1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

A Framework for Building Verified Partial Evaluators 1:27

C ADDITIONAL INFORMATION ON MICROBENCHMARKS

We performed all benchmarks on a 3.5 GHz Intel Haswell running Linux and Coq 8.10.0. We name
the subsections here with the names that show up in the code supplement.

C.1 UnderLetsPlus0

We provide more detail on the “nested binders” microbenchmark of subsubsection 5.1.2 displayed
in Figure 4b.
Recall that we are removing all of the + Os from

let v1 :==0vg+0g+0 in

let v, :==vy—-1 +0p-1+0 in

op+o,+0

The code used to define this microbenchmark is
Definition make_lets_def (n:nat) (v acc : Z) :=
@nat_rect (fun _ =>Z x Z -> Z)
(fun '(v, acc) => acc + acc + v)
(fun _ rec '(v, acc) =>
dlet acc := acc + acc + v in rec (v, acc))
n
(v, acc).
We note some details of the rewriting framework that were glossed over in the main body of the
paper, which are useful for using the code: Although the rewriting framework does not support
dependently typed constants, we can automatically preprocess uses of eliminators like nat_rect
and list_rect into non-dependent versions. The tactic that does this preprocessing is extensible
via L,.’s reassignment feature. Since pattern-matching compilation mixed with NbE requires
knowing how many arguments a constant can be applied to, we must internally use a version of
the recursion principle whose type arguments do not contain arrows; current preprocessing can
handle recursion principles with either no arrows or one arrow in the motive. Even though we will
eventually plug in 0 for v, we jump through some extra hoops to ensure that our rewriter cannot
cheat by rewriting away the + 0 before reducing the recursion on n.
We can reduce this expression in three ways.

C.1.1  Our Rewriter. One lemma is required for rewriting with our rewriter:
Lemma Z.add_Q_r : forall z, z + 0 = z.

Creating the rewriter takes about 12 seconds on the machine we used for running the performance
experiments:
Make myrew := Rewriter For (Z.add_o_r, eval_rect nat, eval_rect prod).
Recall from subsection 1.1 that eval_rect is a definition provided by our framework for eagerly
evaluating recursion associated with certain types. It functions by triggering typeclass resolution
for the lemmas reducing the recursion principle associated to the given type. We provide instances
for nat, prod, 1list, option, and bool. Users may add more instances if they desire.

C.1.2 setoid_rewrite and rewrite_strat. To give as many advantages as we can to the pre-
existing work on rewriting, we pre-reduce the recursion on nats using cbv before performing
setoid_rewrite. (Note that setoid_rewrite cannot itself perform reduction without generat-
ing large proof terms, and rewrite_strat is not currently capable of sequencing reduction with

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1:28

Anon.

rewriting internally due to bugs such as #10923.) Rewriting itself is easy; we may use any of
repeat setoid_rewrite Z.add_0_r, rewrite_strat topdown Z.add_0_r, or rewrite_strat

bottomup Z.add_o_r.

C.2 PlusOTree

This is a version of subsection C.1 without any let binders, discussed in subsubsection 5.1.1 but not

displayed in Figure 4.
We use two definitions for this microbenchmark:
Definition iter (m : nat) (acc v : Z) :=
@nat_rect (fun _ => Z -> Z)
(fun acc => acc)
(fun _ rec acc => rec (acc + v))
m
acc.
Definition make_tree (n m : nat) (v acc : Z) :=
Eval cbv [iter] in
@nat_rect (fun _ => Z x Z -> Z)
(fun '(v, acc) => iter m (acc + acc) v)

(fun _ rec '(v, acc) =>

iter m (rec (v, acc) + rec (v, acc)) v)
n
(v, acc).

C.3 LiftLetsMap

We now discuss in more detail the “binders and recursive functions” example from subsubsec-

tion 5.1.4.
The expression we want to get out at the end looks like:

let v3; :=0v+v in

v+0 in

let vy, :

let vg1 =011 +011 in

let vy, =01, +01, in

[Um,l’ cees Um,n]
Recall that we make this example with the code

Definition map_double (ls : list Z) :=

list_rect _ [] (A x xs rec, lety :=x + x iny :: rec) ls.
Definition make (n : nat) (m : nat) (v : Z) :=

nat_rect _ (List.repeat v n) (A _ rec, map_double rec) m.

We can perform this rewriting in four ways; see Figure 4c.

C.3.1 Our Rewriter. One lemma is required for rewriting with our rewriter:
Lemma eval_repeat A x n

: @List.repeat A x ('n) = ident.eagerly nat_rect _ [] (1 k repeat_k, x ::

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

repeat_k) ('n).



1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

A Framework for Building Verified Partial Evaluators 1:29

Recall that the apostrophe marker (') is explained in subsection 1.1. Recall again from subsection 1.1
that we use ident.eagerly to ask the reducer to simplify a case of primitive recursion by complete
traversal of the designated argument’s constructor tree. Our current version only allows a limited,
hard-coded set of eliminators with ident.eagerly (nat_rect on return types with either zero or
one arrows, list_rect on return types with either zero or one arrows, and List.nth_default),
but nothing in principle prevents automatic generation of the necessary code.

We construct our rewriter with

Make myrew := Rewriter For (eval_repeat, eval_rect list, eval_rect nat)
(with extra idents (Z.add)).

On the machine we used for running all our performance experiments, this command takes about
13 seconds to run. Note that all identifiers which appear in any goal to be rewritten must either
appear in the type of one of the rewrite rules or in the tuple passed to with extra idents.
Rewriting is relatively simple, now. Simply invoke the tactic Rewrite_for myrew. We sup-
port rewriting on only the left-hand-side and on only the right-hand-side using either the tactic
Rewrite_lhs_for myrew or else the tactic Rewrite_rhs_for myrew, respectively.

C.3.2 rewrite_strat. To reduce adequately using rewrite_strat, we need the following two
lemmas:

Lemma lift_let_list_rect TAPNC (v : A) fls

: @list_rect TP NC (Let_In v fls) = Let_In v (fun v => @list_rect TP N C (fls v)).
Lemma 1ift_let_cons T A x (v : A) f

: @ons T x (Let_In v f) = Let_In v (fun v => @cons T x (f v)).

Note that Let_In is the constant we use for writing let --- in -.- expressions that do not
reduce under . Throughout most of this paper, anywhere that let --- in --- appears, we
have actually used Let_In in the code. It would alternatively be possible to extend the reification
preprocessor to automatically convert let --- in --- to Let_In, but this may cause problems
when converting the interpretation of the reified term with the pre-reified term, as Coq’s conversion
does not allow fine-tuning of when to inline or unfold lets.

To rewrite, we start with cbv [example make map_dbl] to expose the underlying term to
rewriting. One would hope that one could just add these two hints to a database db and then
write rewrite_strat (repeat (eval cbn [list_rect]; try bottomup hints db)), but un-
fortunately this does not work due to a number of bugs in Coq: #10934, #10923, #4175, #10955,
and the potential to hit #10972. Instead, we must put the two lemmas in separate databases,
and then write repeat (cbn [list_rect]; (rewrite_strat (try repeat bottomup hints
db1)); (rewrite_strat (try repeat bottomup hints db2))). Note that the rewriting with
lift_let_cons can be done either top-down or bottom-up, but rewrite_strat breaks if the
rewriting with 1ift_let_list_rect is done top-down.

C.3.3 CPS and the VM. If we want to use Coq’s built-in VM reduction without our rewriter, to
achieve the prior state-of-the-art performance, we can do so on this example, because it only
involves partial reduction and not equational rewriting. However, we must (a) module-opacify the
constants which are not to be unfolded, and (b) rewrite all of our code in CPS.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

1:30 Anon.

Then we are looking at
k([D ife =]
let y:=h+,xh in iff=h:t
map_dbl_cps(t,

(Ays, k(y =2 ys)))

map_dbl_cps(¢, k) =

k([o,...,0]) ifm=0
———
make_cps(n, m,v,k) = n )
make_cps(n,m — 1,0, ifm>0

(A¢, map_dbl_cps(#, k))
example_cps,, ,, = Yo, make_cps(n, m,v,Ax. x) = []

Then we can just run vm_compute. Note that this strategy, while quite fast, results in a stack
overflow when n - m is larger than approximately 2.5-10%. This is unsurprising, as we are generating
quite large terms. Our framework can handle terms of this size but stack-overflows on only slightly
larger terms.

C.3.4 Takeaway. From this example, we conclude that rewrite_strat is unsuitable for computa-
tions involving large terms with many binders, especially in cases where reduction and rewriting
need to be interwoven, and that the many bugs in rewrite_strat result in confusing gymnastics
required for success. The prior state of the art—writing code in CPS—suitably tweaked by using
module pacity to allow vm_compute, remains the best performer here, though the cost of rewriting
everything is CPS may be prohibitive. Our method soundly beats rewrite_strat. We are addi-
tionally bottlenecked on cbv, which is used to unfold the goal post-rewriting and costs about a
minute on the largest of terms; see Coq bug #11151 for a discussion on what is wrong with Coq’s
reduction here.

C.4 SieveOfEratosthenes

We define the sieve using PositiveMap.t and list Z:
Definition sieve' (fuel : nat) (max : Z) :=
List.rev
(fst
(@nat_rect
(A _, list Z (x primes *) *
PositiveSet.t (* composites *) *
positive (* np (next_prime) *) ->
list Z (x primes *) *
PositiveSet.t (* composites *))
(A '(primes, composites, next_prime),
(primes, composites))
(A _ rec '(primes, composites, np),
rec
(if (PositiveSet.mem np composites ||
(Z.pos np >? max))%bool%Z

then

(primes, composites, Pos.succ np)
else

(Z.pos np :: primes,

List.fold_right

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



A Framework for Building Verified Partial Evaluators 1:31

1471 PositiveSet.add
1472 composites
1473 (List.map
1474 (A n, Pos.mul (Pos.of_nat (S n)) np)
1475 (List.seq @ (Z.to_nat(max/Z.pos np)))),
1476 Pos.succ np)))
1477 fuel
(nil, PositiveSet.empty, 2%positive))).
1478
1479 pefinition sieve (n : Z)
1480 := Eval cbv [sieve'] in sieve' (Z.to_nat n) n.
1481 .. . .
a0 We need four lemmas and an additional instance to create the rewriter:

14g3  Lemma eval_fold_right A B f x 1s :
@List.fold_right A B f x 1ls

1484
= ident.eagerly list_rect _ _

1485

X
1486 (1 1 1s fold_right_ls, f 1 fold_right_ls)
1487

1s.
1488

1489 Lemma eval_app A xs ys :
1490 XS ++ ys

1491 = ident.eagerly list_rect A _

1492 ys

1493 (A X XS app_XS_ys, X :: app_XS_ys)
1494 XS.

1495

Lemma eval_map A B f 1s :

1496 .
1407 @List.map A B f 1s

= ident.eagerly list_rect _ _
1498 []
1499 (A1 1s map_ls, f 1 :: map_ls)
1500 1s.
1501

1502 Lemma eval_rev A xs :
1503 @List.rev A xs

1504 = (@list_rect _ (fun _ => _))

1505 {1

1506 (A x xs rev_xs, rev_xs ++ [x])%list

1507 XS

1;22 Scheme Equality for PositiveSet.tree.

1510 pefinition PositiveSet_t_beq

1511 : PositiveSet.t -> PositiveSet.t -> bool

1512 := tree_beq.

1513

1514 Global Instance PositiveSet_reflect_egb

1515 : reflect_rel (@eq PositiveSet.t) PositiveSet_t_beq
1516 := reflect_of_brel

1517 internal_tree_dec_bl internal_tree_dec_1b.
1518 We then create the rewriter with

1519

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1:32 Anon.

1520  Make myrew := Rewriter For

1521 (eval_rect nat, eval_rect prod, eval_fold_right,
1522 eval_map, do_again eval_rev, eval_rect bool,
1523 @fst_pair, eval_rect list, eval_app)

(with extra idents (Z.egb, orb, Z.gtb,
PositiveSet.elements, @fst, @snd,
PositiveSet.mem, Pos.succ, PositiveSet.add,
List.fold_right, List.map, List.seq, Pos.mul,

S, Pos.of_nat, Z.to_nat, Z.div, Z.pos, O,
PositiveSet.empty))

1529 (with delta).

1530

1531 To get cbn and simpl to unfold our term fully, we emit
1532

1524
1525
1526
1527
1528

1533 Global Arguments Pos.to_nat !_ / .

1534

1535 D EXPERIENCE VS. LEAN AND SETOID_REWRITE

1536 Although all of our toy examples work with setoid_rewrite or rewrite_strat (until the terms
1537 get too big), even the smallest of examples in Fiat Cryptography fell over using these tactics. When
1538 attempting to use rewrite_strat for partial evaluation and rewriting on unsaturated Solinas
1539 with 1 limb on small primes (such as 29), we were able to get rewrite_strat to finish after about
1540 90 seconds. The bugs in rewrite_strat made finding the right magic invocation quite painful,
1541 ponetheless; the invocation we settled on involved sixteen consecutive calls to rewrite_strat with
1542 yarying arguments and strategies. Trying to synthesize code for two limbs on slightly larger primes
1543 (such as 113, which needs two limbs on a 64-bit machine) took about three hours. The widely used
1544 primes tend to have around five to ten limbs; we leave extrapolating this slowdown to the reader.
1545 We have attached this experiment using rewrite_stratasfiat_crypto_via_rewrite_strat.v,
1546 which is meant to be run in emacs/PG from inside the fiat-crypto directory, or in coqc by setting
1547 COQPATH to the value emitted by make printenvin fiat-crypto and then invoking the command
1548 coqc -q -R /path/to/fiat-crypto/src Crypto /path/to/fiat_crypto_via_rewrite_strat.v.
1549 To test with the two-limb prime 113, change of_string "275-3" 8 in the definition of p to
1550 of_string "2%7-15" 64.

1551 We also tried Lean, in the hopes that rewriting in Lean, specifically optimized for performance,
1552 would be up to the challenge. Although Lean performed about 30% better than Coq on the 1-limb
1553 example, taking a bit under a minute, it did not complete on the two-limb example even after four
1554 hours (after which we stopped trying), and a five-limb example was still going after 40 hours.

1555 We have attached our experiments with running rewrite in Lean on the Fiat Cryptography
1556 code as a supplement as well. We used Lean version 3.4.2, commit cbd2b6686ddb, Release. Run
1557 make in fiat-crypto-lean to run the one-limb example; change open ex to open ex2 to try the

1558 two-limb example, or to open ex5 to try the five-limb example.
1559

1560

- E READING THE CODE SUPPLEMENT

1562 We have attached both the code for implementing the rewriter, as well as a copy of Fiat Cryptography
153 adapted to use the rewriting framework. Both code supplements build with Coq 8.9 and Coq 8.10,
1562 and they require that whichever OCaml was used to build Coq be installed on the system to
1565 permit building plugins. (If Coq was installed via opam, then the correct version of OCaml will
1566 automatically be available.) Both code bases can be built by running make in the top-level directory.
1567 The performance data for both repositories are included at the top level as . txt and . csv files.

1568
Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

A Framework for Building Verified Partial Evaluators 1:33

The performance data for the microbenchmarks can be rebuilt using make perf-SuperFast
perf-Fast perf-Medium followed by make perf-csv to get the .txt and .csv files. The mi-
crobenchmarks should run in about 24 hours when run with -j5 on a 3.5 GHz machine. There also
exist targets perf-Slow and perf-VerySlow, but these take significantly longer.

The performance data for the macrobenchmark can be rebuilt from the Fiat Cryptography
copy included by running make perf -k. We ran this with PERF_MAX_TIME=3600 to allow each
benchmark to run for up to an hour; the default is 10 minutes per benchmark. Expect the benchmarks
to take over a week of time with an hour timeout and five cores. Some tests are expected to fail,
making -k a necessary flag. Again, the perf-csv target will aggregate the logs and turn them into
.txt and .csv files.

The entry point for the rewriter is the Coq source file rewriter/src/Rewriter/Util/plugins/
RewriterBuild.v.

The rewrite rules used in Fiat Cryptography are defined in fiat-crypto/src/Rewriter/Rules.v
and proven in fiat-crypto/src/Rewriter/RulesProofs.v. Note that the Fiat Cryptography
copy uses COQPATH for dependency management, and .dir-locals.el to set COQPATH in emacs/
PG; you must accept the setting when opening a file in the directory for interactive compilation
to work. Thus interactive editing either requires ProofGeneral or manual setting of COQPATH. The
correct value of COQPATH can be found by running make printenv.

We will now go through this paper and describe where to find each reference in the code base.

E.1 Code from section 1, Introduction

E.1.1 Code from subsection 1.1, A Motivating Example. The prefixSums example appears in the
Coq source file rewriter/src/Rewriter/Rewriter/Examples/PrefixSums.v. Note that we use
dlet rather than let in binding acc' so that we can preserve the let binder even under  reduction,
which much of Coq’s infrastructure performs eagerly. Because we attempt to isolate the dependency
on the axiom of functional extensionality as much as possible, we also in practice require Proper
instances for each higher-order identifier saying that each constant respects function extensionality.
We hope to remove the dependency on function extensionality altogether in the future. Although
we glossed over this detail in the body of this paper, we also prove

Global Instance: forall A B,
Proper ((eq ==> eq ==> eq) ==> eq ==> eq ==> eq)
(efold_left A B).

The Make command is exposed in rewriter/src/Rewriter/Util/plugins/RewriterBuild.v
and defined in rewriter/src/Rewriter/Util/plugins/rewriter_build_plugin.mlg. Note that
one must run make to create this latter file; it is copied over from a version-specific file at the
beginning of the build.

The do_again, eval_rect, and ident.eagerly constants are defined at the bottom of module
RewriteRuleNotations in rewriter/src/Rewriter/Language/Pre.v.

E.1.2 Code from subsection 1.2, Concerns of Trusted-Code-Base Size. There is no code mentioned
in this section.

E.1.3  Code from subsection 1.3, Our Solution. We claimed that our solution meets five criteria. We
briefly justify each criterion with a sentence or a pointer to code:

o We claimed that we did not grow the trusted base (excepting the axiom of functional
extensionality). In any example file (of which a couple can be found in rewriter/src/
Rewriter/Rewriter/Examples/), the Make command creates a rewriter package. Running

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

1:34 Anon.

Print Assumptions on this new constant (often named rewriter or myrew) should demon-
strate a lack of axioms other than functional extensionality. Print Assumptions may also
be run on the proof that results from using the rewriter.

e We claimed fast partial evaluation with reasonable memory use; we assume that the per-
formance graphs stand on their own to support this claim. Note that memory usage can be
observed by making the benchmarks while passing TIMED=1 to make.

e We claimed to allow reduction that mixes rules of the definitional equality with equalities
proven explicitly as theorems; the “rules of the definitional equality” are, for example, f
reduction, and we assert that it should be self-evident that our rewriter supports this.

o We claimed common-subterm sharing preservation. This is implemented by supporting
the use of the dlet notation which is defined in rewriter/src/Rewriter/Util/LetIn.v
via the Let_In constant. We will come back to the infrastructure that supports this.

e We claimed extraction of standalone partial evaluators. The extraction is performed in
the files perf_unsaturated_solinas.v and perf_word_by_word_montgomery.v, and the
files saturated_solinas.v, unsaturated_solinas.v, and word_by_word_montgomery.v,
all in the directory fiat-crypto/src/ExtractionOCaml/. The OCaml code can be extracted
and built using the target make standalone-ocaml (or make perf-standalone for the
perf_ binaries). There may be some issues with building these binaries on Windows as
some versions of ocamlopt on Windows seem not to support outputting binaries without
the . exe extension.

The P-384 curve is mentioned. This is the curve with modulus 2384 — 2128 — 296 4 932 _ 1. jts
benchmarks can be found in files matching the glob fiat-crypto/src/Rewriter/PerfTesting/
Specific/generated/p2384m2128m296p232m1__*__word_by_word_montgomery_x*. The output
.log files are included in the tarball; the .v and . sh files are automatically generated in the course
of running make perf -k.

We mention integration with abstract interpretation; the abstract-interpretation pass is imple-

mented in fiat-crypto/src/AbstractInterpretation/.

E.2 Code from section 2, Trust, Reduction, and Rewriting

The individual rewritings mentioned are implemented via the Rewrite_x tactics exported at the
top of rewriter/src/Rewriter/Util/plugins/RewriterBuild.v. These tactics bottom out in
tactics defined at the bottom of rewriter/src/Rewriter/Rewriter/AllTactics.v.

E.2.1  Code from subsection 2.1, Our Approach in Nine Steps. We match the nine steps with functions
from the source code:

(1) The given lemma statements are scraped for which named functions and types the rewriter
package will support. This is performed by rewriter_scrape_data in the file rewriter/
src/Rewriter/Util/plugins/rewriter_build.ml which invokes the £, tactic named
make_scrape_data in a submodule in the source file rewriter/src/Rewriter/Language/
IdentifiersBasicGenerate.v onagoal headed by the constant we provide under the name
Pre.ScrapedData.t_with_args in rewriter/src/Rewriter/Language/PreCommon.v.

(2) Inductive types enumerating all available primitive types and functions are emitted. This
step is performed by rewriter_emit_inductives in file rewriter/src/Rewriter/Util/
plugins/rewriter_build.ml invoking tactics, like make_base_elim in rewriter/src/
Rewriter/Language/IdentifiersBasicGenerate.v, on goals headed by constants from
rewriter/src/Rewriter/Language/IdentifiersBasicLibrary.yv,including the constant
base_elim_with_args for example, to turn scraped data into eliminators for the inductives.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



A Framework for Building Verified Partial Evaluators 1:35

1667 The actual emitting of inductives is performed by code in the file rewriter/src/Rewriter/
1668 Util/plugins/inductive_from_elim.ml.

1669 (3) Tactics generate all of the necessary definitions and prove all of the necessary lemmas
1670 for dealing with this particular set of inductive codes. This step is performed by the tactic
1671 make_rewriter_of_scraped_and_ind in the source file rewriter/src/Rewriter/Util/
1672 plugins/rewriter_build.ml which invokes the tactic make_rewriter_all defined in
1673 the file rewriter/src/Rewriter/Rewriter/AllTactics.v on a goal headed by the pro-
1674 vided constant VerifiedRewriter_with_ind_args defined in rewriter/src/Rewriter/
1675 Rewriter/ProofsCommon.v. The definitions emitted can be found by looking at the tactic
1676 Build_Rewriter in rewriter/src/Rewriter/Rewriter/AllTactics.v, the L, tactics
1677 build_packageinrewriter/src/Rewriter/Language/IdentifiersBasicGenerate.vand
1678 also in rewriter/src/Rewriter/Language/IdentifiersGenerate.v (there is a different
1679 tactic named build_package in each of these files), and prove_package_proofs_via which
1680 can be found in rewriter/src/Rewriter/Language/IdentifiersGenerateProofs.v.

1681 (4) The statements of rewrite rules are reified and soundness and syntactic-well-formedness
1682 lemmas are proven about each of them. This is done as part of the previous step, when the tac-
1683 tic make_rewriter_all transitively calls Build_Rewriter from rewriter/src/Rewriter/
1684 Rewriter/AllTactics.v.Reification is handled by the tacticBuild_RewriterTinrewriter/
1685 src/Rewriter/Rewriter/Reify.v, while soundness and the syntactic-well-formedness
1686 proofs are handled by the tactics prove_interp_good and prove_good respectively, both in
1687 the source file rewriter/src/Rewriter/Rewriter/ProofsCommonTactics.v.

1688 (5) The definitions needed to perform reification and rewriting and the lemmas needed to prove
1689 correctness are assembled into a single package that can be passed by name to the rewriting
1690 tactic. This step is also performed by make_rewriter_of_scraped_and_ind in the source
1691 file rewriter/src/Rewriter/Util/plugins/rewriter_build.ml.

1692

1693 When we want to rewrite with a rewriter package in a goal, the following steps are performed,

1604  with code in the following places:

1695

1696 (1) We rearrange the goal into a closed logical formula: all free-variable quantification in the
1607 proof context is replaced by changing the equality goal into an equality between two functions
1608 (taking the free variables as inputs). Note that it is not actually an equality between two

functions but rather an equiv between two functions, where equiv is a custom relation
we define indexed over type codes that is equality up to function extensionality. This step
is performed by the tactic generalize_hyps_for_rewritingin rewriter/src/Rewriter/
Rewriter/AllTactics.v.

(2) We reify the side of the goal we want to simplify, using the inductive codes in the specified
package. That side of the goal is then replaced with a call to a denotation function on the
reified version. This step is performed by the tactic do_reify_rhs_with in rewriter/src/
Rewriter/Rewriter/AllTactics.v.

(3) We use a theorem stating that rewriting preserves denotations of well-formed terms to
replace the denotation subterm with the denotation of the rewriter applied to the same
reified term. We use Coq’s built-in full reduction (vm_compute) to reduce the application of
the rewriter to the reified term. This step is performed by the tactic do_rewrite_with in

1 rewriter/src/Rewriter/Rewriter/AllTactics.v.

1712 (4) Finally, we run cbv (a standard call-by-value reducer) to simplify away the invocation of the

denotation function on the concrete syntax tree from rewriting. This step is performed by

the tactic do_final_cbv in rewriter/src/Rewriter/Rewriter/AllTactics.v.

1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

1713
1714
1715

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

1:36 Anon.

These steps are put together in the tactic Rewrite_for_geninrewriter/src/Rewriter/Rewriter/
AllTactics.v.

E.2.2  Our Approach in More Than Nine Steps. As the nine steps of subsection 2.1 do not exactly
match the code, we describe here a more accurate version of what is going on. For ease of readabil-
ity, we do not clutter this description with references to the code supplement, instead allowing
the reader to match up the steps here with the more coarse-grained ones in subsection 2.1 or
subsubsection E.2.1.

In order to allow easy invocation of our rewriter, a great deal of code (about 6500 lines) needed
to be written. Some of this code is about reifying rewrite rules into a form that the rewriter can
deal with them in. Other code is about proving that the reified rewrite rules preserve interpretation
and are well-formed. We wrote some plugin code to automatically generate the inductive type of
base-type codes and identifier codes, as well as the two variants of the identifier-code inductive
used internally in the rewriter. One interesting bit of code that resulted was a plugin that can emit
an inductive declaration given the Church encoding (or eliminator) of the inductive type to be
defined. We wrote a great deal of tactic code to prove basic properties about these inductive types,
from the fact that one can unify two identifier codes and extract constraints on their type variables
from this unification, to the fact that type codes have decidable equality. Additional plugin code
was written to invoke the tactics that construct these definitions and prove these properties, so
that we could generate an entire rewriter from a single command, rather than having the user
separately invoke multiple commands in sequence.

In order to build the precomputed rewriter, the following actions are performed:

(1) The terms and types to be supported by the rewriter package are scraped from the given
lemmas.

(2) An inductive type of codes for the types is emitted, and then three different versions of
inductive codes for the identifiers are emitted (one with type arguments, one with type
arguments supporting pattern type variables, and one without any type arguments, to be
used internally in pattern-matching compilation).

(3) Tactics generate all of the necessary definitions and prove all of the necessary lemmas for
dealing with this particular set of inductive codes. Definitions cover categories like “Boolean
equality on type codes” and “how to extract the pattern type variables from a given identifier
code,” and lemma categories include “type codes have decidable equality” and “the types being
coded for have decidable equality” and “the identifiers all respect function extensionality.”

(4) The rewrite rules are reified, and we prove interpretation-correctness and well-formedness
lemmas about each of them.

(5) The definitions needed to perform reification and rewriting and the lemmas needed to prove
correctness are assembled into a single package that can be passed by name to the rewriting
tactic.

(6) The denotation functions for type and identifier codes are marked for early expansion in the
kernel via the Strategy command; this is necessary for conversion at Qed-time to perform
reasonably on enormous goals.

When we want to rewrite with a rewriter package in a goal, the following steps are performed:

(1) We use etransitivity to allow rewriting separately on the left- and right-hand-sides of an
equality. Note that we do not currently support rewriting in non-equality goals, but this is
easily worked around using let v := open_constr:(_) in replace <some term> with
v and then rewriting in the second goal.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

A Framework for Building Verified Partial Evaluators 1:37

(2) We revert all hypotheses mentioned in the goal, and change the form of the goal from a
universally quantified statement about equality into a statement that two functions are
extensionally equal. Note that this step will fail if any hypotheses are functions not known
to respect function extensionality via typeclass search.

(3) We reify the side of the goal that is not an existential variable using the inductive codes in
the specified package; the resulting goal equates the denotation of the newly reified term
with the original evar.

(4) We use a lemma stating that rewriting preserves denotations of well-formed terms to replace
the goal with the rewriter applied to our reified term. We use vm_compute to prove the well-
formedness side condition reflectively. We use vm_compute again to reduce the application
of the rewriter to the reified term.

(5) Finally, we run cbv to unfold the denotation function, and we instantiate the evar with the
resulting rewritten term.

There are a couple of steps that contribute to the trusted base. We must trust that the rewriter
package we generate from the rewrite rules in fact matches the rewrite rules we want to rewrite
with. This involves partially trusting the scraper, the reifier, and the glue code. We must also trust
the VM we use for reduction at various points in rewriting. Otherwise, everything is checked by
Coq. We do, however, depend on the axiom of function extensionality in one place in the rewriter
proof; after spending a couple of hours trying to remove this axiom, we temporarily gave up.

E.3 Code from section 3, The Structure of a Rewriter

The expression language e corresponds to the inductive expr type defined in module Compilers.expr
in rewriter/src/Rewriter/Language/Language.v.

E.3.1  Code from subsection 3.1, Pattern-Matching Compilation and Evaluation. The pattern-matching
compilation step is done by the tactic CompileRewrites in rewriter/src/Rewriter/Rewriter/
Rewriter.v, which just invokes the Gallina definition named compile_rewrites with ever-
increasing amounts of fuel until it succeeds. (It should never fail for reasons other than insufficient
fuel, unless there is a bug in the code.) The workhorse function here is compile_rewrites_step.

The decision-tree evaluation step is done by the definition eval_rewrite_rules, also in the
file rewriter/src/Rewriter/Rewriter/Rewriter.v. The correctness lemmas are the theorem
eval_rewrite_rules_correct inthe file rewriter/src/Rewriter/Rewriter/InterpProofs.v
and the theorem wf_eval_rewrite_rules in rewriter/src/Rewriter/Rewriter/Wf.v. Note
that the second of these lemmas, not mentioned in the paper, is effectively saying that for two
related syntax trees, eval_rewrite_rules picks the same rewrite rule for both. (We actually prove
a slightly weaker lemma, which is a bit harder to state in English.)

The third step of rewriting with a given rule is performed by the definition rewrite_with_rule
in rewriter/src/Rewriter/Rewriter/Rewriter.v. The correctness proof goes by the name
interp_rewrite_with_ruleinrewriter/src/Rewriter/Rewriter/InterpProofs.v.Note that
the well-formedness-preservation proof for this definition in inlined into the proof of the lemma
wf_eval_rewrite_rules mentioned above.

The inductive description of decision trees is decision_tree in rewriter/src/Rewriter/
Rewriter/Rewriter.v.

The pattern language is defined as the inductive patterninrewriter/src/Rewriter/Rewriter/
Rewriter.v. Note that we have a Raw version and a typed version; the pattern-matching compi-
lation and decision-tree evaluation of Aehlig et al. [2008] is an algorithm on untyped patterns
and untyped terms. We found that trying to maintain typing constraints led to headaches with
dependent types. Therefore when doing the actual decision-tree evaluation, we wrap all of our

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1:38 Anon.

1814 expressions in the dynamically typed rawexpr type and all of our patterns in the dynamically
1815 typed Raw.pattern type. We also emit separate inductives of identifier codes for each of the expr,
1816 pattern, and Raw.pattern type families.

1817 We partially evaluate the partial evaluator defined by eval_rewrite_rules in the L, tactic
1818 make_rewrite_head in rewriter/src/Rewriter/Rewriter/Reify.v.
1819

E.3.2 Code from subsection 3.2, Adding Higher-Order Features. The type NbE,; mentioned in this
paper is not actually used in the code; the version we have is described in subsection 4.2 as the
definition value' in rewriter/src/Rewriter/Rewriter/Rewriter.v.

The functions reify and reflect are defined in rewriter/src/Rewriter/Rewriter/Rewriter.v
and share names with the functions in the paper. The function reduce is named rewrite_bottomup
in the code, and the closest match to NbE is rewrite.

1820
1821
1822
1823
1824
1825
"% E4 Code from section 4, Scaling Challenges

1827
E.4.1  Code from subsection 4.1, Variable Environments Will Be Large. The inductives type, base_type

(actually the inductive type base. type. type in the supplemental code), and expr, as well as the
definition Expr, are all defined in rewriter/src/Rewriter/Language/Language.v. The defini-
tion denoteT is the fixpoint type.interp (the fixpoint interp in the module type) in rewriter/
src/Rewriter/Language/Language.v. The definition denotek is expr.interp, and DenoteE is
the fixpoint expr. Interp.

As mentioned above, nbeT does not actually exist as stated but is close to value' in rewriter/
src/Rewriter/Rewriter/Rewriter.v.The functions reify and reflect are definedin rewriter/
src/Rewriter/Rewriter/Rewriter.v and share names with the functions in the paper. The actual
code is somewhat more complicated than the version presented in the paper, due to needing to
deal with converting well-typed-by-construction expressions to dynamically typed expressions
for use in decision-tree evaluation and also due to the need to support early partial evaluation
against a concrete decision tree. Thus the version of reflect that actually invokes rewriting at base
types is a separate definition assemble_identifier_rewriters, while reify invokes a version
of reflect (named reflect) that does not call rewriting. The function named reduce is what we
call rewrite_bottomup in the code; the name Rewrite is shared between this paper and the code.
Note that we eventually instantiate the argument rewrite_head of rewrite_bottomup with a
partially evaluated version of the definition named assemble_identifier_rewriters. Note also
that we use fuel to support do_again, and this is used in the definition repeat_rewrite that calls
rewrite_bottomup.

The correctness proofs are InterpRewrite in the Coq source file rewriter/src/Rewriter/
Rewriter/InterpProofs.v and Wf_Rewrite in rewriter/src/Rewriter/Rewriter/Wf.v.

Packages containing rewriters and their correctness theorems are in the record VerifiedRewriter
in rewriter/src/Rewriter/Rewriter/ProofsCommon.v;a package of this type is then passed to
the tactic Rewrite_for_gen from rewriter/src/Rewriter/Rewriter/AllTactics.v to perform
the actual rewriting. The correspondence of the code to the various steps in rewriting is described
in the second list of subsubsection E.2.1.

1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854

185 F.4.2 Code from subsection 4.2, Subterm Sharing is Crucial. To run the P-256 example in the copy
1856 of Fiat Cryptography attached as a code supplement, after building the library, run the code

1857 Require Import Crypto.Rewriter.PerfTesting.Core.

1858 Require Import Crypto.Util.Option.

1859
1860 Import WordByWordMontgomery.
1861 Import Core.RuntimeDefinitions.
1862
Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



A Framework for Building Verified Partial Evaluators 1:39

1863
18¢4 Definition p : params
1865 := Eval compute in invert_Some (of_string "2%256-2%224+2%192+2%96-1" 64).
1866
Goal True.
(* Successful run: %)
Time let v := (eval cbv
-[Let_In
runtime_nth_default
runtime_add runtime_sub runtime_mul runtime_opp runtime_div runtime_modulo

1867
1868
1869
1870
1871

1872 RT_Z.add_get_carry_full RT_Z.add_with_get_carry_full RT_Z.mul_split]
1873 in (GallinaDefOf p)) in

1874 idtac.

1875 (* Unsuccessful OOM run: x)

1876 Time let v := (eval cbv

1877 -[(*Let_In*)

runtime_nth_default
runtime_add runtime_sub runtime_mul runtime_opp runtime_div runtime_modulo
RT_Z.add_get_carry_full RT_Z.add_with_get_carry_full RT_Z.mul_split]

in (GallinaDefOf p)) in

idtac.

1882 Abort.
1883

1878
1879
1880
1881

The UnderlLets monad is defined in the file rewriter/src/Rewriter/Language/UnderlLets.v.
The definitions nbeT', nbeT, and nbeT_with_lets are in rewriter/src/Rewriter/Rewriter/
Rewriter.v and are named value', value, and value_with_lets, respectively.

1884
1885
1886
1887 E.4.3 Code from subsection 4.3, Rules Need Side Conditions. The “variant of pattern variable
1885 that only matches constants” is actually special support for the reification of ident.literal
1889  (defined in the module RewriteRuleNotations in rewriter/src/Rewriter/Language/Pre.v)
1890 threaded throughout the rewriter. The apostrophe notation ' is also introduced in the module
1891 RewriteRuleNotations in rewriter/src/Rewriter/Language/Pre.v. The support for side con-
1892 ditions is handled by permitting rewrite-rule-replacement expressions to return option expr
1893 instead of expr, allowing the function expr_to_pattern_and_replacement in the file rewriter/
1894 src/Rewriter/Rewriter/Reify.v to fold the side conditions into a choice of whether to return
1895 Some or None.

1896 . . . . . .
E.4.4 Code from subsection 4.4, Side Conditions Need Abstract Interpretation. The abstract-interpretation

pass is defined in fiat-crypto/src/AbstractInterpretation/, and the rewrite rules handling
abstract-interpretation results are the Gallina definitions arith_with_casts_rewrite_rulesT, as
wellasstrip_literal_casts_rewrite_rulesT,aswellas fancy_with_casts_rewrite_rulesT,
and finally as well as mul_split_rewrite_rulesT, all defined in fiat-crypto/src/Rewriter/
Rules.v.

The clip function is the definition ident.cast in fiat-crypto/src/Language/PreExtra.v.

1897
1898
1899
1900
1901
1902
1903
1904 E.4.5 Code from subsection 4.5, Limitations and Preprocessing. The L4, hooks for extending the pre-
1905 processing of eliminators are reify_preprocess_extra and reify_ident_preprocess_extra
1906 in a submodule of rewriter/src/Rewriter/Language/PreCommon.v. These hooks are called by
1907 reify_preprocess and reify_ident_preprocess in a submodule of rewriter/src/Rewriter/
1908 Language/Language.v. Some recursion lemmas for use with these tactics are defined in the
1909 Thunked module in fiat-crypto/src/Language/PreExtra.v. These tactics are overridden in
10  the file fiat-crypto/src/Language/IdentifierParameters.v.

1911

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



1:40 Anon.

1912 The typeclass associated to eval _rect (c.f. subsubsection E.1.1) is rules_proofs_for_eager_type
1913 defined in rewriter/src/Rewriter/Language/Pre.v. The instances we provide by default are
1914  defined in a submodule of src/Rewriter/Language/PreLemmas.v.

1915 The hard-coding of the eliminators for use with ident.eagerly (c.f. subsubsection E.1.1) is
1916 done in the tactics reify_ident_preprocess and rewrite_interp_eager in rewriter/src/
1917 Rewriter/Language/Language.v, in the inductive type restricted_ident and the typeclass
1918 BuildEagerIdentT in rewriter/src/Rewriter/Language/Language.v, and in the L;,. tactic
1919  handle_reified_rewrite_rules_interpdefinedin thefile rewriter/src/Rewriter/Rewriter/
1920 ProofsCommonTactics.v.

1921 The Let_In constant is defined in rewriter/src/Rewriter/Util/LetIn.v.

1922

1923 E.5 Code from section 5, Evaluation

1924 E.5.1 Code from subsection 5.1, Microbenchmarks. This code is found in the files in rewriter/src/
1925 Rewriter/Rewriter/Examples/. We ran the microbenchmarks using the code in rewriter/src/
1926 Rewriter/Rewriter/Examples/PerfTesting/Harness.v together with some Makefile clever-
1927 mess.

1928 The code from subsubsection 5.1.1, Rewriting Without Binders can be found in P1lus@Tree.v.
1929 The code from subsubsection 5.1.2, Rewriting Under Binders can be found in UnderLetsPlus@.v.
1930 The code used for the performance investigation mentioned in subsubsection 5.1.3, Performance

1931 Bottlenecks of Proof-Producing Rewriting and detailed in Appendix A is not part of the framework
1932 we are presenting, and thus not in the supplement.

1933 The code from subsubsection 5.1.4, Binders and Recursive Functions can be foundin LiftLetsMap.v.
1934 The code from subsubsection 5.1.5, Full Reduction can be found in SieveOfEratosthenes.v.

UPE52 Code from subsection 5.2, Macrobenchmark: Fiat Cryptography. The rewrite rules are defined

in fiat-crypto/src/Rewriter/Rules.v and proven in the file fiat-crypto/src/Rewriter/
RulesProofs.v. They are turned into rewriters in the various files in fiat-crypto/src/Rewriter/
Passes/. The shared inductives and definitions are defined in the Coq source file fiat-crypto/src/
Language/IdentifiersBasicGENERATED.v, the Coq source file fiat-crypto/src/Language/
IdentifiersGENERATED.v, and finally also the Coq source file fiat-crypto/src/Language/
IdentifiersGENERATEDProofs.v. Note that we invoke the subtactics of the Make command man-
ually to increase parallelism in the build and to allow a shared language across multiple rewriter
packages.

1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



