
A Limited Case for Reification by Type Inference

Jason Gross

CoqPL 2021

Abstract

Proof by reflection is a common and well-studied automation tool.
Reification—generally written using Ltac , OCaml, typeclasses, or canoni-
cal structures—is the means by which a structured representation is de-
rived from an unstructured representation. The reflective automation then
operates on the structured representation, relying on an interpretation or
denotation function to justify a correspondence between the structured
and unstructured representations.

A couple of years ago, I presented a trick for blazing fast reification
in two lines of Ltac—using the pattern tactic—which I termed reification
by parametricity. While I still advocate for parametricity as the preferred
method of domain-specific reification, I would like to present here yet
another method.

While reification typically requires meta-programming features, I was
surprised and delighted to discover that, in some restricted cases, reifica-
tion can be performed entirely by a combination of the notation system
and type inference. In some sense, this is trivial: by redefining the basic
syntactic notations, a term can be “reified” merely by writing the same
symbols in another scope. In another sense, though, this trick is quite
surprising: we use the notation system merely to insert “reify here” func-
tions at every atom, and the reification itself is in fact performed by type
inference. My hope is that the audience will walk away with this new
trick in their toolbox, and that some day some problem will come along
demanding a slight generalization of this trick, and that generalization will
be new and interesting in its own right. This, after all, is how reification
by parametricity was discovered.

I propose to present the one example I have for this trick: reifying
the type structure of a function in a way that allows manipulations of the
arguments, such as uncurrying, reassociation of the uncurried structure,
and reordering. I will present the simple code for this example in detail.
My goal will be that the audience understand completely how it works,
why it works, and how it might be used elsewhere.

We reproduce the code here without explanation on the following page.

1



Inductive curry_types := ccons (A : Type) (rest : curry_types) | cnil.

Fixpoint denoteCurried (A : curry_types) : Type :=

match A with

| cnil => unit

| ccons A As => A * denoteCurried As

end.

Definition curry {A As B} (f : A -> denoteCurried As -> B)

: denoteCurried (ccons A As) -> B

:= fun ’(a, b) => f a b.

Fixpoint denoteCurried_rev’ (A : curry_types) (so_far : Type) : Type

:= match A with

| cnil => so_far

| ccons A As => denoteCurried_rev’ As (so_far * A)

end.

Definition denoteCurried_rev (A : curry_types) : Type

:= match A with

| cnil => unit

| ccons A As => denoteCurried_rev’ As A

end.

Fixpoint curry_rev’ {T} (A : curry_types) (so_far : Type)

: denoteCurried_rev’ A so_far -> (so_far * denoteCurried A -> T) -> T

:= match A with

| cnil => fun v k => k (v, tt)

| ccons A As => fun v k => curry_rev’ As _ v (fun ’(sf, a, v) => k (sf, (a, v)))

end.

Definition curry_rev {T} (A : curry_types)

: denoteCurried_rev A -> (denoteCurried A -> T) -> T

:= match A with

| cnil => fun v k => k v

| ccons A As => fun v k => curry_rev’ As A v k

end.

Definition rev_curry {A B} (f : denoteCurried A -> B) : denoteCurried_rev A -> B

:= fun v => curry_rev _ v f.

Notation "’->curry’ x , .. , y => v"

:= (curry (fun x => .. (curry (fun y (_ : denoteCurried cnil) => v)) .. ))

(at level 200, x closed binder, y closed binder, v at level 100).

Eval cbv -["+"] in ->curry x, y, z, w => x + y + z + w.

(* = fun ’(a, (a0, (a1, (a2, _)))) => a + a0 + a1 + a2

: denoteCurried (ccons nat (ccons nat (ccons nat (ccons nat cnil)))) -> nat *)

Eval cbv -["+"] in rev_curry (->curry x, y, z, w => x + y + z + w).

(* = fun ’(sf1, a1, a0, a) => sf1 + a1 + a0 + a

: denoteCurried_rev (ccons nat (ccons nat (ccons nat (ccons nat cnil)))) ->

nat *)

2


