctx))

with

| fun ⇒ ?f ⇒ f

| ?f ⇒ error cant elim deps f

end in

constr:(@LetIn var rv rf)

| ?v
⇒ error bad term v

end

end.

Ltac reify var x :=

reify helper var x (@var context.nil var).

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().

Global Hint Extern 0 (@reify helper cls )

⇒ (intros;

lazymatch goal with

| [ ` @reify helper cls ?var ?term ?ctx ]

⇒ let res := reify helper var term ctx in

exact res

end) : typeclass instances.



E.7.5 Recursing under binders with tactics in terms, tracking vari-
ables by pairing (LtacTacInTermPrimPair.v)

Require Import Reify.ReifyCommon.

Require Import Reify.PrimPair.

Points of note:

– We use primitive projections for pairing to speed up typing.
– We make sure to fill in all implicit arguments explicitly, to minimize the

number of evars generated; evars are one of the main bottlenecks.
– We must bind open terms to fresh variable names to work around the fact

that tactics in terms do not correctly support open terms.15

– We make use of a trick from “[coqdev] beta1 and zeta1 reduction”16 to bind
names with a single-branch match statement without incurring extra β or ζ
reductions.

– We must unfold aliases bound with this match statement trick (substitu-
tion does not happen until after typechecking), and if we are not careful
with how we use fresh, Coq will stack overflow on cbv delta or otherwise
misbehave.17

– We give the return clause on the match statement explicitly. Without the
explicit return clause, Coq would backtrack on failure and attempt a second
way of elaborating the match branches, resulting in a blowup on failure that
is exponential in the recursive depth of the failure.18 If we used return ,
rather than specifying the type explicitly, we incur the cost of allocating an
additional evar, which is linear in the size of the context. (This performance
statistic courtesy of conversations with Pierre-Marie Pédrot on Coq’s gitter.)

– We explicitly clear variable bindings from the context before invoking the
recursive call, because the cost of evars is proportional to the size of the
context.

Ltac reify var term :=

let reify rec term := reify var term in

lazymatch term with

| fst (?term, ?v)

⇒ constr:(@Var var v)

|
⇒
lazymatch term with

| O ⇒ constr:(@NatO var)

| S ?x

15 https://github.com/coq/coq/issues/3248
16 https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html
17 See https://github.com/coq/coq/issues/5448, https://github.com/coq/coq/

issues/6315, https://github.com/coq/coq/issues/6559.
18 https://github.com/coq/coq/issues/6252#issuecomment-347041995

https://github.com/coq/coq/issues/3248
https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html
https://github.com/coq/coq/issues/5448
https://github.com/coq/coq/issues/6315
https://github.com/coq/coq/issues/6315
https://github.com/coq/coq/issues/6559
https://github.com/coq/coq/issues/6252#issuecomment-347041995


⇒ let rx := reify rec x in

constr:(@NatS var rx)

| ?x × ?y

⇒ let rx := reify rec x in

let ry := reify rec y in

constr:(@NatMul var rx ry)

| (dlet x := ?v in ?f)

⇒ let rv := reify rec v in

let not x := fresh in

let not x2 := fresh in

let not x3 := fresh in

let rf

:=

lazymatch

constr:(

fun (not x : nat) (not x2 : var)

⇒ match @fst nat var (@pair nat var not x not x2)

return @expr var

with

| x
⇒ match f return @expr var with

| not x3

⇒ ltac:(

let fx := (eval cbv delta [not x3 x] in not x3) in

clear x not x3;

let rf := reify rec fx in

exact rf)

end

end)

with

| fun ⇒ ?f ⇒ f

| ?f ⇒ error cant elim deps f

end in

constr:(@LetIn var rv rf)

| ?v
⇒ error bad term v

end

end.

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().



E.7.6 Recursing under binders with tactics in terms, tracking vari-
ables with Gallina contexts (LtacTacInTermGallinaCtx.v)

Require Import Reify.ReifyCommon.

Points of note:

– We make sure to fill in all implicit arguments explicitly, to minimize the
number of evars generated; evars are one of the main bottlenecks.

– We must bind open terms to fresh variable names to work around the
fact that tactics in terms do not correctly support open terms (see CO-
QBUG(https://github.com/coq/coq/issues/3248)).

– We make use of a trick from “[coqdev] beta1 and zeta1 reduction”19 to bind
names with a single-branch match statement without incurring extra β or ζ
reductions.

– We must unfold aliases bound with this match statement trick (substitu-
tion does not happen until after typechecking), and if we are not careful
with how we use fresh, Coq will stack overflow on cbv delta or otherwise
misbehave.20

– We give the return clause on the match statement explicitly. Without the
explicit return clause, Coq would backtrack on failure and attempt a second
way of elaborating the match branches, resulting in a blowup on failure that
is exponential in the recursive depth of the failure.21 If we used return ,
rather than specifying the type explicitly, we incur the cost of allocating an
additional evar, which is linear in the size of the context. (This performance
statistic courtesy of conversations with Pierre-Marie Pédrot on Coq’s gitter.)

– We explicitly clear variable bindings from the context before invoking the
recursive call, because the cost of evars is proportional to the size of the
context.

Much like typeclass-based reification, we introduce a definition to track which
nat binders reify to which var binders, searching the context for such hypothe-
ses.

Definition var for {var : Type} (n : nat) (v : var) := False.

Ltac reify var term :=

let reify rec term := reify var term in

lazymatch goal with

| [ H : var for term ?v ` ]

⇒ constr:(@Var var v)

|
⇒
lazymatch term with

19 https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html
20 See https://github.com/coq/coq/issues/5448, https://github.com/coq/coq/

issues/6315, https://github.com/coq/coq/issues/6559.
21 https://github.com/coq/coq/issues/6252#issuecomment-347041995

https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html
https://github.com/coq/coq/issues/5448
https://github.com/coq/coq/issues/6315
https://github.com/coq/coq/issues/6315
https://github.com/coq/coq/issues/6559
https://github.com/coq/coq/issues/6252#issuecomment-347041995


| O ⇒ constr:(@NatO var)

| S ?x

⇒ let rx := reify rec x in

constr:(@NatS var rx)

| ?x × ?y

⇒ let rx := reify rec x in

let ry := reify rec y in

constr:(@NatMul var rx ry)

| (dlet x := ?v in ?f)

⇒ let rv := reify rec v in

let not x := fresh in

let not x2 := fresh in

let rf

:=

lazymatch

constr:(

fun (x : nat) (not x : var) ( : @var for var x not x)

⇒ match f return @expr var with

| not x2

⇒ ltac:(let fx := (eval cbv delta [not x2] in not x2) in

clear not x2;

let rf := reify rec fx in

exact rf)

end)

with

| fun v’ ⇒ @?f v’ ⇒ f

| ?f ⇒ error cant elim deps f

end in

constr:(@LetIn var rv rf)

| ?v
⇒ error bad term v

end

end.

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().



E.7.7 Recursing under binders with tactics in terms, tracking vari-
ables with explicit contexts (LtacTacInTermExplicitCtx.v)

Require Import Reify.ReifyCommon.

Points of note:

– We make sure to fill in all implicit arguments explicitly, to minimize the
number of evars generated; evars are one of the main bottlenecks.

– We must bind open terms to fresh variable names to work around the fact
that tactics in terms do not correctly support open terms.22

– We make use of a trick from “[coqdev] beta1 and zeta1 reduction”23 to bind
names with a single-branch match statement without incurring extra β or ζ
reductions.

– We must unfold aliases bound with this match statement trick (substitu-
tion does not happen until after typechecking), and if we are not careful
with how we use fresh, Coq will stack overflow on cbv delta or otherwise
misbehave.24

– We give the return clause on the match statement explicitly. Without the
explicit return clause, Coq would backtrack on failure and attempt a second
way of elaborating the match branches, resulting in a blowup on failure that
is exponential in the recursive depth of the failure.25 If we used return ,
rather than specifying the type explicitly, we incur the cost of allocating an
additional evar, which is linear in the size of the context. (This performance
statistic courtesy of conversations with Pierre-Marie Pédrot on Coq’s gitter.)

– We explicitly clear variable bindings from the context before invoking the
recursive call, because the cost of evars is proportional to the size of the
context.

– Note that we match-bind the new context because x shows up in it.26

Module var context.

Inductive var context {var : Type} :=

| nil
| cons (n : nat) (v : var) (xs : var context).

End var context.

Ltac reify helper var term ctx :=

let reify rec term := reify helper var term ctx in

lazymatch ctx with

| context[var context.cons term ?v ]

⇒ constr:(@Var var v)

22 https://github.com/coq/coq/issues/3248
23 https://sympa.inria.fr/sympa/arc/coqdev/2016-01/msg00060.html
24 See https://github.com/coq/coq/issues/5448, https://github.com/coq/coq/

issues/6315, https://github.com/coq/coq/issues/6559.
25 https://github.com/coq/coq/issues/6252#issuecomment-347041995
26 https://github.com/coq/coq/issues/3248

https://github.com/coq/coq/issues/3248
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|
⇒
lazymatch term with

| O ⇒ constr:(@NatO var)

| S ?x

⇒ let rx := reify rec x in

constr:(@NatS var rx)

| ?x × ?y

⇒ let rx := reify rec x in

let ry := reify rec y in

constr:(@NatMul var rx ry)

| (dlet x := ?v in ?f)

⇒ let rv := reify rec v in

let not x := fresh in

let not x2 := fresh in

let not x3 := fresh in

let rf

:=

lazymatch

constr:(

fun (x : nat) (not x : var)

⇒ match f, @var context.cons var x not x ctx

return @expr var

with

| not x2, not x3

⇒ ltac:(let fx := (eval cbv delta [not x2] in not x2) in

let ctx := (eval cbv delta [not x3] in not x3) in

clear not x2 not x3;

let rf := reify helper var fx ctx in

exact rf)

end)

with

| fun ⇒ ?f ⇒ f

| ?f ⇒ error cant elim deps f

end in

constr:(@LetIn var rv rf)

| ?v
⇒ error bad term v

end

end.

Ltac reify var x :=

reify helper var x (@var context.nil var).

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().



Ltac Reify rhs := Reify rhs of Reify ().



E.8 Canonical Structures Reification

E.8.1 Canonical-structure based reification (CanonicalStructuresFlatHOAS.v)

This version reifies to @expr nat, and does not support let-binders.

Require Import Reify.CanonicalStructuresReifyCommon.

structure for packaging a nat expr and its reification

Structure tagged nat := tag { untag :> nat }.
Structure reified of :=

reify { nat of : tagged nat ; reified nat of :> @expr nat }.
tags to control the order of application Definition S tag := tag.

Definition O tag := S tag.

N.B. Canonical structures follow Import, so they must be imported for
reification to work.

Module Export Exports.

Canonical Structure mul tag n := O tag n.

Canonical Structure reify O

:= reify (O tag O) (@NatO nat).

Canonical Structure reify S x

:= reify (S tag (S (nat of x))) (@NatS nat x).

Canonical Structure reify mul x y

:= reify (mul tag (nat of x × nat of y))

(@NatMul nat x y).

End Exports.

We take advantage of not needing to lock Let In to avoid a rewrite by passing
false to the do lock letin argument of make pre Reify rhs

Ltac pre Reify rhs := make pre Reify rhs nat of untag false false.

N.B. we must thunk the constants so as to not focus the goal

Ltac do Reify rhs := make do Reify rhs ltac:(fun ⇒ denote)

ltac:(fun ⇒ reified nat of)

ltac:(fun x ⇒ x).

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := pre Reify rhs (); do Reify rhs (); post Reify rhs ().



E.8.2 Canonical-structure based reification (CanonicalStructuresFlatPHOAS.v)

This version reifies to Expr, and does not support let-binders.

Require Import Reify.CanonicalStructuresReifyCommon.

structure for packaging a nat expr and its reification

Structure tagged nat := tag { untag :> nat }.
Structure reified of :=

reify { nat of : tagged nat ; reified nat of :> Expr }.
tags to control the order of application

Definition S tag := tag.

Definition O tag := S tag.

N.B. Canonical structures follow Import, so they must be imported for
reification to work.

Module Export Exports.

Canonical Structure mul tag n := O tag n.

Canonical Structure reify O

:= reify (O tag 0) (@NatO).

Canonical Structure reify S x

:= reify (S tag (S (nat of x))) (fun var ⇒ @NatS var (reified nat of x var)).

Canonical Structure reify mul x y

:= reify (mul tag (nat of x × nat of y))

(fun var ⇒ @NatMul var (reified nat of x var) (reified nat of y var)).

End Exports.

We take advantage of not needing to lock Let In to avoid a rewrite by passing
false to the do lock letin argument of make pre Reify rhs

Ltac pre Reify rhs := make pre Reify rhs nat of untag false false.

N.B. we must thunk the constants so as to not focus the goal

Ltac do Reify rhs := make do Reify rhs ltac:(fun ⇒ Denote)

ltac:(fun ⇒ reified nat of)

ltac:(fun x ⇒ x).

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := pre Reify rhs (); do Reify rhs (); post Reify rhs ().



E.8.3 Canonical-structure based reification (CanonicalStructuresHOAS.v)

This version reifies to @expr nat, and supports let-binders.

Require Import Reify.CanonicalStructuresReifyCommon.

structure for packaging a nat expr and its reification

Structure tagged nat := tag { untag :> nat }.
Structure reified of :=

reify { nat of : tagged nat ; reified nat of :> @expr nat }.
tags to control the order of application

Definition var tag := tag.

Definition S tag := var tag.

Definition O tag := S tag.

Definition let in tag := O tag.

N.B. Canonical structures follow Import, so they must be imported for
reification to work.

Module Export Exports.

Canonical Structure mul tag n := let in tag n.

Canonical Structure reify var n

:= reify (var tag n) (@Var nat n).

Canonical Structure reify O

:= reify (O tag O) (@NatO nat).

Canonical Structure reify S x

:= reify (S tag (S (nat of x))) (@NatS nat x).

Canonical Structure reify mul x y

:= reify (mul tag (nat of x × nat of y))

(@NatMul nat x y).

Canonical Structure reify let in v f

:= reify (let in tag (nllet x := untag (nat of v) in nat of (f x)))

(elet x := reified nat of v in reified nat of (f x)).

End Exports.

Ltac pre Reify rhs := make pre Reify rhs nat of untag true false.

N.B. we must thunk the constants so as to not focus the goal

Ltac do Reify rhs := make do Reify rhs ltac:(fun ⇒ denote)

ltac:(fun ⇒ reified nat of)

ltac:(fun x ⇒ x).

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := pre Reify rhs (); do Reify rhs (); post Reify rhs ().



E.8.4 Canonical-structure based reification (CanonicalStructuresPHOAS.v)

This version reifies to Expr, and supports let-binders.

Require Import Coq.Lists.List.

Require Import Reify.CanonicalStructuresReifyCommon.

Local Notation context := (list nat).

Structure tagged nat (ctx : context) := tag { untag :> nat }.
Structure reified of (ctx : context) :=

reify { nat of : tagged nat ctx ;

reified nat of :> ∀ var, list var → (∀ T, T) → @expr var }.
Definition var tl tag := tag.

Definition var hd tag := var tl tag.

Definition S tag := var hd tag.

Definition O tag := S tag.

Definition mul tag := O tag.

N.B. Canonical structures follow Import, so they must be imported for
reification to work.

Module Export Exports.

Canonical Structure letin tag ctx n := mul tag ctx n.

Canonical Structure reify O ctx

:= reify (O tag ctx 0) (fun var ⇒ @NatO var).

Canonical Structure reify S ctx x

:= reify (@S tag ctx (S (@nat of ctx x)))

(fun var vs phantom ⇒ @NatS var (x var vs phantom)).

Canonical Structure reify mul ctx x y

:= reify (@mul tag ctx (@nat of ctx x × @nat of ctx y))

(fun var vs phantom ⇒ @NatMul var (x var vs phantom) (y var vs phantom)).

Canonical Structure reify var hd n ctx

:= reify (var hd tag (n :: ctx) n)

(fun var vs phantom ⇒ @Var var (List.hd (phantom ) vs)).

Canonical Structure reify var tl n ctx x

:= reify (var tl tag (n :: ctx) (@nat of ctx x))

(fun var vs phantom ⇒ reified nat of x (List.tl vs) phantom).

Canonical Structure reify letin ctx v f

:= reify (letin tag

ctx

(nllet x := @nat of ctx v in

@nat of (x :: ctx) (f x)))

(fun var vs phantom

⇒ elet x := reified nat of v vs phantom in

reified nat of (f (phantom )) (x :: vs) phantom)%expr.

End Exports.



Definition ReifiedNatOf (e : reified of nil) : (∀ T, T) → Expr

:= fun phantom var ⇒ reified nat of e nil phantom.

Ltac pre Reify rhs := make pre Reify rhs (@nat of nil) (@untag nil) true false.

N.B. we must thunk the constants so as to not focus the goal

Ltac do Reify rhs :=

make do Reify rhs

ltac:(fun ⇒ Denote) ltac:(fun ⇒ ReifiedNatOf)

ltac:(fun e ⇒
lazymatch e with

| fun ⇒ ?e ⇒ e

| ⇒ ReifyCommon.error cant elim deps e

end).

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := pre Reify rhs (); do Reify rhs (); post Reify rhs ().



E.9 Reification by Mtac2 (Mtac2.v)

Require Import Coq.Strings.String Coq.ZArith.ZArith.

Require Import Reify.ReifyCommon.

Require Import Mtac2.Mtac2.

Import M.notations.

Points of note:

– We use =n> to avoid unnecessary normalization / reduction
– We handle fresh binder names manually rather than invoking M.fresh binder name,

which produces a string with length linear in the number of times it has been
called so far, rather than logarithmic.

Module var context.

Inductive var context {var : Type} :=

| nil
| cons (n : nat) (v : var) (xs : var context).

End var context.

Fixpoint string of pos bin’ (p : positive) (rest : string) : string

:= match p with

| xI x ⇒ string of pos bin’ x (String "1" rest)

| xO x ⇒ string of pos bin’ x (String "0" rest)

| xH ⇒ String "0" (String "b" (String "1" rest))

end.

Definition string of pos bin (p : positive) : string

:= string of pos bin’ p EmptyString.

We’d like to just use M.fresh binder name f, but this incurs significant over-
head (about 2X slower at 27 invocations) because it has strings linear in the
number of repeated invocations, rather than logarithmic, so instead we handle
binder names manually.

norm string is useful for printing / debugging, but incurs a bit of overhead.

Definition norm string (v : string) : M string :=

(mfix1 norm string (s : string) : M string :=

(mmatch s with

| EmptyString ⇒ M.ret EmptyString

| [? a b] (String a b) ⇒ b’ ← norm string b; M.ret (String a b’)

end)) v.

Definition name binder {A B} (f : A → B) (var idx : positive) : M string

:= M.ret (String "x" (string of pos bin var idx)).

Definition find in ctx {var : Type} (term : nat)

(ctx : @var context.var context var)

: M (option var)

:= (mfix1 find in ctx (ctx : @var context.var context var) : M (option var) :=

(mmatch ctx with

| [? v xs] (var context.cons term v xs)



=n> M.ret (Some v)

| [? x v xs] (var context.cons x v xs)

=n> find in ctx xs

| ⇒ M.ret None

end)) ctx.

Definition reify helper {var : Type} (term : nat)

(ctx : @var context.var context var)

: M (@expr var)

:= ((mfix3 reify helper (term : nat) (var idx : positive)

(ctx : @var context.var context var)

: M (@expr var) :=

lvar ← find in ctx term ctx;

match lvar with

| Some v ⇒ M.ret (@Var var v)

| None
⇒
(mmatch term with

| O
=n> M.ret (@NatO var)

| [? x] (S x)

=n> (rx ← reify helper x var idx ctx;

M.ret (@NatS var rx))

| [? x y] (x × y)

=n> (rx ← reify helper x var idx ctx;

ry ← reify helper y var idx ctx;

M.ret (@NatMul var rx ry))

| [? v f] (@Let In nat nat v f)

=n> (rv ← reify helper v var idx ctx;

x ← name binder f var idx;

let vx := String.append "var " x in

rf ← (M.nu

x mNone

(fun x : nat

⇒ M.nu

vx mNone

(fun vx : var

⇒ let fx := reduce (RedWhd [rl:RedBeta]) (f x) in

rf ← (reify helper

fx

(Pos.succ var idx)

(var context.cons x vx ctx));

M.abs fun vx rf)));

M.ret (@LetIn var rv rf))

end)

end) term 1%positive ctx).



Definition reify (var : Type) (term : nat) : M (@expr var)

:= reify helper term var context.nil.

Definition Reify (term : nat) : M Expr

:= \nu var:Type, r ← reify var term; M.abs fun var r.

Ltac Reify’ x := constr:(ltac:(mrun (@Reify x))).

Ltac Reify x := Reify’ x.

Ltac do Reify rhs := do Reify rhs of ltac:(Reify) ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of ltac:(Reify) ().



E.10 Ltac2

E.10.1 Common utility definitions for Ltac2 (Ltac2Common.v)

Require Ltac2.Ltac2.

Import Ltac2.Init.

Import Ltac2.Notations.

Module List.

Ltac2 rec map f ls :=

match ls with

| [] ⇒ []

| l :: ls ⇒ f l :: map f ls

end.

End List.

Module Ident.

Ltac2 rec find error id xs :=

match xs with

| [] ⇒ None

| x :: xs

⇒ let ((id’, val)) := x in

match Ident.equal id id’ with

| true ⇒ Some val

| false ⇒ find error id xs

end

end.

Ltac2 find id xs :=

match find error id xs with

| None ⇒ Control.zero Not found

| Some val ⇒ val

end.

End Ident.

Module Array.

Ltac2 rec to list aux (ls : ’a array) (start : int) :=

match Int.equal (Int.compare start (Array.length ls)) -1 with

| true ⇒ Array.get ls start :: to list aux ls (Int.mul start 1)

| false ⇒ []

end.

Ltac2 to list (ls : ’a array) := to list aux ls 0.

End Array.

Module Constr.

Ltac2 rec strip casts term :=

match Constr.Unsafe.kind term with

| Constr.Unsafe.Cast term’ ⇒ strip casts term’

| ⇒ term

end.

Module Unsafe.



Ltac2 beta1 (c : constr) :=

match Constr.Unsafe.kind c with

| Constr.Unsafe.App f args

⇒ match Constr.Unsafe.kind f with

| Constr.Unsafe.Lambda id ty f

⇒ Constr.Unsafe.substnl (Array.to list args) 0 f

| ⇒ c

end

| ⇒ c

end.

Ltac2 zeta1 (c : constr) :=

match Constr.Unsafe.kind c with

| Constr.Unsafe.LetIn id v ty f

⇒ Constr.Unsafe.substnl [v] 0 f

| ⇒ c

end.

End Unsafe.

End Constr.

Module Ltac1.

Class Ltac1Result {T} (v : T) := {}.
Class Ltac1Results {T} (v : list T) := {}.
Class Ltac2Result {T} (v : T) := {}.
Ltac save ltac1 result v :=

match goal with

| ⇒ assert (Ltac1Result v) by constructor

end.

Ltac clear ltac1 results :=

match goal with

| ⇒ repeat match goal with

| [ H : Ltac1Result ` ] ⇒ clear H

end

end.

Ltac2 get ltac1 result () :=

(lazy match! goal with

| [ id : Ltac1Result ?v ` ]

⇒ Std.clear [id]; v

end).

Ltac save ltac1 results v :=

match goal with

| ⇒ assert (Ltac1Result v) by constructor

end.

Ltac2 save ltac2 result v :=

Std.cut ’(Ltac2Result $v);

Control.dispatch

[(fun ()



⇒ Std.intros false [Std.IntroNaming (Std.IntroFresh @res)])

;

(fun () ⇒ Notations.constructor)].

Ltac get ltac2 result :=

lazymatch goal with

| [ res : Ltac2Result ?v ` ]

⇒ let := match goal with

| ⇒ clear res

end in

v

end.

Ltac2 from ltac1 (save args : constr) (tac : unit → unit) :=

let beta flag :=

{
Std.rBeta := true; Std.rMatch := false;

Std.rFix := false; Std.rCofix := false;

Std.rZeta := false; Std.rDelta := false; Std.rConst := [];

} in

let c := ’(ltac2:(save ltac2 result save args;

tac ();

let v := get ltac1 result () in

Control.refine (fun () ⇒ v))) in

Constr.Unsafe.zeta1 (Constr.Unsafe.zeta1 (Std.eval cbv beta flag c)).

End Ltac1.



E.10.2 Reification by Ltac2, copying Ltac1 (Ltac2.v)

This file contains the Ltac2 version of Ltac1 reification, from LtacTacInTermExplicitCtx.v.

Require Import Reify.ReifyCommon.

Require Import Reify.Ltac2Common.

Import Ltac2.Init.

Import Ltac2.Notations.

Ltac2 rec reify helper

(var : constr)

(term : constr)

(ctx : (ident × ident) list)

:=

let reify rec term := reify helper var term ctx in

Control.plus

(fun ()

⇒ match Constr.Unsafe.kind (Constr.strip casts term) with

| Constr.Unsafe.Var x

⇒ let v := Ident.find x ctx in

let v := Constr.Unsafe.make (Constr.Unsafe.Var v) in

constr:(@Var $var $v)

| ⇒ Control.zero Not found

end)

(fun

⇒ (lazy match! term with

| 0 ⇒ constr:(@NatO $var)

| S ?x

⇒ let rx := reify rec x in

constr:(@NatS $var $rx)

| ?x × ?y

⇒ let rx := reify rec x in

let ry := reify rec y in

constr:(@NatMul $var $rx $ry)

| (dlet x := ?v in @?f x)

⇒ let rv := reify rec v in

We assume the invariant that all bound variables show up as
Rel nodes rather than Var nodes

match Constr.Unsafe.kind f with

| Constr.Unsafe.Lambda id t c

⇒ let c set := Fresh.Free.of ids

(List.map (fun (id, , ) ⇒ id)

(Control.hyps ())) in

let c set := Fresh.Free.union

c set



(Fresh.Free.of constr c) in

let x base := match id with

| Some id ⇒ id

| None ⇒ @x

end in

let x := Fresh.fresh c set x base in

let c set := Fresh.Free.union

c set

(Fresh.Free.of ids [x]) in

let not x := Fresh.fresh c set x base in

let ctx := (x, not x) :: ctx in

let c := Constr.Unsafe.substnl

[Constr.Unsafe.make (Constr.Unsafe.Var x)]

0

c in

let ret :=

Constr.in context

x t

(fun ()

⇒ let rf :=

Constr.in context

not x var

(fun ()

⇒ let rf := reify helper var c ctx in

Control.refine (fun () ⇒ rf)) in

Control.refine (fun () ⇒ rf)) in

(lazy match! ret with

| fun ⇒ ?rf

⇒ constr:(@LetIn $var $rv $rf)

| ?f
⇒ let msg :=

Message.concat

(Message.of string

"Failed to eliminate functional dependencies in ")

(Message.of constr f) in

Message.print msg;

Control.zero

(Tactic failure (Some msg))

end)

| ⇒ let msg :=

Message.concat

(Message.of string "Bad let-in function: ")

(Message.of constr f) in

Message.print msg;

Control.zero (Tactic failure (Some msg))



end

|
⇒ let msg := Message.concat

(Message.of string "Unrecognized term: ")

(Message.of constr term) in

Message.print msg;

Control.zero (Tactic failure (Some msg))

end)).

Ltac2 reify (var : constr) (term : constr) := reify helper var term [].

Ltac reify var term :=

let := Ltac1.save ltac1 result (var, term) in

let ret :=

constr:(ltac2:(let args := Ltac1.get ltac1 result () in

(lazy match! args with

| (?var, ?term)

⇒ let rv := reify var term in

Control.refine (fun () ⇒ rv)

| ⇒ Control.throw Not found

end))) in

let := Ltac1.clear ltac1 results () in

ret.

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs.

Ltac Reify rhs := Reify rhs of Reify ().



E.10.3 Reification by Ltac2, using unsafe low-level primitives (Ltac2LowLevel.v)

Require Import Reify.ReifyCommon.

Require Import Reify.Ltac2Common.

Import Ltac2.Init.

Import Ltac2.Notations.

Ltac2 if doing trans (tac : unit → ’a) (default : ’a) :=

let do trans := ’(do transitivity) in

(lazy match! do trans with

| true ⇒ tac ()

| false ⇒ default

end).

This function is parameterized over the constants which we are reifying (gO,
gS, gNatMul, gLetIn) and over Ltac2 functions that build applications of the rei-
fied versions of these functions to reified arguments. Ltac2 rec unsafe reify helper

(mkVar : constr → ’a)

(mkO : ’a)

(mkS : ’a → ’a)

(mkNatMul : ’a → ’a → ’a)

(mkLetIn : ’a → ident option → constr → ’a → ’a)

(gO : constr)

(gS : constr)

(gNatMul : constr)

(gLetIn : constr)

(unrecognized : constr → ’a)

(term : constr)

:=

let reify rec term :=

unsafe reify helper

mkVar mkO mkS mkNatMul mkLetIn gO gS gNatMul gLetIn unrecognized term in

let kterm := Constr.Unsafe.kind term in

match Constr.equal term gO with

| true
⇒ mkO

| false
⇒
match kterm with

| Constr.Unsafe.Rel ⇒ mkVar term

| Constr.Unsafe.Var ⇒ mkVar term

| Constr.Unsafe.Cast term ⇒ reify rec term

| Constr.Unsafe.App f args

⇒
match Constr.equal f gS with

| true



⇒ let x := Array.get args 0 in

let rx := reify rec x in

mkS rx

| false
⇒
match Constr.equal f gNatMul with

| true
⇒ let x := Array.get args 0 in

let y := Array.get args 1 in

let rx := reify rec x in

let ry := reify rec y in

mkNatMul rx ry

| false
⇒
match Constr.equal f gLetIn with

| true
⇒ let x := Array.get args 2 in

let f := Array.get args 3 in

match Constr.Unsafe.kind f with

| Constr.Unsafe.Lambda idx ty body

⇒ let rx := reify rec x in

let rf := reify rec body in

mkLetIn rx idx ty rf

| ⇒ unrecognized term

end

| false
⇒ unrecognized term

end

end

end

|
⇒ unrecognized term

end

end.

Ltac2 unsafe reify (var : constr) (term : constr) :=

let cVar := ’@Var in

let cO := ’@NatO in

let cS := ’@NatS in

let cNatMul := ’@NatMul in

let cLetIn := ’@LetIn in

let gO := ’O in

let gS := ’S in

let gNatMul := ’@Nat.mul in

let gLetIn := ’@Let In in

let mk0VarArgs :=



let args := Array.make 1 var in

args in

let mk1VarArgs (x : constr) :=

let args := Array.make 2 var in

let () := Array.set args 1 x in

args in

let mk2VarArgs (x : constr) (y : constr) :=

let args := Array.make 3 var in

let () := Array.set args 1 x in

let () := Array.set args 2 y in

args in

let mkApp0 (f : constr) :=

Constr.Unsafe.make (Constr.Unsafe.App f mk0VarArgs) in

let mkApp1 (f : constr) (x : constr) :=

Constr.Unsafe.make (Constr.Unsafe.App f (mk1VarArgs x)) in

let mkApp2 (f : constr) (x : constr) (y : constr) :=

Constr.Unsafe.make (Constr.Unsafe.App f (mk2VarArgs x y)) in

let mkVar (v : constr) := mkApp1 cVar v in

let mkO := mkApp0 cO in

let mkS (v : constr) := mkApp1 cS v in

let mkNatMul (x : constr) (y : constr) := mkApp2 cNatMul x y in

let mkcLetIn (x : constr) (y : constr) := mkApp2 cLetIn x y in

let mkLetIn (x : constr) (idx : ident option) (ty : constr) (fbody : constr)

:= mkcLetIn x (Constr.Unsafe.make (Constr.Unsafe.Lambda idx var fbody)) in

let ret := unsafe reify helper

mkVar mkO mkS mkNatMul mkLetIn gO gS gNatMul gLetIn

(fun term ⇒ term)

term in

ret.

Ltac2 check result (ret : constr) :=

match Constr.Unsafe.check ret with

| Val rterm ⇒ rterm

| Err exn ⇒ Control.zero exn

end.

Ltac2 reify (var : constr) (term : constr) :=

check result (unsafe reify var term).

Ltac2 unsafe Reify (term : constr) :=

let fresh set := Fresh.Free.of constr term in

let idvar := Fresh.fresh fresh set @var in

let var := Constr.Unsafe.make (Constr.Unsafe.Var idvar) in

let rterm := unsafe reify var term in

let rterm := Constr.Unsafe.closenl [idvar] 1 rterm in

Constr.Unsafe.make (Constr.Unsafe.Lambda (Some idvar) ’Type rterm).

Ltac2 do Reify (term : constr) :=

check result (unsafe Reify term).



Ltac2 unsafe mkApp1 (f : constr) (x : constr) :=

let args := Array.make 1 x in

Constr.Unsafe.make (Constr.Unsafe.App f args).

Ltac2 mkApp1 (f : constr) (x : constr) :=

check result (unsafe mkApp1 f x).

Ltac2 all flags :=

{
Std.rBeta := true; Std.rMatch := true; Std.rFix := true; Std.rCofix := true;

Std.rZeta := true; Std.rDelta := true; Std.rConst := [];

}.
Ltac2 betaiota flags :=

{
Std.rBeta := true; Std.rMatch := true; Std.rFix := true; Std.rCofix := true;

Std.rZeta := false; Std.rDelta := false; Std.rConst := [];

}.
Ltac2 in goal :=

{ Std.on hyps := None; Std.on concl := Std.AllOccurrences }.
Ltac2 do Reify rhs fast () :=

let g := Control.goal () in

match Constr.Unsafe.kind g with

| Constr.Unsafe.App f args

⇒ let v := Array.get args 2 in

let rv := Control.time (Some "actual reif")

(fun ⇒ unsafe Reify v) in

let rv := Control.time (Some "eval lazy")

(fun ⇒ Std.eval lazy all flags rv) in

Control.time (Some "lazy beta iota")

(fun ⇒ Std.lazy betaiota flags in goal);

if doing trans

(fun ⇒ Control.time

(Some "transitivity (Denote rv)")

(fun ⇒ Std.transitivity (unsafe mkApp1 ’Denote rv))) ()

|
⇒ Control.zero

(Tactic failure

(Some (Message.concat

(Message.of string

"Invalid goal in Ltac2Unsafe.do Reify rhs fast: ")

(Message.of constr g))))

end.

Ltac2 do Reify rhs () :=

(lazy match! goal with

| [ ` = ?v ]

⇒ let rv := do Reify v in

let rv := Std.eval lazy all flags rv in



if doing trans (fun ⇒ Std.transitivity (mkApp1 ’Denote rv)) ()

| [ ` ?g ] ⇒ Control.zero

(Tactic failure

(Some (Message.concat

(Message.of string

"Invalid goal in Ltac2Unsafe.do Reify rhs: ")

(Message.of constr g))))

end).

Ltac reify var term :=

let := Ltac1.save ltac1 result (var, term) in

let ret :=

constr:(ltac2:(let args := Ltac1.get ltac1 result () in

(lazy match! args with

| (?var, ?term)

⇒ let rv := reify var term in

Control.refine (fun () ⇒ rv)

| ⇒ Control.throw Not found

end))) in

let := Ltac1.clear ltac1 results () in

ret.

Ltac Reify x := Reify of reify x.

Ltac do Reify rhs := ltac2:(do Reify rhs fast ()).

Ltac post Reify rhs := ReifyCommon.post Reify rhs.

Ltac Reify rhs := Reify rhs of Reify ().



E.11 OCaml

E.11.1 OCaml reification (reify_plugin.ml4)

(*i camlp4deps: "parsing/grammar.cma" i*)

(*i camlp4use: "pa_extend.cmp" i*)

open Names

let rec unsafe_reify_helper

(mkVar : Constr.t -> 'a)

(mkO : 'a)

(mkS : 'a -> 'a)

(mkOp : 'a -> 'a -> 'a)

(mkLetIn : 'a -> Name.t -> Constr.t -> 'a -> 'a)

(gO : Constr.t)

(gS : Constr.t)

(gOp : Constr.t)

(gLetIn : Constr.t)

(unrecognized : Constr.t -> 'a)

(term : Constr.t)

=

let reify_rec term =

unsafe_reify_helper

mkVar mkO mkS mkOp mkLetIn gO gS gOp gLetIn unrecognized term in

let kterm = Constr.kind term in

if Constr.equal term gO

then mkO

else begin match kterm with

| Term.Rel _ -> mkVar term

| Term.Var _ -> mkVar term

| Term.Cast (term, _, _) -> reify_rec term

| Term.App (f, args)

->

if Constr.equal f gS

then let x = Array.get args 0 in

let rx = reify_rec x in

mkS rx

else if Constr.equal f gOp

then let x = Array.get args 0 in

let y = Array.get args 1 in

let rx = reify_rec x in

let ry = reify_rec y in

mkOp rx ry

else if Constr.equal f gLetIn

then let x = Array.get args 2 (* assume the first two args are type params *) in



let f = Array.get args 3 in

begin match Constr.kind f with

| Term.Lambda (idx, ty, body)

-> let rx = reify_rec x in

let rf = reify_rec body in

mkLetIn rx idx ty rf

| _ -> unrecognized term

end

else unrecognized term

| _

-> unrecognized term

end

let unsafe_reify

(cVar : Constr.t)

(cO : Constr.t)

(cS : Constr.t)

(cOp : Constr.t)

(cLetIn : Constr.t)

(gO : Constr.t)

(gS : Constr.t)

(gOp : Constr.t)

(gLetIn : Constr.t)

(var : Constr.t)

(term : Constr.t) : Constr.t =

let mkApp0 (f : Constr.t) =

Constr.mkApp (f, [| var |]) in

let mkApp1 (f : Constr.t) (x : Constr.t) =

Constr.mkApp (f, [| var ; x |]) in

let mkApp2 (f : Constr.t) (x : Constr.t) (y : Constr.t) =

Constr.mkApp (f, [| var ; x ; y |]) in

let mkVar (v : Constr.t) = mkApp1 cVar v in

let mkO = mkApp0 cO in

let mkS (v : Constr.t) = mkApp1 cS v in

let mkOp (x : Constr.t) (y : Constr.t) = mkApp2 cOp x y in

let mkcLetIn (x : Constr.t) (y : Constr.t) = mkApp2 cLetIn x y in

let mkLetIn (x : Constr.t) (idx : Name.t) (ty : Constr.t) (fbody : Constr.t)

= mkcLetIn x (Constr.mkLambda (idx, var, fbody)) in

let ret = unsafe_reify_helper

mkVar mkO mkS mkOp mkLetIn gO gS gOp gLetIn

(fun term -> term)

term in

ret

let unsafe_Reify



(cVar : Constr.t)

(cO : Constr.t)

(cS : Constr.t)

(cOp : Constr.t)

(cLetIn : Constr.t)

(gO : Constr.t)

(gS : Constr.t)

(gOp : Constr.t)

(gLetIn : Constr.t)

(idvar : Id.t)

(varty : Constr.t)

(term : Constr.t) : Constr.t =

let fresh_set = let rec fold accu c = match Constr.kind c with

| Constr.Var id -> Id.Set.add id accu

| _ -> Constr.fold fold accu c

in

fold Id.Set.empty term in

let idvar = Namegen.next_ident_away_from

idvar

(fun id -> Id.Set.mem id fresh_set) in

let var = Constr.mkVar idvar in

let rterm = unsafe_reify cVar cO cS cOp cLetIn gO gS gOp gLetIn var term in

let rterm = Vars.substn_vars 1 [idvar] rterm in

Constr.mkLambda (Name.Name idvar, varty, rterm)

DECLARE PLUGIN "reify"

open Ltac_plugin

open Stdarg

open Tacarg

open Names

(** Stolen from plugins/setoid_ring/newring.ml *)

open Tacexpr

open Misctypes

open Tacinterp

(* Calling a locally bound tactic *)

let ltac_lcall tac args =

TacArg(Loc.tag @@ TacCall (Loc.tag (ArgVar(Loc.tag @@ Id.of_string tac),args)))

let ltac_apply (f : Value.t) (args: Tacinterp.Value.t list) =

let fold arg (i, vars, lfun) =

let id = Id.of_string ("x" ^ string_of_int i) in

let x = Reference (ArgVar (Loc.tag id)) in

(succ i, x :: vars, Id.Map.add id arg lfun)



in

let (_, args, lfun) = List.fold_right fold args (0, [], Id.Map.empty) in

let lfun = Id.Map.add (Id.of_string "F") f lfun in

let ist = { (Tacinterp.default_ist ()) with Tacinterp.lfun = lfun; } in

Tacinterp.eval_tactic_ist ist (ltac_lcall "F" args)

let to_ltac_val c = Tacinterp.Value.of_constr c

open Pp

TACTIC EXTEND quote_term_cps

| [ "quote_term_cps" "[" ident(idvar) "," constr(varty) "]"

constr(cVar) constr(cO) constr(cS) constr(cOp) constr(cLetIn)

constr(gO) constr(gS) constr(gOp) constr(gLetIn)

constr(term) tactic(tac) ] ->

[ (** quote the given term, pass the result to t **)

Proofview.Goal.enter begin fun gl ->

let _ (*env*) = Proofview.Goal.env gl in

let c = unsafe_Reify

(EConstr.Unsafe.to_constr cVar)

(EConstr.Unsafe.to_constr cO)

(EConstr.Unsafe.to_constr cS)

(EConstr.Unsafe.to_constr cOp)

(EConstr.Unsafe.to_constr cLetIn)

(EConstr.Unsafe.to_constr gO)

(EConstr.Unsafe.to_constr gS)

(EConstr.Unsafe.to_constr gOp)

(EConstr.Unsafe.to_constr gLetIn)

idvar

(EConstr.Unsafe.to_constr varty)

(EConstr.Unsafe.to_constr term) in

ltac_apply tac (List.map to_ltac_val [EConstr.of_constr c])

end ]

END;;



E.11.2 Reification in OCaml (OCamlReify.v)

Declare ML Module "reify".

E.11.3 Reification in OCaml (OCaml.v)

Require Import Reify.ReifyCommon.

Require Import Reify.OCamlReify.

See OCamlReify.v and reify plugin.ml4 for the implementation code.

Ltac Reify cps term tac :=

quote term cps

[var, Type] (@Var) (@NatO) (@NatS) (@NatMul) (@LetIn) O S Nat.mul (@Let In)

term tac.

Ltac reify cps var term tac :=

Reify cps term ltac:(fun rt ⇒ tac (rt var)).

Ltac do Reify rhs := do Reify rhs of cps Reify cps ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of cps Reify cps ().



E.12 Reification by template-coq (TemplateCoq.v)

Require Coq.Strings.String.

Require Import Reify.ReifyCommon.

Require Import Template.Ast.

Require Import Template.Template.

Module Compile.

Import Coq.Strings.String.

Scheme Equality for string.

Section with var.

Context {var : Type}.
Axiom bad : var.

Fixpoint compile (e : term) (ctx : list var) : @expr var

:= match e with

| tRel idx ⇒ Var (List.nth default bad ctx idx)

| tCast e

⇒ compile e ctx

| tConstruct (mkInd Bp 0) 0

⇒ @NatO var

| tApp f4 ( :: :: x :: tLambda f :: nil)

⇒ @LetIn var (compile x ctx)

(fun x’ ⇒ compile f (x’ :: ctx))

| tApp f2 (x :: y :: nil)

⇒ @NatMul var (compile x ctx) (compile y ctx)

| tApp f1 (x :: nil)

⇒ @NatS var (compile x ctx)

|
⇒ Var bad

end%list.

End with var.

Definition Compile (e : term) : Expr := fun var ⇒ @compile var e nil.

End Compile.

Ltac reify cps var term tac :=

quote term term (fun v ⇒ tac (@Compile.compile var v)).

Ltac Reify cps term tac :=

quote term term (fun v ⇒ tac (Compile.Compile v)).

Ltac do Reify rhs := do Reify rhs of cps Reify cps ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of cps Reify cps ().



E.13 Reification by the quote plugin (QuoteFlat.v)

Require Import Coq.quote.Quote.

Require Import Reify.ReifyCommon.

Inductive qexpr : Set :=

| qNatO : qexpr

| qNatS : qexpr → qexpr

| qNatMul (x y : qexpr)

| qConst (k : nat).

Module Export Exports.

Fixpoint qdenote (e : qexpr) : nat

:= match e with

| qNatO ⇒ O

| qNatS x ⇒ S (qdenote x)

| qNatMul x y ⇒ Nat.mul (qdenote x) (qdenote y)

| qConst k ⇒ k

end.

End Exports.

Fixpoint compile nat {var} (n : nat) : @expr var

:= match n with

| O ⇒ NatO

| S x ⇒ NatS (compile nat x)

end.

Fixpoint compile {var} (e : qexpr) : @expr var

:= match e with

| qNatO ⇒ NatO

| qNatS x ⇒ NatS (compile x)

| qNatMul x y ⇒ NatMul (compile x) (compile y)

| qConst k ⇒ compile nat k

end.

Definition Compile (e : qexpr) : Expr := fun var ⇒ compile e.

Ltac reify cps var term tac :=

quote qdenote [S O] in term using

(fun v ⇒ lazymatch v with qdenote ?v ⇒ tac (@compile var v) end).

Ltac Reify cps term tac :=

quote qdenote [S O] in term using

(fun v ⇒ lazymatch v with qdenote ?v ⇒ tac (@Compile v) end).

Ltac do Reify rhs := do Reify rhs of cps Reify cps ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of cps Reify cps ().



E.14 Reification by parametricity (Parametricity.v)

Require Import Reify.ReifyCommon.

Ltac Reify x :=

let rx := lazymatch (eval pattern nat, O, S, Nat.mul, (@Let In nat nat) in x) with

| ?rx ⇒ rx end in

let rx := lazymatch rx with fun N : Set ⇒ ?rx ⇒ constr:(fun N : Type ⇒ rx) end in

let := type of rx in

constr:(fun var : Type ⇒ rx (@expr var) (@NatO var) (@NatS var) (@NatMul var)

(fun x’ f’ ⇒ @LetIn var x’ (fun v ⇒ f’ (@Var var v)))).

Ltac reify var x :=

let rx := Reify x in

constr:(rx var).

Ltac do Reify rhs := do Reify rhs of Reify ().

Ltac post Reify rhs := ReifyCommon.post Reify rhs ().

Ltac Reify rhs := Reify rhs of Reify ().



E.15 Reification by parametricity, with a routine for handling
constants recursively (ParametricityWithConst.v)

Require Import Reify.ReifyCommon.

This file contains the extra code to handle constants recursively. We advise
against using this code, and provide it as a proof of concept only.

expects:

– var - the PHOAS var type
– find const term found tac not found tac, a tactical which looks for con-

stants in term, invokes found tac with the constant if it finds one, and
invokes not found tac () if it finds none.

– plug const var term const, a tactic which takes a term and a constant,
and plugs in the reified version of const

Ltac reify with consts var find const plug const term :=

find const

term

ltac:(fun c

⇒ let rx := lazymatch (eval pattern c in term) with

| ?term ⇒ term

end in

let rx := reify with consts find const plug const term in

plug const var rx c)

ltac:(fun

⇒ let rx :=

lazymatch

(eval pattern nat, Nat.mul, (@Let In nat (fun ⇒ nat)), O, S

in term)

with

| ?rx ⇒ rx

end in

let rx := lazymatch rx with

| fun N : Set ⇒ ?rx ⇒ constr:(fun N : Type ⇒ rx)

end in

let := type of rx in

constr:(rx (@expr var) (@NatMul var)

(fun x’ f’

⇒ @LetIn var x’

(fun v ⇒ f’ (@Var var v)))

(@NatO var) (@NatS var))).

Ltac Reify with consts find const plug const term :=

constr:(fun var : Type

⇒ ltac:(let rx := reify with consts var find const plug const term in

exact rx)).



E.16 Utility functions for PHOAS (PHOASUtil.v)

Require Import Reify.Common.

Require Import Reify.PHOAS.

Module PHOAS.

Export Reify.PHOAS.

Fixpoint beq helper (e1 e2 : @expr nat) (base : nat) : bool

:= match e1, e2 with

| LetIn v1 f1, LetIn v2 f2

⇒ if beq helper v1 v2 base

then beq helper (f1 base) (f2 base) (S base)

else false

| Var v1, Var v2 ⇒ Nat.eqb v1 v2

| NatO, NatO ⇒ true

| NatS x, NatS y ⇒ beq helper x y base

| NatMul x1 y1, NatMul x2 y2

⇒ andb (beq helper x1 x2 base) (beq helper y1 y2 base)

| LetIn ,

| Var ,

| NatO,
| NatS ,

| NatMul ,

⇒ false

end.

Definition beq (e1 e2 : @expr nat) : bool := beq helper e1 e2 O.

Definition Beq (e1 e2 : Expr) : bool := beq (e1 ) (e2 ).

End PHOAS.



E.17 Various utilities for benchmarking (BenchmarkUtil.v)

Require Import Coq.ZArith.ZArith. Require Import Reify.Common.

Require Reify.PHOAS.

Require Import Reify.PHOASUtil.

E.17.1 Definition of the terms with which we build our benchmark-
ing suite

Inductive count := none | one more (how many : count).

Fixpoint count of nat (v : nat) : count

:= match v with

| O ⇒ none

| S x ⇒ one more (count of nat x)

end.

Fixpoint nat of count (v : count) : nat

:= match v with

| none ⇒ O

| one more x ⇒ S (nat of count x)

end.

Fixpoint pos of succ count (v : count) : positive

:= match v with

| none ⇒ 1%positive

| one more x ⇒ Pos.succ (pos of succ count x)

end.

Definition Z of count (v : count) : Z

:= match v with

| none ⇒ 0%Z

| one more x ⇒ Z.pos (pos of succ count x)

end.

Fixpoint big (x:nat) (n:count)

: nat

:= match n with

| none ⇒ x

| one more n’

⇒ dlet x’ := x × x in

big x’ n’

end.

Definition big flat op {T} (op : T → T → T) (a : T) (sz : count) : T

:= Eval cbv [Z of count pos of succ count Pos.iter op Pos.succ] in

match Z of count sz with

| Z0 ⇒ a

| Zpos p ⇒ Pos.iter op op p a

| Zneg p ⇒ a

end.



Definition big flat (a : nat) (sz : count) : nat

:= big flat op Nat.mul a sz.

Ltac check sane ref PHOAS :=

lazymatch goal with

| [ ` = PHOAS.Denote ?e ]

⇒ let val := (eval vm compute in (PHOAS.Beq e ref PHOAS)) in

lazymatch val with

| true ⇒ idtac

| false ⇒ idtac "Error: Got" e "Expected:" ref PHOAS; unify e ref PHOAS

end

| [ ` = PHOAS.denote ?e ]

⇒ let ref HOAS := (eval lazy in (ref PHOAS nat)) in

let val := (eval vm compute in (PHOAS.beq e ref HOAS)) in

lazymatch val with

| true ⇒ idtac

| false ⇒ idtac "Error: Got" e "Expected:" ref HOAS; unify e ref HOAS

end

| [ ` = ?Denote ?e ]

⇒ fail 0 "Unrecognized denotation function" Denote

end.



F Self-Contained Reification Example

F.1 Self-contained example of reification by parametricity on flat
expressions (ExampleSelfContainedParametricity.v)

Require Import Coq.Bool.Bool.

Require Import Coq.Setoids.Setoid.

Inductive expr :=

| NatO : expr

| NatS : expr → expr

| NatMul : expr → expr → expr.

Fixpoint denote (t : expr) : nat

:= match t with

| NatO ⇒ O

| NatS x ⇒ S (denote x)

| NatMul x y ⇒ denote x × denote y

end.

Module Import EvennessChecking.

F.1.1 Theory on checking evenness of expressions

Inductive is even : nat → Prop :=

| even O : is even O

| even SS : ∀ x, is even x → is even (S (S x)).

Fixpoint check is even expr (t : expr) : bool

:= match t with

| NatO ⇒ true

| NatS x

⇒ negb (check is even expr x)

| NatMul x y

⇒ orb (check is even expr x) (check is even expr y)

end.

Notation is even or odd x := ({is even x} + {~is even x}).
Lemma is even or odd x : ∀ x, (is even x ∧ ¬is even (S x))

∨ (~is even x ∧ is even (S x)).

Proof.

induction x as [|x [[IHx0 IHx1]|[IHx0 IHx1]]].

{ left; split; try constructor; intro H; inversion H. }
{ right; split; [ | constructor ]; assumption. }
{ left; split;

[ assumption

| intro H; inversion clear H; apply IHx0; assumption ]. }
Qed.

Definition is even or odd S x (pf : is even or odd x)



: is even or odd (S x).

Proof.

destruct pf as [pf|pf]; [ right | left ];

abstract (destruct (is even or odd x x) as [[H0 H1]|[H0 H1]]; tauto).

Defined.

Definition is even or odd sum

x y

: (is even x ∧ is even y ∧ is even (x + y))

∨ (~is even x ∧ ¬is even y ∧ is even (x + y))

∨ (is even x ∧ ¬is even y ∧ ¬is even (x + y))

∨ (~is even x ∧ is even y ∧ ¬is even (x + y)).

Proof.

revert y; induction x as [|x IHx];

intro y;

[ | destruct (is even or odd x x) as [H|H]; specialize (IHx (S y));

rewrite ← !plus n Sm in IHx ];

destruct (is even or odd x y) as [Hy|Hy];
intuition.

{ left; repeat constructor; assumption. }
{ right; right; left; repeat constructor; assumption. }

Qed.

Definition is even or odd mul helper

x y

: (is even x ∧ is even y ∧ is even (x × y))

∨ (~is even x ∧ is even y ∧ is even (x × y))

∨ (is even x ∧ ¬is even y ∧ is even (x × y))

∨ (~is even x ∧ ¬is even y ∧ ¬is even (x × y)).

Proof.

induction x as [|x IHx]; simpl.

{ destruct (is even or odd x y); intuition.

{ left; repeat constructor; assumption. }
{ right; right; left; repeat constructor; assumption. } }

{ pose proof (is even or odd sum y (x × y)).

pose proof (is even or odd x x).

intuition. }
Qed.

Definition is even or odd mul x y

(Hx : is even or odd x) (Hy : is even or odd y)

: is even or odd (x × y).

Proof.

destruct Hx, Hy; [ left | left | left | right ];

abstract (pose proof (is even or odd mul helper x y); intuition).

Defined.

Lemma check is even expr correct (e : expr)



: check is even expr e = true ↔ is even (denote e).

Proof.

induction e; simpl in *.

{ repeat constructor. }
{ rewrite negb true iff, ← not true iff false, IHe.

edestruct (is even or odd x (denote e)); intuition. }
{ rewrite orb true iff, IHe1, IHe2.

edestruct is even or odd mul helper;

intuition solve [ intuition eauto ]. }
Qed.

Theorem check is even expr sound (e : expr)

: check is even expr e = true → is even (denote e).

Proof. intro; apply check is even expr correct; assumption. Qed.

Lemma cut is even eq (x y : nat) (H : x = y) (Hx : is even x)

: is even y.

Proof. subst; assumption. Qed.

End EvennessChecking.

F.1.2 Reification by parametricity

Ltac Reify x :=

let rx := lazymatch (eval pattern nat, O, S, Nat.mul in x) with

| ?rx ⇒ rx end in

constr:(rx expr NatO NatS NatMul).

Ltac Reify rhs :=

lazymatch goal with

| [ ` = ?RHS ]

⇒ let rv := Reify RHS in

transitivity (denote rv);

[ | lazy [denote]; reflexivity ]

end.

F.1.3 Using reification to check evenness

Goal is even (let x0 := 100 × 100 × 100 × 100 in

let x1 := x0 × x0 × x0 × x0 in

let x2 := x1 × x1 × x1 × x1 in

x2).

Proof.

eapply cut is even eq.

{ Reify rhs ().

reflexivity. }
apply check is even expr sound; vm compute; reflexivity.

Qed.
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