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A Framework for Building Verified Partial Evaluators
Anonymous Author(s)

Abstract
Partial evaluation is a classic technique for generating lean,
customized code from libraries that start with more bells
and whistles. It is also an attractive approach to creation
of formally verified systems, where theorems can be proved
about libraries, yielding correctness of all specializations “for
free.” However, it can be challenging to make library spe-
cialization both performant and trustworthy. We present a
new approach, prototyped in the Coq proof assistant, which
supports specialization at the speed of native-code execu-
tion, without adding to the trusted code base. Our extensible
engine, which combines the traditional concepts of tailored
term reduction and automatic rewriting from hint databases,
is also of interest to replace these ingredients in proof assis-
tants’ proof checkers and tactic engines, at the same time as
it supports extraction to standalone compilers from library
parameters to specialized code.

1 Introduction
Mechanized proof is gaining in importance for development
of critical software infrastructure. Oft-cited examples in-
clude the CompCert verified C compiler [17] and the seL4
verified operating-system microkernel [16]. Here we have
very flexible systems that are ready to adapt to varieties of
workloads, be they C source programs for CompCert or ap-
plication binaries for seL4. For a verified operating system,
such adaptation takes place at runtime, when we launch the
application. However, some important bits of software infras-
tructure commonly do adaptation at compile time, such that
the fully general infrastructure software is not even installed
in a deployed system.

Of course, compilers are a natural example of that pattern,
as we would not expect CompCert itself to be installed on
an embedded system whose application code was compiled
with it. The problem is that writing a compiler is rather
labor-intensive, with its crafting of syntax-tree types for
source, target, and intermediate languages, its fine-tuning
of code for transformation passes that manipulate syntax
trees explicitly, and so on. An appealing alternative is partial
evaluation [15], which relies on reusable compiler facilities
to specialize library code to parameters, with no need to
write that library code in terms of syntax-tree manipulations.
Cutting-edge tools in this tradition even make it possible to
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use high-level functional languages to generate performance-
competitive low-level code, as in Scala’s Lightweight Modu-
lar Staging [22].
It is natural to try to port this approach to construction

of systems with mechanized proofs. On one hand, the typed
functional languages in popular proof assistants’ logics make
excellent hosts for flexible libraries, which can often be spe-
cialized throughmeans as simple as partial application of cur-
ried functions. Term-reduction systems built into the proof
assistants can then generate the lean residual programs. On
the other hand, it is surprisingly difficult to realize the last
sentence with good performance. The challenge is that we
are not just implementing algorithms; we also want a proof
to be checked by a small proof checker, and there is tension
in designing such a checker, as fancier reduction strategies
grow the trusted code base. It would seem like an abandon-
ment of the spirit of proof assistants to bake in a reduction
strategy per library, yet effective partial evaluation tends to
be rather fine-tuned in this way. Performance tuning matters
when generated code is thousands of lines long.

In this paper, we present an approach to verified partial
evaluation in proof assistants, which requires no changes to
proof checkers. To make the relevance concrete, we use the
example of Fiat Cryptography [11], a Coq library that gener-
ates code for big-integer modular arithmetic at the heart of
elliptic-curve cryptography algorithms. This domain-specific
compiler has been adopted, for instance, in the Chrome Web
browser, such that about half of all HTTPS connections from
browsers are now initiated using code generated (with proof)
by Fiat Cryptography. However, Fiat Cryptography was only
used successfully to build C code for the two most widely
used curves (P-256 and Curve25519). Their method of partial
evaluation timed out trying to compile code for the third
most widely used curve (P-384). Additionally, to achieve
acceptable reduction performance, the library code had to
be written manually in continuation-passing style. We will
demonstrate a new Coq library that corrects both weak-
nesses, while maintaining the generality afforded by allow-
ing rewrite rules to be mixed with partial evaluation.

1.1 A Motivating Example
We are interested in partial-evaluation examples that mix
higher-order functions, inductive datatypes, and arithmetic
simplification. For instance, consider the following Coq code.
Definition prefixSums (ls:list nat) : list nat :=

let ls' := combine ls (seq 0 (length ls)) in
let ls'' := map (𝜆 p, fst p * snd p) ls' in
let '(_, ls''') := fold_left (𝜆 acc_ls''' n,

let '(acc, ls''') := acc_ls''' in

1
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let acc' := acc + n in
(acc', acc' :: ls''')) ls'' (0, []) in

ls'''.

This function first computes list ls' that pairs each ele-
ment of input list ls with its position, so, for instance, list
[𝑎;𝑏; 𝑐] becomes [(𝑎, 0); (𝑏, 1); (𝑐, 2)]. Then we map over the
list of pairs, multiplying the components at each position.
Finally, we traverse that list, building up a list of all prefix
sums.
We would like to specialize this function to particular

list lengths. That is, we know in advance how many list
elements we will pass in, but we do not know the values
of those elements. For a given length, we can construct a
schematic list with one free variable per element. For exam-
ple, to specialize to length four, we can apply the function
to list [a; b; c; d], and we expect this output:
let acc := b + c * 2 in
let acc' := acc + d * 3 in
[acc'; acc; b; 0]

Notice how subterm sharing via lets is important. As
list length grows, we avoid quadratic blowup in term size
through sharing. Also notice how we simplified the first
two multiplications with 𝑎 · 0 = 0 and 𝑏 · 1 = 𝑏 (each of
which requires explicit proof in Coq), using other arithmetic
identities to avoid introducing new variables for the first
two prefix sums of ls'', as they are themselves constants
or variables, after simplification.
To set up our partial evaluator, we prove the algebraic

laws that it should use for simplification, starting with basic
arithmetic identities.
Lemma zero_plus : forall n, 0 + n = n.
Lemma plus_zero : forall n, n + 0 = n.
Lemma times_zero : forall n, n * 0 = 0.
Lemma times_one : forall n, n * 1 = n.

Next, we prove a law for each list-related function, con-
necting it to the primitive-recursion combinator for some
inductive type (natural numbers or lists, as appropriate). We
use a special apostrophe marker to indicate a quantified
variable that may only match with compile-time constants.
We also use a further marker ident.eagerly to ask the re-
ducer to simplify a case of primitive recursion by complete
traversal of the designated argument’s constructor tree.
Lemma eval_map A B (f : A -> B) l
: map f l = ident.eagerly list_rect _ _ []

(𝜆 x _ l', f x :: l') l.
Lemma eval_fold_left A B (f : A -> B -> A) l a
: fold_left f l a = ident.eagerly list_rect

_ _ (𝜆 a, a)
(𝜆 x _ r a, r (f a x)) l a.

Lemma eval_combine A B (la : list A) (lb : list B)
: combine la lb = list_rect _ (𝜆 _, [])

(𝜆 x _ r lb, list_case (𝜆 _, _) []
(𝜆 y ys, (x, y) :: r ys) lb) la lb.

Lemma eval_length A (ls : list A)
: length ls = list_rect _ 0 (𝜆 _ _ n, S n) ls.

With all the lemmas available, we can package them up
into a rewriter, which triggers generation of a specialized
rewrite procedure and its soundness proof. Our Coq plugin
introduces a new command Make for building rewriters
Make rewriter := Rewriter For (zero_plus, plus_zero,

times_zero, times_one, eval_map, eval_fold_left,
do_again eval_length, do_again eval_combine,
eval_rect nat, eval_rect list, eval_rect prod)
(with delta) (with extra idents (seq)).

Most inputs to Rewriter For list quantified equalities to
use for left-to-right rewriting. However, we also use options
do_again, to request that some rules trigger an extra bottom-
up pass after being used for rewriting; eval_rect, to queue
up eager evaluation of a call to a primitive-recursion com-
binator on a known recursive argument; with delta, to
request evaluation of all monomorphic operations on con-
crete inputs; and with extra idents, to inform the engine
of further permitted identifiers that do not appear directly
in any of the rewrite rules.

Our plugin also provides new tactics like Rewrite_rhs_for,
which applies a rewriter to the righthand side of an equal-
ity goal. That last tactic is just what we need to synthesize
a specialized prefixSums for list length four, along with a
proof of its equivalence to the original function.
Definition prefixSums4 :
{f : nat -> nat -> nat -> nat -> list nat
| forall a b c d, f a b c d = prefixSums [a;b;c;d]} :=
ltac:(eexists; Rewrite_rhs_for rewriter; reflexivity).

1.2 Concerns of Trusted-Code-Base Size
Crafting a reduction strategy is challenging enough in a stan-
dalone tool. A large part of the difficulty in a proof assistant
is reducing in a way that leaves a proof trail that can be
checked efficiently by a small kernel. Most proof assistants
present user-friendly surface tactic languages that generate
proof traces in terms of more elementary tactic steps. The
trusted proof checker only needs to know about the elemen-
tary steps, and there is pressure to be sure that these steps
are indeed elementary, not requiring excessive amounts of
kernel code. However, hardcoding a new reduction strategy
in the kernel can bring dramatic performance improvements.
Generating thousands of lines of code with partial evalua-
tion would be intractable if we were outputting sequences of
primitive rewrite steps justifying every little term manipula-
tion, so we must take advantage of the time-honored feature
of type-theoretic proof assistants that reductions included
in the definitional equality need not be requested explicitly.
Which kernel-level reductions does Coq support today?

Currently, the trusted code base knows about four different
kinds of reduction: left-to-right conversion, right-to-left con-
version, a virtual machine (VM) written in C based on the
OCaml compiler, and a compiler to native code. Furthermore,
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the first two are parameterized on an arbitrary user-specified
ordering of which constants to unfold when, in addition to
internal heuristics about what to do when the user has not
specified an unfolding order for given constants. Recently,
native support for 63-bit integers has been added to the VM
and native machines. A recent pull request proposes adding
support for native IEEE 754-2008 binary64 floats [21], and
support for native arrays is in the works [10].
To summarize, there has been quite a lot of “complexity

creep” in the Coq trusted base, to support efficient reduction,
and yet realistic partial evaluation has still been rather chal-
lenging. Even the additional three reduction mechanisms
outside Coq’s kernel (cbn, simpl, cbv) are not at first glance
sufficient for verified partial evaluation.

1.3 Our Solution
Aehlig et al. [1] presented a very relevant solution to a re-
lated problem, using normalization by evaluation (NbE) [4] to
bootstrap reduction of open terms on top of full reduction, as
built into a proof assistant. However, it was simultaneously
true that they expanded the proof-assistant trusted code base
in ways specific to their technique, and that they did not
report any experiments actually using the tool for partial
evaluation (just traditional full reduction), potentially hiding
performance-scaling challenges or other practical issues. We
have adapted their approach in a new Coq library embody-
ing the first partial-evaluation approach to satisfy the
following criteria.

• It integrateswith a general-purpose, foundational proof
assistant, without growing the trusted base.

• For a wide variety of initial functional programs, it pro-
vides fast partial evaluation with reasonable memory
use.

• It allows reduction that mixes rules of the definitional
equality with equalities proven explicitly as theorems.

• It preserves sharing of common subterms.
• It also allows extraction of standalone partial eval-
uators.

Our contributions include answers to a number of chal-
lenges that arise in scaling NbE-based partial evaluation in a
proof assistant. First, we rework the approach of Aehlig et al.
[1] to function without extending a proof assistant’s trusted
code base, which, among other challenges, requires us to
prove termination of reduction and encode pattern match-
ing explicitly (leading us to adopt the performance-tuned
approach of Maranget [20]).

Second, using partial evaluation to generate residual terms
thousands of lines long raises new scaling challenges:

• Output terms may contain so many nested variable
binders that we expect it to be performance-prohibitive
to perform bookkeeping operations on first-order-encoded
terms (e.g., with de Bruijn indices, as is done in Rtac
by Malecha and Bengtson [18]). For instance, while

the reported performance experiments of Aehlig et al.
[1] generate only closed terms with no binders, Fiat
Cryptography may generate a single routine (e.g., mul-
tiplication for curve P-384) with nearly a thousand
nested binders.

• Naive representation of terms without proper sharing
of common subterms can lead to fatal term-size blow-
up. Fiat Cryptography’s arithmetic routines rely on
significant sharing of this kind.

• Unconditional rewrite rules are in general insufficient,
and we need rules with side conditions. For instance,
in Fiat Cryptography, some rules for simplifying mod-
ular arithmetic depend on proofs that operations in
subterms do not overflow.

• However, it is also not reasonable to expect a general
engine to discharge all side conditions on the spot. We
need integration with abstract interpretation that can
analyze whole programs to support reduction.

Briefly, our respective solutions to these problems are the
parametric higher-order abstract syntax (PHOAS) [8] term
encoding, a let-lifting transformation threaded throughout
reduction, extension of rewrite rules with executable Boolean
side conditions, and a design pattern that uses decorator
function calls to include analysis results in a program.
Finally, we carry out the first large-scale performance-

scaling evaluation of partial evaluation in a proof assistant,
covering all elliptic curves from the published Fiat Cryptog-
raphy experiments, along with microbenchmarks.
This paper proceeds through explanations of the trust

stories behind our approach and earlier ones (section 2), the
core structure of our engine (section 3), the additional scaling
challenges we faced (section 4), performance experiments
(section 5), and related work (section 6) and conclusions. Our
implementation is included as an anonymous supplement.

2 Trust, Reduction, and Rewriting
Since much of the narrative behind our design process de-
pends on tradeoffs between performance and trustworthi-
ness, we start by reviewing the general situation in proof
assistants.

Across a variety of proof assistants, simplification of func-
tional programs is a workhorse operation. Proof assistants
like Coq that are based on type theory typically build in defi-
nitional equality relations, identifying terms up to reductions
like 𝛽-reduction and unfolding of named identifiers. What
looks like a single “obvious” step in an on-paper equational
proof may require many of these reductions, so it is handy
to have built-in support for checking a claimed reduction.
Figure 1a diagrams how such steps work in a system like
Coq, where the system implementation is divided between
a trusted kernel, for checking proof terms in a minimal lan-
guage, and additional untrusted support, like a tactic engine
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evaluating a language of higher-level proof steps, in the pro-
cess generating proof terms out of simpler building blocks. It
is standard to include a primitive proof step that validates any
reduction compatible with the definitional equality, as the
latter is decidable. The figure shows a tactic that simplifies a
goal using that facility.
In proof goals containing free variables, executing sub-

terms can get stuck before reaching normal forms. However,
we can often achieve further simplification by using equa-
tional rules that we prove explicitly, rather than just relying
on the rules built into the definitional equality and its de-
cidable equivalence checker. Coq’s autorewrite tactic, as
diagrammed in Figure 1b, is a good example: it takes in a
database of quantified equalities and applies them repeatedly
to rewrite in a goal. It is important that Coq’s kernel does not
trust the autorewrite tactic. Instead, the tactic must output
a proof term that, in some sense, is the moral equivalent
of a line-by-line equational proof. It can be challenging to
keep these proof terms small enough, as naive rewrite-by-
rewrite versions repeatedly copy large parts of proof goals,
justifying a rewrite like 𝐶 [𝑒1] = 𝐶 [𝑒2] for some context 𝐶
given a proof of 𝑒1 = 𝑒2, with the full value of 𝐶 replicated
in the proof term for that single rewrite. Overcoming these
challenges while retaining decidability of proof checking is
tricky, since we may use autorewrite with rule sets that
do not always lead to terminating reduction. Coq includes
more experimental alternatives like rewrite_strat, which
use bottom-up construction of multi-rewrite proofs, with
sharing of common contexts. Still, as section 5 will show,
these methods that generate substantial proof terms are at
significant performance disadvantages.

Now we summarize how Aehlig et al. [1] provide flexible
and fast interleaving of standard 𝜆-calculus reduction and
use of proved equalities (the next section will go into more
detail). Figure 1c demonstrates a workflow based on a deep
embedding of a core ML-like language. That is, within the
logic of the proof assistant (Isabelle/HOL, in their case), a
type of syntax trees for ML programs is defined, with an
associated operational semantics. The basic strategy is, for
a particular set of rewrite rules and a particular term to
simplify, to generate a (deeply embedded) ML program that,
if it terminates, produces a syntax tree for the simplified term.
Their tactic uses reification to createdML versions of rule sets
and terms. They also wrote a reduction function in ML and
proved it sound once and for all, against the ML operational
semantics. Combining that proof with proofs generated by
reification, we conclude that an application of the reduction
function to the reified rules and term is indeed an ML term
that generates correct answers. The tactic then “throws the
ML term over the wall,” using a general code-generation
framework for Isabelle/HOL [14]. Trusted code compiles
the ML code into the concrete syntax of a mainstream ML
language, Standard ML in their case, and compiles it with an
off-the-shelf compiler. The output of that compiled program

Tactic
(e.g., change)

Kernel
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Untrusted Trusted

t2 Reduction

(a) Reduction via the definitional equality

Tactic
(e.g., autorewrite) Kernel
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Figure 1. Different approaches to reduction and rewriting
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is then passed back over to the tactic, in terms of an axiomatic
assertion that the ML semantics really yields that answer.
As Aehlig et al. [1] argue, their use of external compila-

tion and evaluation of ML code adds no real complexity on
top of that required by the proof assistant – after all, the
proof assistant itself must be compiled and executed some-
how. However, the perceived increase of trusted code base
is not spurious: it is one thing to trust that the toolchain and
execution environment used by the proof assistant and the
partial evaluator are well-behaved, and another to rely on
two descriptions of ML (one deeply embedded in the proof
assistant and another implied by the compiler) to agree on
every detail of the semantics. Furthermore, there still is new
trusted code to translate from the deeply embedded ML sub-
set into the concrete syntax of the full-scale ML language.
The vast majority of proof-assistant developments today rely
on no such embeddings with associated mechanized seman-
tics, so need we really add one to a proof-checking kernel to
support efficient partial evaluation?
Our answer, diagrammed in Figure 1d, shows a different

way. We still reify terms and rules into a deeply embedded
language. However, the reduction engine is implemented di-
rectly in the logic, rather than as a deeply embedded syntax
tree of an ML program. As a result, the kernel’s own reduc-
tion engine is prepared to execute our reduction engine for
us – using an operation that would be included in a type-
theoretic proof assistant in any case, with no special support
for a language deep embedding. We also stage the process
for performance reasons. First, the Make command creates
a rewriter out of a list of rewrite rules, by specializing a
generic partial-evaluation engine, which has a generic proof
that applies to any set of proved rewrite rules. We perform
partial evaluation on the specialized partial evaluator, using
Coq’s normal reduction mechanisms, under the theory that
we can afford to pay performance costs at this stage because
we only need to create new rewriters relatively infrequently.
Then individual rewritings involve reifying terms, asking
the kernel to execute the specialized evaluator on them, and
simplifying an application of an interpretation function to
the result (this last step must be done using Coq’s normal
reduction, and it is the bottleneck for outputs with enormous
numbers of nested binders as discussed in section 5.1).

2.1 Our Approach in Nine Steps
Here is a bit more detail on the steps that go into applying our
Coq plugin, many of which we expand on in the following
sections. In order to build a precomputed rewriter with the
Make command, the following actions are performed:

1. The given lemma statements are scraped for which
named functions and types the rewriter package will
support.

2. Inductive types enumerating all available primitive
types and functions are emitted.

3. Tactics generate all of the necessary definitions and
prove all of the necessary lemmas for dealing with this
particular set of inductive codes. Definitions include
operations like Boolean equality on type codes and
lemmas like “all representable primitive types have
decidable equality.”

4. The statements of rewrite rules are reified, and we
prove soundness and syntactic-well-formedness lem-
mas about each of them. Each instance of the former
involves wrapping the user-provided proof with the
right adapter to apply to the reified version.

5. The definitions needed to perform reification and rewrit-
ing and the lemmas needed to prove correctness are
assembled into a single package that can be passed by
name to the rewriting tactic.

When we want to rewrite with a rewriter package in a
goal, the following steps are performed:

1. We rearrange the goal into a single logical formula:
all free-variable quantification in the proof context is
replaced by changing the equality goal into an equality
between two functions (taking the free variables as
inputs).

2. We reify the side of the goal we want to simplify, using
the inductive codes in the specified package. That side
of the goal is then replaced with a call to a denotation
function on the reified version.

3. We use a theorem stating that rewriting preserves
denotations of well-formed terms to replace the de-
notation subterm with the denotation of the rewriter
applied to the same reified term. We use Coq’s built-in
full reduction (vm_compute) to reduce the application
of the rewriter to the reified term.

4. Finally, we run cbv (a standard call-by-value reducer)
to simplify away the invocation of the denotation func-
tion on the concrete syntax tree from rewriting.

3 The Structure of a Rewriter
We now simultaneously review the approach of Aehlig et al.
[1] and introduce some notable differences in our own ap-
proach, noting similarities to the reflective rewriter ofMalecha
and Bengtson [18] where applicable.
First, let us describe the language of terms we support

rewriting in. Note that, while we support rewriting in full-
scale Coq proofs, where the metalanguage is dependently
typed, the object language of our rewriter is nearly simply
typed, with limited support for calling polymorphic func-
tions. However, we still support identifiers whose definitions
use dependent types, since our reducer does not need to look
into definitions.

𝑒 ::= App 𝑒1 𝑒2 | Let 𝑣 = 𝑒1 In 𝑒2

| Abs (𝜆𝑣. 𝑒) | Var 𝑣 | Ident 𝑖
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The Ident case is for identifiers, which are described by an
enumeration specific to a use of our library. For example, the
identifiers might be codes for +, ·, and literal constants. We
write J𝑒K for a standard denotational semantics.

3.1 Pattern-Matching Compilation and Evaluation
Aehlig et al. [1] feed a specific set of user-provided rewrite
rules to their engine by generating code for an ML func-
tion, which takes in deeply embedded term syntax (actually
doubly deeply embedded, within the syntax of the deeply em-
bedded ML!) and uses ML pattern matching to decide which
rule to apply at the top level. Thus, they delegate efficient
implementation of pattern matching to the underlying ML
implementation. As we instead build our rewriter in Coq’s
logic, we have no such option to defer to ML. Indeed, Coq’s
logic only includes primitive pattern-matching constructs to
match one constructor at a time.
We could follow a naive strategy of repeatedly matching

each subterm against a pattern for every rewrite rule, as in
the rewriter of Malecha and Bengtson [18], but in that case
we do a lot of duplicate work when rewrite rules use overlap-
ping function symbols. Instead, we adopted the approach of
Maranget [20], who describes compilation of patternmatches
in OCaml to decision trees that eliminate needless repeated
work (for example, decomposing an expression into 𝑥 +𝑦 + 𝑧
only once even if two different rules match on that pattern).
We have not yet implemented any of the optimizations de-
scribed therein for finding minimal decision trees.
There are three steps to turn a set of rewrite rules into a

functional program that takes in an expression and reduces
according to the rules. The first step is pattern-matching com-
pilation: we must compile the lefthand sides of the rewrite
rules to a decision tree that describes how and in what order
to decompose the expression, as well as describing which
rewrite rules to try at which steps of decomposition. Because
the decision tree is merely a decomposition hint, we require
no proofs about it to ensure soundness of our rewriter. The
second step is decision-tree evaluation, during which we
decompose the expression as per the decision tree, select-
ing which rewrite rules to attempt. The only correctness
lemma needed for this stage is that any result it returns is
equivalent to picking some rewrite rule and rewriting with
it. The third and final step is to actually rewrite with the
chosen rule. Here the correctness condition is that we must
not change the semantics of the expression. Said another
way, any rewrite-rule replacement expression must match
the semantics of the rewrite-rule pattern.
While pattern matching begins with comparing one pat-

tern against one expression, Maranget’s approach works
with intermediate goals that check multiple patterns against
multiple expressions. A decision tree describes how to match
a vector (or list) of patterns against a vector of expressions.
It is built from these constructors:

• TryLeaf k onfailure: Try the 𝑘 th rewrite rule; if it
fails, keep going with onfailure.

• Failure: Abort; nothing left to try.
• Switch icases app_case default: With the first
element of the vector, match on its kind; if it is an
identifier matching something in icases, remove the
first element of the vector and run that decision tree; if
it is an application and app_case is not None, try the
app_case decision tree, replacing the first element of
each vector with the two elements of the function and
the argument it is applied to; otherwise, do not modify
the vectors and use the default decision tree.

• Swap i cont: Swap the first element of the vector
with the 𝑖th element (0-indexed) and keep going with
cont.

Consider the encoding of two simple example rewrite
rules, where we follow Coq’s Ltac language in prefacing
pattern variables with question marks.

?𝑛 + 0 → 𝑛

fstZ,Z (?𝑥, ?𝑦) → 𝑥

We embed them in an AST type for patterns, which largely
follows our ASTs for expressions.
0. App (App (Ident +) Wildcard) (Ident (Literal 0))
1. App (Ident fst) (App (App (Ident pair) Wildcard)

Wildcard)

The decision tree produced is

App
�� App //

fst
22

+ // Swap 0↔1 // Literal 0 // TryLeaf 0

App
//

App
//

pair
// TryLeaf 1

where every non-swap node implicitly has a “default” case
arrow to Failure.

We implement, in Coq’s logic, an evaluator for these trees
against terms. Note that we use Coq’s normal partial eval-
uation to turn our general decision-tree evaluator into a
specialized matcher to get reasonable efficiency. Although
this partial evaluation of our partial evaluator is subject to
the same performance challenges we highlighted in the in-
troduction, it only has to be done once for each set of rewrite
rules, and we are targeting cases where the time of per-goal
reduction dominates this time of meta-compilation.
For our running example of two rules, specializing gives

us this match expression.
match e with
| App f y => match f with

| Ident fst => match y with
| App (App (Ident pair) x) y => x
| _ => e end

| App (Ident +) x => match y with
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| Ident (Literal 0) => x | _ => e end
| _ => e end | _ => e end.

3.2 Adding Higher-Order Features
Fast rewriting at the top level of a term is the key ingredient
for supporting customized algebraic simplification. However,
not only do we want to rewrite throughout the structure of
a term, but we also want to integrate with simplification of
higher-order terms, in a way where we can prove to Coq
that our syntax-simplification function always terminates.
Normalization by evaluation (NbE) [4] is an elegant tech-
nique for adding the latter aspect, in a way where we avoid
needing to implement our own 𝜆-term reducer or prove it
terminating.
To orient expectations: we would like to enable the fol-

lowing reduction

(𝜆𝑓 𝑥 𝑦. 𝑓 𝑥 𝑦) (+) 𝑧 0 { 𝑧

using the rewrite rule

?𝑛 + 0 → 𝑛

Aehlig et al. [1] also use NbE, and we begin by reviewing
its most classic variant, for performing full 𝛽-reduction in
a simply typed term in a guaranteed-terminating way. The
simply typed 𝜆-calculus syntax we use is:

𝑡 ::= 𝑡 → 𝑡 | 𝑏 𝑒 ::= 𝜆𝑣. 𝑒 | 𝑒 𝑒 | 𝑣 | 𝑐

with 𝑣 for variables, 𝑐 for constants, and 𝑏 for base types.
We can now define normalization by evaluation. First, we

choose a “semantic” representation for each syntactic type,
which serves as the result type of an intermediate interpreter.

NbE𝑡 (𝑡1 → 𝑡2) = NbE𝑡 (𝑡1) → NbE𝑡 (𝑡2)
NbE𝑡 (𝑏) = expr(𝑏)

Function types are handled as in a simple denotational se-
mantics, while base types receive the perhaps-counterintuitive
treatment that the result of “executing” one is a syntactic
expression of the same type. We write expr(𝑏) for the meta-
language type of object-language syntax trees of type 𝑏,
relying on a dependent type family expr.

Now the core of NbE, shown in Figure 2, is a pair of dual
functions reify and reflect, for converting back and forth
between syntax and semantics of the object language, de-
fined by primitive recursion on type syntax. We split out
analysis of term syntax in a separate function reduce, defined
by primitive recursion on term syntax, when usually this
functionality would be mixed in with reflect. The reason for
this choice will become clear when we extend NbE to handle
our full problem domain.
We write 𝑣 for object-language variables and 𝑥 for meta-

language (Coq) variables, and we overload 𝜆 notation using
the metavariable kind to signal whether we are building a
host 𝜆 or a 𝜆 syntax tree for the embedded language. The cru-
cial first clause for reduce replaces object-language variable

reify𝑡 : NbE𝑡 (𝑡) → expr(𝑡)
reify𝑡1→𝑡2

(𝑓 ) = 𝜆𝑣. reify𝑡2 (𝑓 (reflect𝑡1 (𝑣)))
reify𝑏 (𝑓 ) = 𝑓

reflect𝑡 : expr(𝑡) → NbE𝑡 (𝑡)
reflect𝑡1→𝑡2 (𝑒) = 𝜆𝑥. reflect𝑡2 (𝑒 (reify𝑡1 (𝑥))

reflect𝑏 (𝑒) = 𝑒

reduce : expr(𝑡) → NbE𝑡 (𝑡)
reduce(𝜆𝑣. 𝑒) = 𝜆𝑥. reduce( [𝑥/𝑣]𝑒)
reduce(𝑒1 𝑒2) = (reduce(𝑒1)) (reduce(𝑒2))

reduce(𝑥) = 𝑥

reduce(𝑐) = reflect(𝑐)

NbE : expr(𝑡) → expr(𝑡)
NbE(𝑒) = reify(reduce(𝑒))

Figure 2. Implementation of normalization by evaluation

𝑣 with fresh metalanguage variable 𝑥 , and then we are some-
how tracking that all free variables in an argument to reduce
must have been replaced with metalanguage variables by the
time we reach them. We reveal in subsection 4.1 the encod-
ing decisions that make all the above legitimate, but first let
us see how to integrate use of the rewriting operation from
the previous section. To fuse NbE with rewriting, we only
modify the constant case of reduce. First, we bind our spe-
cialized decision-tree engine under the name rewrite-head.
Recall that this function only tries to apply rewrite rules at
the top level of its input.

In the constant case, we still reflect the constant, but under-
neath the binders introduced by full𝜂-expansion, we perform
one instance of rewriting. In other words, we change this
one function-definition clause:

reflect𝑏 (𝑒) = rewrite-head(𝑒)

It is important to note that a constant of function type will
be 𝜂-expanded only once for each syntactic occurrence in the
starting term, though the expanded function is effectively
a thunk, waiting to perform rewriting again each time it
is called. From first principles, it is not clear why such a
strategy terminates on all possible input terms, though we
work up to convincing Coq of that fact.

The details so far are essentially the same as in the ap-
proach of Aehlig et al. [1]. Recall that their rewriter was
implemented in a deeply embedded ML, while ours is im-
plemented in Coq’s logic, which enforces termination of all
functions. Aehlig et al. did not prove termination, which
indeed does not hold for their rewriter in general, which
works with untyped terms, not to mention the possibility of
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rule-specific ML functions that diverge themselves. In con-
trast, we need to convince Coq up-front that our interleaved
𝜆-term normalization and algebraic simplification always
terminate. Additionally, we need to prove that our rewriter
preserves denotations of terms, which can easily devolve
into tedious binder bookkeeping, depending on encoding.

The next section introduces the techniques we use to avoid
explicit termination proof or binder bookkeeping, in the
context of a more general analysis of scaling challenges.

4 Scaling Challenges
Aehlig et al. [1] only evaluated their implementation against
closed programs. What happens when we try to apply the
approach to partial-evaluation problems that should generate
thousands of lines of low-level code?

4.1 Variable Environments Will Be Large
We should think carefully about representation of ASTs,
since many primitive operations on variables will run in
the course of a single partial evaluation. For instance, Aehlig
et al. [1] reported a significant performance improvement
changing variable nodes from using strings to using de Bruijn
indices [9]. However, de Bruijn indices and other first-order
representations remain painful to work with. We often need
to fix up indices in a term being substituted in a new con-
text. Even looking up a variable in an environment tends to
incur linear time overhead, thanks to traversal of a list. Per-
haps we can do better with some kind of balanced-tree data
structure, but there is a fundamental performance gap versus
the arrays that can be used in imperative implementations.
Unfortunately, it is difficult to integrate arrays soundly in a
logic. Also, even ignoring performance overheads, tedious
binder bookkeeping complicates proofs.

Our strategy is to use a variable encoding that pushes all
first-order bookkeeping off on Coq’s kernel, which is itself
performance-tuned with some crucial pieces of imperative
code. Parametric higher-order abstract syntax (PHOAS) [8]
is a dependently typed encoding of syntax where binders
are managed by the enclosing type system. It allows for
relatively easy implementation and proof for NbE, so we
adopted it for our framework.
Here is the actual inductive definition of term syntax for

our object language, PHOAS-style. The characteristic odd-
ity is that the core syntax type expr is parameterized on a
dependent type family for representing variables. However,
the final representation type Expr uses first-class polymor-
phism over choices of variable type, bootstrapping on the
metalanguage’s parametricity to ensure that a syntax tree is
agnostic to variable type.
Inductive type := arrow (s d : type)
| base (b : base_type).
Infix "->" := arrow.
Inductive expr (var : type -> Type)

: type -> Type :=

| Var {t} (v : var t) : expr var t
| Abs {s d} (f : var s -> expr var d)

: expr var (s -> d)
| App {s d} (f : expr var (s -> d))

(x : expr var s) : expr var d
| Const {t} (c : const t) : expr var t
Definition Expr (t : type) : Type :=

forall var, expr var t.

A good example of encoding adequacy is assigning a sim-
ple denotational semantics. First, a simple recursive function
assigns meanings to types.
Fixpoint denoteT (t : type) : Type

:= match t with
| arrow s d => denoteT s -> denoteT d
| base b => denote_base_type b
end.

Next we see the convenience of being able to use an expres-
sion by choosing how it should represent variables. Specifi-
cally, it is natural to choose the type-denotation function it-
self as the variable representation. Especially note how this
choice makes rigorous the convention we followed in the
prior section, where a recursive function enforces that values
have always been substituted for variables early enough.
Fixpoint denoteE {t} (e : expr denoteT t) : denoteT t

:= match e with
| Var v => v
| Abs f => 𝜆 x, denoteE (f x)
| App f x => (denoteE f) (denoteE x)
| Ident c => denoteI c
end.

Definition DenoteE {t} (E : Expr t) : denoteT t
:= denoteE (E denoteT).

It is now easy to follow the same script in making our
rewriting-enabled NbE fully formal. Note especially the first
clause of reduce, where we avoid variable substitution pre-
cisely because we have chosen to represent variables with
normalized semantic values. The subtlety there is that base-
type semantic values are themselves expression syntax trees,
which depend on a nested choice of variable representation,
which we retain as a parameter throughout these recursive
functions. The final definition 𝜆-quantifies over that choice.
Fixpoint nbeT var (t : type) : Type

:= match t with
| arrow s d => nbeT var s -> nbeT var d
| base b => expr var b
end.

Fixpoint reify {var t} : nbeT var t -> expr var t
:= match t with

| arrow s d => 𝜆 f,
Abs (𝜆 x, reify (f (reflect (Var x))))

| base b => 𝜆 e, e
end

with reflect {var t} : expr var t -> nbeT var t
:= match t with

| arrow s d => 𝜆 e,

8
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𝜆 x, reflect (App e (reify x))
| base b => rewrite_head
end.

Fixpoint reduce {var t}
(e : expr (nbeT var) t) : nbeT var t
:= match e with

| Abs e => 𝜆 x, reduce (e (Var x))
| App e1 e2 => (reduce e1) (reduce e2)
| Var x => x
| Ident c => reflect (Ident c)
end.

Definition Rewrite {t} (E : Expr t) : Expr t
:= 𝜆 var, reify (reduce (E (nbeT var t))).

One subtlety hidden above in implicit arguments is in
the final clause of reduce, where the two applications of
the Ident constructor use different variable representations.
With all those details hashed out, we can prove a pleasingly
simple correctness theorem, with a lemma for each main def-
inition, with inductive structure mirroring recursive struc-
ture of the definition, also appealing to correctness of last
section’s pattern-compilation operations.

∀𝑡, 𝐸 : Expr t. JRewrite(𝐸)K = J𝐸K

Even before getting to the correctness theorem, we needed
to convince Coq that the function terminates. While for
Aehlig et al. [1], a termination proof would have been a
whole separate enterprise, it turns out that PHOAS and NbE
line up so well that Coq accepts the above code with no
additional termination proof. As a result, the Coq kernel is
ready to run our Rewrite procedure during checking.

To understand how we now apply the soundness theorem
in a tactic, it is important to note that the Coq kernel’s built-in
reduction strategies have, to an extent, been tuned to work
well to show equivalence between a simple denotational-
semantics application and the semantic value it produces,
while it is rather difficult to code up one reduction strategy
that works well for all partial-evaluation tasks. Therefore,
we should restrict ourselves to (1) running full reduction in
the style of functional-language interpreters and (2) running
normal reduction on “known-good” goals like correctness of
evaluation of a denotational semantics on a concrete input.
Operationally, then, we apply our tactic in a goal con-

taining a term 𝑒 that we want to partially evaluate. In stan-
dard proof-by-reflection style, we reify 𝑒 into some 𝐸 where
J𝐸K = 𝑒 , replacing 𝑒 accordingly, asking Coq’s kernel to
validate the equivalence via standard reduction. Now we
use the Rewrite correctness theorem to replace J𝐸K with
JRewrite(𝐸)K. Next we may ask the Coq kernel to simplify
Rewrite(𝐸) by full reduction via compilation to native code,
since we carefully designed Rewrite(𝐸) and its dependen-
cies to produce closed syntax trees. Finally, where 𝐸 ′ is the
result of that reduction, we simplify J𝐸 ′K with standard re-
duction, producing a normal-looking Coq term.

4.2 Subterm Sharing is Crucial
For some large-scale partial-evaluation problems, it is impor-
tant to represent output programs with sharing of common
subterms. Redundantly inlining shared subterms can lead
to exponential increase in space requirements. Consider the
Fiat Cryptography [11] example of generating a 64-bit imple-
mentation of field arithmetic for the P-256 elliptic curve. The
library has been converted manually to continuation-passing
style, allowing proper generation of let binders, whose vari-
ables are often mentioned multiple times. We ran their code
generator (actually just a subset of its functionality, but op-
timized by us a bit further, as explained in subsection 5.2)
on the P-256 example and found it took about 15 seconds
to finish. Then we modified reduction to inline let binders
instead of preserving them, at which point the reduction job
terminated with an out-of-memory error, on a machine with
64 GB of RAM. (The successful run uses under 2 GB.)
We see a tension here between performance and nice-

ness of library implementation. The Fiat Cryptography au-
thors found it necessary to CPS-convert their code to coax
Coq into adequate reduction performance. Then all of their
correctness theorems were complicated by reasoning about
continuations. It feels like a slippery slope on the path to
implementing a domain-specific compiler, rather than tak-
ing advantage of the pleasing simplicity of partial evaluation
on natural functional programs. Our reduction engine takes
shared-subterm preservation seriously while applying to
libraries in direct style.
Our approach is let-lifting: we lift lets to top level, so

that applications of functions to lets are available for rewrit-
ing. For example, we can perform the rewriting

map (𝜆𝑥.𝑦 + 𝑥) (let 𝑧 := 𝑒 in [0; 1; 2; 𝑧; 𝑧 + 1])
{ let 𝑧 := 𝑒 in [𝑦;𝑦 + 1;𝑦 + 2;𝑦 + 𝑧;𝑦 + (𝑧 + 1)]

using the rules

map ?𝑓 [] → [] ?𝑛 + 0 → 𝑛

map ?𝑓 (?𝑥 ::?𝑥𝑠) → 𝑓 𝑥 :: map 𝑓 𝑥𝑠

Our approach is to define a telescope-style type family
called UnderLets:
Inductive UnderLets {var} (T : Type) :=
| Base (v : T)
| UnderLet {A}(e : @expr var A)(f : var A -> UnderLets T).

A value of type UnderLets T is a series of let binders
(where each expression e may mention earlier-bound vari-
ables) ending in a value of type T. It is easy to build various
“smart constructors” working with this type, for instance to
construct a function application by lifting the lets of both
function and argument to a common top level.

Such constructors are used to implement an NbE strategy
that outputs UnderLets telescopes. Recall that the NbE type
interpretation mapped base types to expression syntax trees.
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We now parameterize that type interpretation by a Boolean
declaring whether we want to introduce telescopes.
Fixpoint nbeT' {var} (with_lets : bool) (t : type)
:= match t with

| base t => if with_lets
then @UnderLets var (@expr var t)
else @expr var t

| arrow s d => nbeT' false s -> nbeT' true d
end.

Definition nbeT := nbeT' false.
Definition nbeT_with_lets := nbeT' true.

There are cases where naive preservation of let binders
leads to suboptimal performance, so we include some heuris-
tics. For instance, when the expression being bound is a con-
stant, we always inline. When the expression being bound
is a series of list “cons” operations, we introduce a name
for each individual list element, since such a list might be
traversed multiple times in different ways.

4.3 Rules Need Side Conditions
Many useful algebraic simplifications require side conditions.
One simple case is supporting nonlinear patterns, where
a pattern variable appears multiple times. We can encode
nonlinearity on top of linear patterns via side conditions.

?𝑛1+?𝑚−?𝑛2 →𝑚 if 𝑛1 = 𝑛2

The trouble is how to support predictable solving of side
conditions during partial evaluation, wherewemay be rewrit-
ing in open terms. We decided to sidestep this problem by
allowing side conditions only as executable Boolean func-
tions, to be applied only to variables that are confirmed as
compile-time constants, unlike Malecha and Bengtson [18]
who support general unification variables. We added a vari-
ant of pattern variable that only matches constants. Seman-
tically, this variable style has no additional meaning, and
in fact we implement it as a special identity function that
should be called in the right places within Coq lemma state-
ments. Rather, use of this identity function triggers the right
behavior in our tactic code that reifies lemma statements.
We introduce a notation where a prefixed apostrophe signals
a call to the “constants only” function.
Our reification inspects the hypotheses of lemma state-

ments, using type classes to find decidable realizations of
the predicates that are used, synthesizing one Boolean ex-
pression of our deeply embedded term language, standing
for a decision procedure for the hypotheses. The Make com-
mand fails if any such expression contains pattern variables
not marked as constants. Therefore, matching of rules can
safely run side conditions, knowing that Coq’s full-reduction
engine can determine their truth efficiently.

4.4 Side Conditions Need Abstract Interpretation
With our limitation that side conditions are decided by exe-
cutable Boolean procedures, we cannot yet handle directly

some of the rewrites needed for realistic partial evaluation.
For instance, Fiat Cryptography reduces high-level func-
tional to low-level code that only uses integer types avail-
able on the target hardware. The starting library code works
with infinite-precision integers, while the generated low-
level code should be careful to avoid unintended integer
overflow. As a result, the setup may be too naive for our
running example rule ?𝑛 + 0 → 𝑛. When we get to reducing
fixed-precision-integer terms, we must be legalistic:

add_with_carry64 (?𝑛, 0) → (0, 𝑛) if 0 ≤ 𝑛 < 264

We developed a design pattern to handle this kind of rule.
First, we introduce a family of functions clip𝑙,𝑢 , each of

which forces its integer argument to respect lower bound 𝑙
and upper bound 𝑢. Partial evaluation is proved with respect
to unknown realizations of these functions, only requiring
that clip𝑙,𝑢 (𝑛) = 𝑛 when 𝑙 ≤ 𝑛 < 𝑢. Now, before we begin
partial evaluation, we can run a verified abstract interpreter
to find conservative bounds for each program variable.When
bounds 𝑙 and 𝑢 are found for variable 𝑥 , it is sound to replace
𝑥 with clip𝑙,𝑢 (𝑥). Therefore, at the end of this phase, we
assume all variable occurrences have been rewritten in this
manner to record their proved bounds.

Second, we proceed with our example rule refactored:

add_with_carry64 (clip′?𝑙,′?𝑢 (?𝑛), 0) → (0, clip𝑙,𝑢 (𝑛))
if 𝑢 < 264

If the abstract interpreter did its job, then all lower and upper
bounds are constants, and we can execute side conditions
straightforwardly during pattern matching.

5 Evaluation
Our implementation, attached to this submission as an anonymized
supplement with a roadmap in Appendix D, includes a mix
of Coq code for the proved core of rewriting, tactic code
for setting up proper use of that core, and OCaml plugin
code for the manipulations beyond the current capabilities
of the tactic language. We report here on experiments to
isolate performance benefits for rewriting under binders and
reducing higher-order structure.

5.1 Microbenchmarks
We start with microbenchmarks focusing attention on par-
ticular aspects of reduction and rewriting, with Appendix A
going into more detail.

5.1.1 Rewriting Under Binders
Consider let 𝑣1 := 𝑣0 + 𝑣0 + 0 in

.

.

.

let 𝑣𝑛 := 𝑣𝑛−1 + 𝑣𝑛−1 + 0 in

𝑣𝑛 + 𝑣𝑛 + 0

We want to remove all of the + 0s. We can start from this
expression directly, in which case reification alone takes as

10
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Figure 3. Timing of different partial-evaluation implementations

much time as setoid_rewrite. As the reification method
was not especially optimized, and there exist fast reification
methods [13], we instead start from a call to a recursive
function that generates such a sequence of let bindings.
Figure 3a shows the results. The comparison points are

Coq’s setoid_rewrite and rewrite_strat. The former
performs one rewrite at a time, taking minimal advantage
of commonalities across them and thus generating quite
large, redundant proof terms. The latter makes top-down or
bottom-up passes with combined generation of proof terms.
For our own approach, we list both the total time and the
time taken for core execution of a verified rewrite engine,
without counting reification (converting goals to ASTs) or its
inverse (interpreting results back to normal-looking goals).
The comparison here is very favorable for our approach.

The competing tactics spike upward toward timeouts at just a
few hundred generated binders, while our engine is only tak-
ing about 10 seconds for examples with 5,000 nested binders.
As detailed in subsection A.2, we ran a variant of this

experiment with inlining of lets, forcing terms to grow
quite large. Specifically, we generate 𝑛 nested lets, each
repeatedly adding a designated free variable into a sum,𝑚
times. Holding𝑚 fixed at a small value and letting 𝑛 scale, we
continue dominating the methods described above, though
Coq’s rewrite! tactic (to rewrite with one lemma many
times) does better for𝑚 < 2. Holding 𝑛 fixed and letting𝑚
scale, all other approaches quickly spike upward to timeouts,
while ours holds steady even for𝑚 = 1000.

5.1.2 Binders and Recursive Functions
The next experiment uses the following example.

map_dbl(ℓ) =
{
[] if ℓ = []
let 𝑦 := ℎ + ℎ in 𝑦 :: map_dbl(𝑡) if ℓ = ℎ :: 𝑡

make(𝑛,𝑚, 𝑣) =


[𝑣, . . . , 𝑣︸  ︷︷  ︸

𝑛

] if𝑚 = 0

map_dbl(make(𝑛,𝑚 − 1, 𝑣)) if𝑚 > 0
example𝑛,𝑚 = ∀𝑣, make(𝑛,𝑚, 𝑣) = []

Note that the let · · · in · · · binding blocks further reduc-
tion of map_dbl, which we iterate𝑚 times, and so we need
to take care to preserve sharing when reducing here.
Figure 3b compares performance between our approach,

repeat setoid_rewrite, and two variants of rewrite_strat.
Additionally, we consider another option, which was adopted
by Fiat Cryptography at a larger scale: rewrite our functions
to improve reduction behavior. Specifically, both functions
are rewritten in continuation-passing style, which makes
them harder to read and reason about but allows standard
VM-based reduction to achieve good performance. The fig-
ure shows that rewrite_strat variants are essentially un-
usable for this example, with setoid_rewrite performing
only marginally better, while our approach applied to the
original, more readable definitions loses ground steadily to
VM-based reduction on CPSed code. On the largest terms
(𝑛 ·𝑚 > 20, 000), the gap is 6s vs. 0.1s of compilation time,
which should often be acceptable in return for simplified cod-
ing and proofs, plus the ability to mix proved rewrite rules
with built-in reductions. See subsection A.3 for more on this
microbenchmark and subsection A.4 for an even more ex-
treme example of full reduction with a Sieve of Eratosthenes
as in the experiments of Aehlig et al. [1] (ours 10s, VM 0.3s).

5.2 Macrobenchmark: Fiat Cryptography
Finally, we consider an experiment (described in more detail
in Appendix B) replicating the generation of performance-
competitive finite-field-arithmetic code for all popular el-
liptic curves by Erbsen et al. [11]. In all cases, we generate
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essentially the same code as they did, so we only measure
performance of the code-generation process. We stage par-
tial evaluation with three different reduction engines (i.e.,
three Make invocations), respectively applying 85, 56, and
44 rewrite rules (with only 2 rules shared across engines),
taking total time of about 5 minutes to generate all three
engines. These engines support 95 distinct function symbols.
Figure 3c graphs running time of three different partial-

evaluation methods for Fiat Cryptography, as the prime mod-
ulus of arithmetic scales up. Times are normalized to the
performance of the original method, which relied entirely on
standard Coq reduction. Actually, in the course of running
this experiment, we found a way to improve the old approach
for a fairer comparison. It had relied on Coq’s configurable
cbv tactic to perform reduction with selected rules of the
definitional equality, which the Fiat Cryptography develop-
ers had applied to blacklist identifiers that should be left for
compile-time execution. By instead hiding those identifiers
behind opaque module-signature ascription, we were able to
run Coq’s more-optimized virtual-machine-based reducer.
As the figure shows, our approach running partial eval-

uation inside Coq’s kernel begins with about a 10× perfor-
mance disadvantage vs. the original method. With log scale
on both axes, we see that this disadvantage narrows to be-
come nearly negligible for the largest primes, of around 500
bits. (We used the same set of prime moduli as in the exper-
iments run by Erbsen et al. [11], which were chosen based
on searching the archives of an elliptic-curves mailing list
for all prime numbers.) It makes sense that execution inside
Coq leaves our new approach at a disadvantage, as we are
essentially running an interpreter (our normalizer) within
an interpreter (Coq’s kernel), while the old approach ran just
the latter directly. Also recall that the old approach required
rewriting Fiat Cryptography’s library of arithmetic functions
in continuation-passing style, enduring this complexity in
library correctness proofs, while our new approach applies
to a direct-style library. Finally, the old approach included a
custom reflection-based arithmetic simplifier for term syn-
tax, run after traditional reduction, whereas now we are
able to apply a generic engine that combines both, without
requiring more than proving traditional rewrite rules.
The figure also confirms clear performance advantage

of running reduction in code extracted to OCaml, which is
possible because our plugin produces verified code in Coq’s
functional language. By the time we reach middle-of-the-
pack prime size around 300 bits, the extracted version is
running about 10× as quickly as the baseline.

6 Related Work
We have already discussed the work of Aehlig et al. [1],
which introduced the basic structure that our engine shares,
but which required a substantially larger trusted code base,

did not tackle certain challenges in scaling to large partial-
evaluation problems, and did not report any performance
experiments in partial evaluation.
We have also mentioned Rtac [18], which implements an

experimental reflective version of rewrite_strat support-
ing arbitrary setoid relations, unification variables, and arbi-
trary semi-decidable side conditions solvable by other reflec-
tive tactics, using de Bruijn indexing to manage binders. We
were unfortunately unable to get the rewriter to work with
Coq 8.10 and were also not able to determine from the paper
how to repurpose the rewriter to handle our benchmarks.

Our implementation builds on fast full reduction in Coq’s
kernel, via a virtual machine [12] or compilation to native
code [5]. Especially the latter is similar in adopting an NbE
style for full reduction, simplifying even under 𝜆s, on top
of a more traditional implementation of OCaml that never
executes preemptively under 𝜆s. Neither approach unifies
support for rewriting with proved rules, and partial evalua-
tion only applies in very limited cases, where functions that
should not be evaluated at compile time must have prop-
erly opaque definitions that the evaluator will not consult.
Neither implementation involved a machine-checked proof
suitable to bootstrap on top of reduction support in a kernel
providing simpler reduction.
A variety of forms of pragmatic partial evaluation have

been demonstrated, with Lightweight Modular Staging [22]
in Scala as one of the best-known current examples. A kind
of type-based overloading for staging annotations is used to
smooth the rough edges in writing code that manipulates
syntax trees. The LMS-Verify system [2] can be used for for-
mal verification of generated code after-the-fact. Typically
LMS-Verify has been used with relatively shallow proper-
ties (though potentially applied to larger and more sophis-
ticated code bases than we tackle), not scaling to the kinds
of functional-correctness properties that concern us here,
justifying investment in verified partial evaluators.

7 Future Work
There are a number of natural extensions to our engine. For
instance, we do not yet allow pattern variables marked as
“constants only” to apply to container datatypes; we limit the
mixing of higher-order and polymorphic types, as well as
limiting use of first-class polymorphism; we do not support
proving equalities on functions; we only support decidable
predicates as rule side conditions, and the predicates may
only mention pattern variables restricted to matching con-
stants; we have hardcoded support for a small set of con-
tainer types and their eliminators; we support rewriting with
equality and no other relations (e.g., subset inclusion); and
we require decidable equality for all types mentioned in rules.
It may be helpful to design an engine that lifts some or all
of these limitations, building on the basic structure that we
present here.
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A Additional Information on
Microbenchmarks

We performed all benchmarks on a 3.5 GHz Core i7 running
Linux and Coq 8.10.0. We name the subsections here with
the names that show up in the code supplement.

A.1 UnderLetsPlus0
We provide more detail on the “nested binders” microbench-
mark of subsubsection 5.1.1 displayed in Figure 3a.

Recall that we are removing all of the + 0s from

let 𝑣1 := 𝑣0 + 𝑣0 + 0 in

.

.

.

let 𝑣𝑛 := 𝑣𝑛−1 + 𝑣𝑛−1 + 0 in

𝑣𝑛 + 𝑣𝑛 + 0

The code used to define this microbenchmark is
Definition make_lets_def (n:nat) (v acc : Z) :=
@nat_rect

(fun _ => Z * Z -> Z)
(fun '(v, acc) => acc + acc + v)
(fun _ rec '(v, acc) =>

dlet acc := acc + acc + v in rec (v, acc))
n
(v, acc).

We note some details of the rewriting framework that were
glossed over in the main body of the paper, which are use-
ful for using the code: Although the rewriting framework
does not support dependently typed constants, we can au-
tomatically preprocess uses of eliminators like nat_rect
and list_rect into non-dependent versions. The tactic that
does this preprocessing is extensible via Ltac’s reassignment
feature. Since pattern-matching compilation mixed with NbE
requires knowing how many arguments a constant can be
applied to, we must internally use a version of the recur-
sion principle whose type arguments do not contain arrows;
current preprocessing can handle recursion principles with
either no arrows or one arrow in the motive. Even though we
will eventually plug in 0 for 𝑣 , we jump through some extra
hoops to ensure that our rewriter cannot cheat by rewriting
away the + 0 before reducing the recursion on 𝑛.

We can reduce this expression in three ways.

A.1.1 Our Rewriter
One lemma is required for rewriting with our rewriter:
Lemma Z.add_0_r : forall z, z + 0 = z.

Creating the rewriter takes about 12 seconds on the ma-
chine we used for running the performance experiments:
Make myrew := Rewriter For
(Z.add_0_r, eval_rect nat, eval_rect prod).

Recall from subsection 1.1 that eval_rect is a definition
provided by our framework for eagerly evaluating recur-
sion associated with certain types. It functions by triggering

typeclass resolution for the lemmas reducing the recursion
principle associated to the given type. We provide instances
for nat, prod, list, option, and bool. Users may add more
instances if they desire.

A.1.2 setoid_rewrite and rewrite_strat

To give as many advantages as we can to the preexisting
work on rewriting, we pre-reduce the recursion on nats
using cbv before performing setoid_rewrite. (Note that
setoid_rewrite cannot itself perform reduction without
generating large proof terms, and rewrite_strat is not
currently capable of sequencing reduction with rewriting in-
ternally due to bugs such as #10923.) Rewriting itself is easy;
we may use any of repeat setoid_rewrite Z.add_0_r,
rewrite_strat topdown Z.add_0_r, or rewrite_strat
bottomup Z.add_0_r.

A.2 Plus0Tree
This is a version of subsection A.1 without any let binders,
discussed in subsubsection 5.1.1 but not displayed in Figure 3.

We use two definitions for this microbenchmark:

Definition iter (m : nat) (acc v : Z) :=
@nat_rect

(fun _ => Z -> Z)
(fun acc => acc)
(fun _ rec acc => rec (acc + v))
m
acc.

Definition make_tree (n m : nat) (v acc : Z) :=
Eval cbv [iter] in
@nat_rect

(fun _ => Z * Z -> Z)
(fun '(v, acc) => iter m (acc + acc) v)
(fun _ rec '(v, acc) =>

iter m (rec (v, acc) + rec (v, acc)) v)
n
(v, acc).

We can see from the graphs in Figure 4 and Figure 5 that
(a) we incur constant overhead over most of the other meth-
ods which dominates on small examples; (b) when the term
is quite large and there are few opportunities for rewriting
relative to the term-size (i.e., 𝑚 ≤ 2), we are worse than
rewrite !Z.add_0_r, but still better than the other meth-
ods; and (c) when there are many opportunities for rewriting
relative to the term-size (𝑚 > 2), we thoroughly dominate
the other methods.

A.3 LiftLetsMap
We now discuss in more detail the “binders and recursive
functions” example from subsubsection 5.1.2.
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Figure 4. Timing of different partial-evaluation implementations for Plus0Tree for fixed𝑚. Note that we have a logarithmic
time scale, because term size is proportional to 2𝑛 .
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(b) Timing of Plus0Tree (𝑛 = 2)
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(c) Timing of Plus0Tree (𝑛 = 9)

Figure 5. Timing of different partial-evaluation implementations for Plus0Tree for fixed 𝑛 (1, 2, and then we jump to 9)

The expression we want to get out at the end looks like:
let 𝑣1,1 := 𝑣 + 𝑣 in

...

let 𝑣1,𝑛 := 𝑣 + 𝑣 in

let 𝑣2,1 := 𝑣1,1 + 𝑣1,1 in

...

let 𝑣2,𝑛 := 𝑣1,𝑛 + 𝑣1,𝑛 in

...

[𝑣𝑚,1, . . . , 𝑣𝑚,𝑛]

Recall that we make this example with the code
Definition map_double (ls : list Z) :=

list_rect
_
[]
(𝜆 x xs rec, let y := x + x in y :: rec)
ls.

Definition make (n : nat) (m : nat) (v : Z) :=
nat_rect

_
(List.repeat v n)
(𝜆 _ rec, map_double rec)
m.
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We can perform this rewriting in four ways; see Figure 3b.
Note that rewrite_strat grows quite quickly, hitting a

minute when the total number of rewrites (𝑛 ·𝑚) is in the
mid-40s. Our method performs much better, but the fact that
we have to perform cbv at the end costs us; about 99% of
the difference between the full time of our method and just
the rewriting is spent in the final cbv at the end. This is due
to the unfortunate fact that reduction in Coq is quadratic in
the number of nested binders present; see Coq bug #11151.
Finally, and unsurprisingly, vm_compute outperforms us.

A.3.1 Our Rewriter
One lemma is required for rewriting with our rewriter:
Lemma eval_repeat A x n :
@List.repeat A x ('n)
= ident.eagerly nat_rect _

[]
(𝜆 k repeat_k, x :: repeat_k)
('n).

Recall that the apostrophe marker (') is explained in sub-
section 1.1. Recall again from subsection 1.1 that we use
ident.eagerly to ask the reducer to simplify a case of prim-
itive recursion by complete traversal of the designated argu-
ment’s constructor tree. Our current version only allows a
limited, hard-coded set of eliminators with ident.eagerly
(nat_rect on return types with either zero or one arrows,
list_rect on return types with either zero or one arrows,
and List.nth_default), but nothing in principle prevents
automatic generation of the necessary code.

We construct our rewriter with
Make myrew := Rewriter For
(eval_repeat, eval_rect list, eval_rect nat)
(with extra idents (Z.add)).

On the machine we used for running all our performance
experiments, this command takes about 13 seconds to run.
Note that all identifiers which appear in any goal to be rewrit-
ten must either appear in the type of one of the rewrite rules
or in the tuple passed to with extra idents.
Rewriting is relatively simple, now. Simply invoke the

tactic Rewrite_for myrew. We support rewriting on only
the left-hand-side and on only the right-hand-side using
either the tactic Rewrite_lhs_for myrew or else the tactic
Rewrite_rhs_for myrew, respectively.

A.3.2 rewrite_strat

To reduce adequately using rewrite_strat, we need the
following two lemmas:
Lemma lift_let_list_rect T A P N C (v : A) fls
: @list_rect T P N C (Let_In v fls)
= Let_In v (fun v => @list_rect T P N C (fls v)).

Lemma lift_let_cons T A x (v : A) f
: @cons T x (Let_In v f)
= Let_In v (fun v => @cons T x (f v)).

Note that Let_In is the constant we use for writing let
· · · in · · · expressions that do not reduce under 𝜁 . Through-
out most of this paper, anywhere that let · · · in · · · ap-
pears, we have actually used Let_In in the code. It would
alternatively be possible to extend the reification preproces-
sor to automatically convert let · · · in · · · to Let_In, but
this may cause problems when converting the interpretation
of the reified term with the pre-reified term, as Coq’s conver-
sion does not allow fine-tuning of when to inline or unfold
lets.

To rewrite, we start with cbv [example make map_dbl]
to expose the underlying term to rewriting. One would
hope that one could just add these two hints to a data-
base db and then write rewrite_strat (repeat (eval
cbn [list_rect]; try bottomup hints db)), but un-
fortunately this does not work due to a number of bugs
in Coq: #10934, #10923, #4175, #10955, and the potential to
hit #10972. Instead, we must put the two lemmas in sepa-
rate databases, and then write repeat (cbn [list_rect];
(rewrite_strat (try repeat bottomup hints db1));
(rewrite_strat (try repeat bottomup hints db2))).
Note that the rewriting with lift_let_cons can be done
either top-down or bottom-up, but rewrite_strat breaks if
the rewriting with lift_let_list_rect is done top-down.

A.3.3 CPS and the VM
If we want to use Coq’s built-in VM reduction without our
rewriter, to achieve the prior state-of-the-art performance,
we can do so on this example, because it only involves partial
reduction and not equational rewriting. However, wemust (a)
module-opacify the constants which are not to be unfolded,
and (b) rewrite all of our code in CPS.

Then we are looking at

map_dbl_cps(ℓ, 𝑘) =


𝑘 ( []) if ℓ = []
let 𝑦 := ℎ +ax ℎ in if ℓ = ℎ :: 𝑡
map_dbl_cps(𝑡,

(𝜆𝑦𝑠, 𝑘 (𝑦 :: 𝑦𝑠)))

make_cps(𝑛,𝑚, 𝑣, 𝑘) =


𝑘 ( [𝑣, . . . , 𝑣︸  ︷︷  ︸

𝑛

]) if𝑚 = 0

make_cps(𝑛,𝑚 − 1, 𝑣, if𝑚 > 0
(𝜆ℓ,map_dbl_cps(ℓ, 𝑘))

example_cps𝑛,𝑚 = ∀𝑣, make_cps(𝑛,𝑚, 𝑣, 𝜆𝑥 . 𝑥) = []

Then we can just run vm_compute. Note that this strategy,
while quite fast, results in a stack overflow when 𝑛 ·𝑚 is
larger than approximately 2.5 · 104. This is unsurprising, as
we are generating quite large terms. Our framework can
handle terms of this size but stack-overflows on only slightly
larger terms.
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Figure 6. Timing of different full-evaluation implementa-
tions for SieveOfEratosthenes

A.3.4 Takeaway
From this example, we conclude that rewrite_strat is un-
suitable for computations involving large terms with many
binders, especially in cases where reduction and rewriting
need to be interwoven, and that themany bugs in rewrite_strat
result in confusing gymnastics required for success. The
prior state of the art—writing code in CPS—suitably tweaked
by using module pacity to allow vm_compute, remains the
best performer here, though the cost of rewriting every-
thing is CPS may be prohibitive. Our method soundly beats
rewrite_strat. We are additionally bottlenecked on cbv,
which is used to unfold the goal post-rewriting and costs
about a minute on the largest of terms; see Coq bug #11151
for a discussion on what is wrong with Coq’s reduction here.

A.4 SieveOfEratosthenes
To benchmark how much overhead we add when we are
reducing fully, we compute the Sieve of Eratosthenes, tak-
ing inspiration on benchmark choice from Aehlig et al. [1].
We find in Figure 6 that we are slower than vm_compute,
native_compute, and cbv, but faster than lazy, and of course
much faster than simpl and cbn, which are quite slow.

We define the sieve using PositiveMap.t and list Z:

Definition sieve' (fuel : nat) (max : Z) :=
List.rev
(fst
(@nat_rect
(𝜆 _, list Z (* primes *) *
PositiveSet.t (* composites *) *
positive (* np (next_prime) *) ->
list Z (* primes *) *
PositiveSet.t (* composites *))
(𝜆 '(primes, composites, next_prime),
(primes, composites))
(𝜆 _ rec '(primes, composites, np),

rec
(if (PositiveSet.mem np composites ||

(Z.pos np >? max))%bool%Z
then
(primes, composites, Pos.succ np)
else
(Z.pos np :: primes,
List.fold_right
PositiveSet.add
composites
(List.map
(𝜆 n, Pos.mul (Pos.of_nat (S n)) np)
(List.seq 0 (Z.to_nat(max/Z.pos np)))),

Pos.succ np)))
fuel
(nil, PositiveSet.empty, 2%positive))).

Definition sieve (n : Z)
:= Eval cbv [sieve'] in sieve' (Z.to_nat n) n.

We need four lemmas and an additional instance to create
the rewriter:
Lemma eval_fold_right A B f x ls :
@List.fold_right A B f x ls
= ident.eagerly list_rect _ _

x
(𝜆 l ls fold_right_ls, f l fold_right_ls)
ls.

Lemma eval_app A xs ys :
xs ++ ys
= ident.eagerly list_rect A _

ys
(𝜆 x xs app_xs_ys, x :: app_xs_ys)
xs.

Lemma eval_map A B f ls :
@List.map A B f ls
= ident.eagerly list_rect _ _

[]
(𝜆 l ls map_ls, f l :: map_ls)
ls.

Lemma eval_rev A xs :
@List.rev A xs
= (@list_rect _ (fun _ => _))

[]
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(𝜆 x xs rev_xs, rev_xs ++ [x])%list
xs.

Scheme Equality for PositiveSet.tree.

Definition PositiveSet_t_beq
: PositiveSet.t -> PositiveSet.t -> bool

:= tree_beq.

Global Instance PositiveSet_reflect_eqb
: reflect_rel (@eq PositiveSet.t) PositiveSet_t_beq
:= reflect_of_brel

internal_tree_dec_bl internal_tree_dec_lb.

We then create the rewriter with

Make myrew := Rewriter For
(eval_rect nat, eval_rect prod, eval_fold_right,
eval_map, do_again eval_rev, eval_rect bool,
@fst_pair, eval_rect list, eval_app)
(with extra idents (Z.eqb, orb, Z.gtb,
PositiveSet.elements, @fst, @snd,
PositiveSet.mem, Pos.succ, PositiveSet.add,
List.fold_right, List.map, List.seq, Pos.mul,
S, Pos.of_nat, Z.to_nat, Z.div, Z.pos, O,
PositiveSet.empty))

(with delta).

To get cbn and simpl to unfold our term fully, we emit

Global Arguments Pos.to_nat !_ / .

B Additional Information on Fiat
Cryptography Benchmarks

It may also be useful to see performance results with absolute
times, rather than normalized execution ratios vs. the orig-
inal Fiat Cryptography implementation. Furthermore, the
benchmarks fit into four quite different groupings: elements
of the cross product of two algorithms (unsaturated Solinas
and word-by-word Montgomery) and bitwidths of target ar-
chitectures (32-bit or 64-bit). Here we provide absolute-time
graphs by grouping in Figure 7.

C Experience vs. Lean and setoid_rewrite
Although all of our toy examplesworkwith setoid_rewrite
or rewrite_strat (until the terms get too big), even the
smallest of examples in Fiat Cryptography fell over using
these tactics. When attempting to use rewrite_strat for
partial evaluation and rewriting on unsaturated Solinas with
1 limb on small primes (such as 29), we were able to get
rewrite_strat to finish after about 90 seconds. The bugs
in rewrite_strat made finding the right magic invoca-
tion quite painful, nonetheless; the invocation we settled on
involved sixteen consecutive calls to rewrite_strat with
varying arguments and strategies. Trying to synthesize code
for two limbs on slightly larger primes (such as 113, which
needs two limbs on a 64-bit machine) took about three hours.

The widely used primes tend to have around five to ten limbs;
we leave extrapolating this slowdown to the reader.

We have attached this experiment using rewrite_strat
as fiat_crypto_via_rewrite_strat.v, which is meant to
be run in emacs/PG from inside the fiat-crypto direc-
tory, or in coqc by setting COQPATH to the value emitted by
make printenv in fiat-crypto and then invoking the com-
mand coqc -q -R /path/to/fiat-crypto/src Crypto
/path/to/fiat_crypto_via_rewrite_strat.v. To test with
the two-limb prime 113, change of_string "2^5-3" 8 in
the definition of p to of_string "2^7-15" 64.
We also tried Lean, in the hopes that rewriting in Lean,

specifically optimized for performance, would be up to the
challenge. Although Lean performed about 30% better than
Coq on the 1-limb example, taking a bit under a minute, it did
not complete on the two-limb example even after four hours
(after which we stopped trying), and a five-limb example
was still going after 40 hours.

We have attached our experiments with running rewrite
in Lean on the Fiat Cryptography code as a supplement
as well. We used Lean version 3.4.2, commit cbd2b6686ddb,
Release. Run make in fiat-crypto-lean to run the one-limb
example; change open ex to open ex2 to try the two-limb
example, or to open ex5 to try the five-limb example.

D Reading the Code Supplement
Wehave attached both the code for implementing the rewriter,
as well as a copy of Fiat Cryptography adapted to use the
rewriting framework. Both code supplements build with Coq
8.9 and Coq 8.10, and they require that whichever OCaml
was used to build Coq be installed on the system to permit
building plugins. (If Coq was installed via opam, then the
correct version of OCaml will automatically be available.)
Both code bases can be built by running make in the top-level
directory.
The performance data for both repositories are included

at the top level as .txt and .csv files.
The performance data for the microbenchmarks can be re-

built using make perf-SuperFast perf-Fast perf-Medium
followed by make perf-csv to get the .txt and .csv files.
The microbenchmarks should run in about 24 hours when
run with -j5 on a 3.5 GHz machine. There also exist targets
perf-Slow and perf-VerySlow, but these take significantly
longer.
The performance data for the macrobenchmark can be

rebuilt from the Fiat Cryptography copy included by running
make perf -k. We ran this with PERF_MAX_TIME=3600 to
allow each benchmark to run for up to an hour; the default is
10 minutes per benchmark. Expect the benchmarks to take
over a week of time with an hour timeout and five cores.
Some tests are expected to fail, making -k a necessary flag.
Again, the perf-csv target will aggregate the logs and turn
them into .txt and .csv files.
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Figure 7. Timing of different partial-evaluation implementations for Fiat Cryptography as prime modulus grows

The entry point for the rewriter is the Coq source file
rewriter/src/Rewriter/Util/plugins/RewriterBuild.v.

The rewrite rules used in Fiat Cryptography are defined in
fiat-crypto/src/Rewriter/Rules.v and proven in fiat-
crypto/src/Rewriter/RulesProofs.v. Note that the Fiat
Cryptography copy uses COQPATH for dependency manage-
ment, and .dir-locals.el to set COQPATH in emacs/PG;
you must accept the setting when opening a file in the direc-
tory for interactive compilation to work. Thus interactive
editing either requires ProofGeneral or manual setting of

COQPATH. The correct value of COQPATH can be found by run-
ning make printenv.

We will now go through this paper and describe where to
find each reference in the code base.

D.1 Code from section 1, Introduction
D.1.1 Code from subsection 1.1, A Motivating

Example
The prefixSums example appears in the Coq source file
rewriter/src/Rewriter/Rewriter/Examples/PrefixSums.v.
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Note that we use dlet rather than let in binding acc’ so
that we can preserve the let binder even under 𝜄 reduction,
which much of Coq’s infrastructure performs eagerly. Be-
cause we attempt to isolate the dependency on the axiom
of functional extensionality as much as possible, we also
in practice require Proper instances for each higher-order
identifier saying that each constant respects function exten-
sionality. We hope to remove the dependency on function
extensionality altogether in the future. Although we glossed
over this detail in the body of this paper, we also prove
Global Instance: forall A B,
Proper ((eq ==> eq ==> eq) ==> eq ==> eq ==> eq)

(@fold_left A B).

The Make command is exposed in the file rewriter/src/
Rewriter/Util/plugins/RewriterBuild.v and defined in
the OCaml file rewriter/src/Rewriter/Util/plugins/
rewriter_build_plugin.mlg. Note that onemust run make
to create this latter file; it is copied over from a version-
specific file at the beginning of the build.

The do_again, eval_rect, and ident.eagerly constants
are defined at the bottom ofmodule RewriteRuleNotations
in rewriter/src/Rewriter/Language/Pre.v.

D.1.2 Code from subsection 1.2, Concerns of
Trusted-Code-Base Size

There is no code mentioned in this section.

D.1.3 Code from subsection 1.3, Our Solution
We claimed that our solution meets five criteria. We briefly
justify each criterion with a sentence or a pointer to code:

• We claimed that we did not grow the trusted base
(excepting the axiom of functional extensionality). In
any example file (of which a couple can be found
in rewriter/src/Rewriter/Rewriter/Examples/),
the Make command creates a rewriter package. Run-
ning Print Assumptions on this new constant (often
named rewriter or myrew) should demonstrate a lack
of axioms other than functional extensionality. Print
Assumptionsmay also be run on the proof that results
from using the rewriter.

• We claimed fast partial evaluation with reasonable
memory use; we assume that the performance graphs
stand on their own to support this claim. Note that
memory usage can be observed by making the bench-
marks while passing TIMED=1 to make.

• We claimed to allow reduction that mixes rules of the
definitional equality with equalities proven explicitly as
theorems; the “rules of the definitional equality” are,
for example, 𝛽 reduction, and we assert that it should
be self-evident that our rewriter supports this.

• We claimed common-subterm sharing preservation.
This is implemented by supporting the use of the dlet
notationwhich is defined in rewriter/src/Rewriter/

Util/LetIn.v via the Let_In constant. We will come
back to the infrastructure that supports this.

• We claimed extraction of standalone partial eval-
uators. The extraction is performed in the Coq source
file perf_unsaturated_solinas.v, in the source file
perf_word_by_word_montgomery.v, and in the source
files saturated_solinas.v, unsaturated_solinas.v,
and word_by_word_montgomery.v, all in the direc-
tory fiat-crypto/src/ExtractionOCaml/. TheOCaml
code can be extracted and built using the target make
standalone-ocaml (or make perf-standalone for
the perf_ binaries). There may be some issues with
building these binaries on Windows as some versions
of ocamlopt on Windows seem not to support out-
putting binaries without the .exe extension.

The P-384 curve is mentioned. This is the curve with prime
modulus 2384 − 2128 − 296 + 232 − 1, and the benchmarks for
this curve can be found in the files matching the glob fiat-
crypto/src/Rewriter/PerfTesting/Specific/generated/
p2384m2128m296p232m1__*__word_by_word_montgomery_*.
While the .log files are included in the tarball, the .v and
.sh files are automatically generated in the course of running
make perf -k.

We mention integration with abstract interpretation; the
abstract-interpretation pass is implemented in fiat-crypto/
src/AbstractInterpretation/.

D.2 Code from section 2, Trust, Reduction, and
Rewriting

The individual rewritings mentioned are implemented via
the Rewrite_* tactics exported at the top of rewriter/src/
Rewriter/Util/plugins/RewriterBuild.v. These tactics
bottom out in tactics defined at the bottom of rewriter/
src/Rewriter/Rewriter/AllTactics.v.

D.2.1 Code from subsection 2.1, Our Approach in
Nine Steps

We match the nine steps with functions from the source
code:

1. The given lemma statements are scraped for which
named functions and types the rewriter package will
support. This is performed by rewriter_scrape_data
in the file rewriter/src/Rewriter/Util/plugins/
rewriter_build.ml which invokes the tactic named
make_scrape_data in a submodule in rewriter/src/
Rewriter/Language/IdentifiersBasicGenerate.v
on a goal headed by the constant we provide under the
name Pre.ScrapedData.t_with_args in rewriter/
src/Rewriter/Language/PreCommon.v.

2. Inductive types enumerating all available primitive
types and functions are emitted. This step is performed
by rewriter_emit_inductives in file rewriter/src/
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Rewriter/Util/plugins/rewriter_build.ml invok-
ing tactics, like make_base_elim in rewriter/src/
Rewriter/Language/IdentifiersBasicGenerate.v,
on goals headed by constants from rewriter/src/
Rewriter/Language/IdentifiersBasicLibrary.v, in-
cluding base_elim_with_args for example, to turn
scraped data into eliminators for the inductives. The
actual emitting of inductives is performed by code
in the file rewriter/src/Rewriter/Util/plugins/
inductive_from_elim.ml.

3. Tactics generate all of the necessary definitions and
prove all of the necessary lemmas for dealing with
this particular set of inductive codes. This step is per-
formed by make_rewriter_of_scraped_and_ind in
the source file rewriter/src/Rewriter/Util/plugins/
rewriter_build.mlwhich invokes make_rewriter_all
defined in the file rewriter/src/Rewriter/Rewriter/
AllTactics.v on a goal headed by the provided con-
stant VerifiedRewriter_with_ind_args defined in
rewriter/src/Rewriter/Rewriter/ProofsCommon.v.
The definitions emitted can be found by looking at the
tactic Build_Rewriter in rewriter/src/Rewriter/
Rewriter/AllTactics.v, the tactics build_package
in the source file rewriter/src/Rewriter/Language/
IdentifiersBasicGenerate.v and also in the Coq
source file found in rewriter/src/Rewriter/Language/
IdentifiersGenerate.v (there is a different tactic
named build_package in each of these files), and
the tactic prove_package_proofs_via which can be
found in the Coq source file rewriter/src/Rewriter/
Language/IdentifiersGenerateProofs.v.

4. The statements of rewrite rules are reified, and we
prove soundness and syntactic-well-formedness lem-
mas about each of them. This step is performed as part
of the previous step, when the tactic make_rewriter_all
transitively calls Build_Rewriter from rewriter/src/
Rewriter/Rewriter/AllTactics.v. Reification is han-
dled by the tactic Build_RewriterT in rewriter/src/
Rewriter/Rewriter/Reify.v, while soundness and
syntactic-well-formedness are handled by the tactics
prove_interp_good and prove_good respectively, both
in the source file rewriter/src/Rewriter/Rewriter/
ProofsCommonTactics.v.

5. The definitions needed to perform reification and rewrit-
ing and the lemmas needed to prove correctness are
assembled into a single package that can be passed
by name to the rewriting tactic. This step is also per-
formed by make_rewriter_of_scraped_and_ind in
the source file rewriter/src/Rewriter/Util/plugins/
rewriter_build.ml.

When we want to rewrite with a rewriter package in a
goal, the following steps are performed, with code in the
following places:

1. We rearrange the goal into a single logical formula:
all free-variable quantification in the proof context is
replaced by changing the equality goal into an equal-
ity between two functions (taking the free variables
as inputs). Note that it is not actually an equality be-
tween two functions but rather an equiv between two
functions, where equiv is a custom relation we define
indexed over type codes that is equality up to func-
tion extensionality. This step is performed by the tac-
tic generalize_hyps_for_rewriting in rewriter/
src/Rewriter/Rewriter/AllTactics.v.

2. We reify the side of the goal we want to simplify, using
the inductive codes in the specified package. That side
of the goal is then replaced with a call to a denotation
function on the reified version. This step is performed
by the tactic do_reify_rhs_with in rewriter/src/
Rewriter/Rewriter/AllTactics.v.

3. We use a theorem stating that rewriting preserves
denotations of well-formed terms to replace the de-
notation subterm with the denotation of the rewriter
applied to the same reified term. We use Coq’s built-in
full reduction (vm_compute) to reduce the application
of the rewriter to the reified term. This step is per-
formed by the tactic do_rewrite_with in rewriter/
src/Rewriter/Rewriter/AllTactics.v.

4. Finally, we run cbv (a standard call-by-value reducer)
to simplify away the invocation of the denotation
function on the concrete syntax tree from rewriting.
This step is performed by the tactic do_final_cbv in
rewriter/src/Rewriter/Rewriter/AllTactics.v.

These steps are put together in the tactic Rewrite_for_gen
in rewriter/src/Rewriter/Rewriter/AllTactics.v.

D.2.2 Our Approach in More Than Nine Steps
As the nine steps of subsection 2.1 do not exactly match
the code, we describe here a more accurate version of what
is going on. For ease of readability, we do not clutter this
description with references to the code supplement, instead
allowing the reader to match up the steps here with the more
coarse-grained ones in subsection 2.1 or subsubsection D.2.1.
In order to allow easy invocation of our rewriter, a great

deal of code (about 6500 lines) needed to be written. Some of
this code is about reifying rewrite rules into a form that the
rewriter can deal with them in. Other code is about proving
that the reified rewrite rules preserve interpretation and are
well-formed. We wrote some plugin code to automatically
generate the inductive type of base-type codes and identifier
codes, as well as the two variants of the identifier-code in-
ductive used internally in the rewriter. One interesting bit of
code that resulted was a plugin that can emit an inductive
declaration given the Church encoding (or eliminator) of the
inductive type to be defined. We wrote a great deal of tactic
code to prove basic properties about these inductive types,
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from the fact that one can unify two identifier codes and
extract constraints on their type variables from this unifi-
cation, to the fact that type codes have decidable equality.
Additional plugin code was written to invoke the tactics
that construct these definitions and prove these properties,
so that we could generate an entire rewriter from a single
command, rather than having the user separately invoke
multiple commands in sequence.

In order to build the precomputed rewriter, the following
actions are performed:

1. The terms and types to be supported by the rewriter
package are scraped from the given lemmas.

2. An inductive type of codes for the types is emitted,
and then three different versions of inductive codes for
the identifiers are emitted (one with type arguments,
one with type arguments supporting pattern type vari-
ables, and one without any type arguments, to be used
internally in pattern-matching compilation).

3. Tactics generate all of the necessary definitions and
prove all of the necessary lemmas for dealing with
this particular set of inductive codes. Definitions cover
categories like “Boolean equality on type codes” and
“how to extract the pattern type variables from a given
identifier code,” and lemma categories include “type
codes have decidable equality” and “the types being
coded for have decidable equality” and “the identifiers
all respect function extensionality.”

4. The rewrite rules are reified, andwe prove interpretation-
correctness and well-formedness lemmas about each
of them.

5. The definitions needed to perform reification and rewrit-
ing and the lemmas needed to prove correctness are
assembled into a single package that can be passed by
name to the rewriting tactic.

6. The denotation functions for type and identifier codes
are marked for early expansion in the kernel via the
Strategy command; this is necessary for conversion
at Qed-time to perform reasonably on enormous goals.

When we want to rewrite with a rewriter package in a
goal, the following steps are performed:

1. We use etransitivity to allow rewriting separately
on the left- and right-hand-sides of an equality. Note
that we do not currently support rewriting in non-
equality goals, but this is easily worked around using
let v := open_constr:(_) in replace <some
term> with v and then rewriting in the second goal.

2. We revert all hypotheses mentioned in the goal, and
change the form of the goal from a universally quanti-
fied statement about equality into a statement that two
functions are extensionally equal. Note that this step
will fail if any hypotheses are functions not known to
respect function extensionality via typeclass search.

3. We reify the side of the goal that is not an existen-
tial variable using the inductive codes in the specified
package; the resulting goal equates the denotation of
the newly reified term with the original evar.

4. We use a lemma stating that rewriting preserves de-
notations of well-formed terms to replace the goal
with the rewriter applied to our reified term. We use
vm_compute to prove the well-formedness side condi-
tion reflectively. We use vm_compute again to reduce
the application of the rewriter to the reified term.

5. Finally, we run cbv to unfold the denotation function,
andwe instantiate the evarwith the resulting rewritten
term.

There are a couple of steps that contribute to the trusted
base. We must trust that the rewriter package we generate
from the rewrite rules in fact matches the rewrite rules we
want to rewrite with. This involves partially trusting the
scraper, the reifier, and the glue code. We must also trust
the VM we use for reduction at various points in rewriting.
Otherwise, everything is checked by Coq. We do, however,
depend on the axiom of function extensionality in one place
in the rewriter proof; after spending a couple of hours trying
to remove this axiom, we temporarily gave up.

D.3 Code from section 3, The Structure of a
Rewriter

The expression language 𝑒 corresponds to the inductive expr
type defined in module Compilers.expr in rewriter/src/
Rewriter/Language/Language.v.

D.3.1 Code from subsection 3.1, Pattern-Matching
Compilation and Evaluation

The pattern -atching compilation step is done by the tactic
CompileRewrites in rewriter/src/Rewriter/Rewriter/
Rewriter.v, which just invokes theGallina definition named
compile_rewriteswith ever-increasing amounts of fuel un-
til it succeeds. (It should never fail for reasons other than
insufficient fuel, unless there is a bug in the code.) The
workhorse function of this code is compile_rewrites_step.

The decision-tree evaluation step is done by the defini-
tion eval_rewrite_rules, also in the file rewriter/src/
Rewriter/Rewriter/Rewriter.v. The correctness lemmas
are eval_rewrite_rules_correct in the file rewriter/
src/Rewriter/Rewriter/InterpProofs.v and the theo-
rem wf_eval_rewrite_rules in rewriter/src/Rewriter/
Rewriter/Wf.v. Note that the second of these lemmas, not
mentioned in the paper, is effectively saying that for two
related syntax trees, eval_rewrite_rules picks the same
rewrite rule for both. (We actually prove a slightly weaker
lemma, which is a bit harder to state in English.)

The third step of rewriting with a given rule is performed
by the definition rewrite_with_rule in rewriter/src/
Rewriter/Rewriter/Rewriter.v. The correctness proof is
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interp_rewrite_with_rule in rewriter/src/Rewriter/
Rewriter/InterpProofs.v. Note that the well-formedness-
preservation proof for this definition in inlined into the proof
wf_eval_rewrite_rules mentioned above.

The inductive description of decision trees is decision_tree
in rewriter/src/Rewriter/Rewriter/Rewriter.v.

The pattern language is defined as the inductive pattern
in rewriter/src/Rewriter/Rewriter/Rewriter.v. Note
that we have a Raw version and a typed version; the pattern-
matching compilation and decision-tree evaluation of Aehlig
et al. [1] is an algorithm on untyped patterns and untyped
terms. We found that trying to maintain typing constraints
led to headaches with dependent types. Therefore when
doing the actual decision-tree evaluation, we wrap all of our
expressions in the dynamically typed rawexpr type and all
of our patterns in the dynamically typed Raw.pattern type.
We also emit separate inductives of identifier codes for each
of the expr, pattern, and Raw.pattern type families.
We partially evaluate the partial evaluator defined by

eval_rewrite_rules in the tactic make_rewrite_head in
rewriter/src/Rewriter/Rewriter/Reify.v.

D.3.2 Code from subsection 3.2, Adding
Higher-Order Features

The type NbE𝑡 mentioned in this paper is not actually used in
the code; the version we have is described in subsection 4.2 as
the definition value' in rewriter/src/Rewriter/Rewriter/
Rewriter.v.

The functions reify and reflect are defined in rewriter/
src/Rewriter/Rewriter/Rewriter.v and share nameswith
the functions in the paper. The function reduce is named
rewrite_bottomup in the code, and the closest match to
NbE is rewrite.

D.4 Code from section 4, Scaling Challenges
D.4.1 Code from subsection 4.1, Variable

Environments Will Be Large
The inductives type, base_type (actually the inductive type
base.type.type in the supplemental code), and expr, as
well as the definition Expr, are all defined in rewriter/src/
Rewriter/Language/Language.v. The definition denoteT
is the fixpoint type.interp (the fixpoint interp in the mod-
ule type) in rewriter/src/Rewriter/Language/Language.v.
The definition denoteE is expr.interp, and DenoteE is the
fixpoint expr.Interp.

As mentioned above, nbeT does not actually exist as stated
but is close to value' in rewriter/src/Rewriter/Rewriter/
Rewriter.v. The functions reify and reflect are defined
in rewriter/src/Rewriter/Rewriter/Rewriter.v and share
names with the functions in the paper. The actual code is
somewhat more complicated than the version presented

in the paper, due to needing to deal with converting well-
typed-by-construction expressions to dynamically typed ex-
pressions for use in decision-tree evaluation and also due
to the need to support early partial evaluation against a
concrete decision tree. Thus the version of reflect that
actually invokes rewriting at base types is a separate defi-
nition assemble_identifier_rewriters, while reify in-
vokes a version of reflect (named reflect) that does not
call rewriting. The function named reduce is what we call
rewrite_bottomup in the code; the name Rewrite is shared
between this paper and the code. Note that we eventually in-
stantiate the argument rewrite_head of rewrite_bottomup
with a partially evaluated version of the definition named
assemble_identifier_rewriters. Note also that we use
fuel to support do_again, and this is used in the definition
repeat_rewrite that calls rewrite_bottomup.

The correctness theorems are InterpRewrite in rewriter/
src/Rewriter/Rewriter/InterpProofs.v and Wf_Rewrite
in rewriter/src/Rewriter/Rewriter/Wf.v.
Packages containing rewriters and their correctness the-

orems are in the record VerifiedRewriter in rewriter/
src/Rewriter/Rewriter/ProofsCommon.v; a package of
this type is then passed to the tactic Rewrite_for_gen from
rewriter/src/Rewriter/Rewriter/AllTactics.v to per-
form the actual rewriting. The correspondence of the code
to the various steps in rewriting is described in the second
list of subsubsection D.2.1.

D.4.2 Code from subsection 4.2, Subterm Sharing is
Crucial

To run the P-256 example in the copy of Fiat Cryptography
attached as a code supplement, after building the library, run
the code

Require Import Crypto.Rewriter.PerfTesting.Core.
Require Import Crypto.Util.Option.

Import WordByWordMontgomery.
Import Core.RuntimeDefinitions.

Definition p : params
:= Eval compute in invert_Some

(of_string "2^256-2^224+2^192+2^96-1" 64).

Goal True.
(* Successful run: *)
Time let v := (eval cbv

-[Let_In
runtime_nth_default
runtime_add
runtime_sub
runtime_mul
runtime_opp
runtime_div
runtime_modulo
RT_Z.add_get_carry_full
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RT_Z.add_with_get_carry_full
RT_Z.mul_split]

in (GallinaDefOf p)) in
idtac.

(* Unsuccessful OOM run: *)
Time let v := (eval cbv

-[(*Let_In*)
runtime_nth_default
runtime_add
runtime_sub
runtime_mul
runtime_opp
runtime_div
runtime_modulo
RT_Z.add_get_carry_full
RT_Z.add_with_get_carry_full
RT_Z.mul_split]

in (GallinaDefOf p)) in
idtac.

Abort.

The UnderLets monad is defined in the file rewriter/
src/Rewriter/Language/UnderLets.v.

The definitions nbeT', nbeT, and nbeT_with_lets are in
rewriter/src/Rewriter/Rewriter/Rewriter.v and are
named value', value, and value_with_lets, respectively.

D.4.3 Code from subsection 4.3, Rules Need Side
Conditions

The “variant of pattern variable that only matches constants”
is actually special support for the reification of ident.literal
(defined in themodule RewriteRuleNotations in rewriter/
src/Rewriter/Language/Pre.v) threaded throughout the
rewriter. The apostrophe notation ' is also introduced in the
module RewriteRuleNotations in rewriter/src/Rewriter/
Language/Pre.v. The support for side conditions is handled
by permitting rewrite-rule-replacement expressions to re-
turn option expr instead of expr, allowing the function
expr_to_pattern_and_replacement in the file rewriter/
src/Rewriter/Rewriter/Reify.v to fold the side condi-
tions into a choice of whether to return Some or None.

D.4.4 Code from subsection 4.4, Side Conditions
Need Abstract Interpretation

The abstract-interpretation pass is defined in fiat-crypto/
src/AbstractInterpretation/, and the rewrite rules han-
dling abstract-interpretation results are the Gallina defi-
nitions arith_with_casts_rewrite_rulesT, in addition
to strip_literal_casts_rewrite_rulesT, in addition to
fancy_with_casts_rewrite_rulesT, and finally in addi-
tion to mul_split_rewrite_rulesT, all defined in fiat-
crypto/src/Rewriter/Rules.v.
The clip function is the definition ident.cast in fiat-

crypto/src/Language/PreExtra.v.

D.5 Code from section 5, Evaluation
D.5.1 Code from subsection 5.1, Microbenchmarks
This code is found in the files in rewriter/src/Rewriter/
Rewriter/Examples/. We ran the microbenchmarks using
the code in rewriter/src/Rewriter/Rewriter/Examples/
PerfTesting/Harness.v togetherwith some Makefile clev-
erness. The file names correspond to the section titles in
Appendix A.

D.5.2 Code from subsection 5.2, Macrobenchmark:
Fiat Cryptography

The rewrite rules are defined in fiat-crypto/src/Rewriter/
Rules.v and proven in the file fiat-crypto/src/Rewriter/
RulesProofs.v. They are turned into rewriters in the vari-
ous files in fiat-crypto/src/Rewriter/Passes/. The shared
inductives and definitions are defined in the Coq source files
fiat-crypto/src/Language/IdentifiersBasicGENERATED.v,
fiat-crypto/src/Language/IdentifiersGENERATED.v, and
fiat-crypto/src/Language/IdentifiersGENERATEDProofs.v.
Note that we invoke the subtactics of the Make command
manually to increase parallelism in the build and to allow a
shared language across multiple rewriter packages.
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