
Carnegie Mellon University
Research Showcase

Computer Science Department School of Computer Science

1-1-1988

A taste of category theory for computer scientists
Benjamin C. Pierce
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted for
inclusion in Computer Science Department by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Pierce, Benjamin C., "A taste of category theory for computer scientists" (1988). Computer Science Department. Paper 1847.
http://repository.cmu.edu/compsci/1847

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci/1847?utm_source=repository.cmu.edu%2Fcompsci%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Taste of Category Theory
for Computer Scientists

Benjamin C. Pierce

CMU-CS-88-203 •>

Computer Science Depar tment
Carnegie Mel lon Universi ty

P i t t sburgh, P A 15213

This work was supported in part by DEC Systems Research Center and in part by the
Office of Naval Research and the Defense Advanced Research Projects Agency (DOD)
under contract number N00014-84-K-0415.

Abstract

Category theory is a field that impinges more and more frequently on the
awareness of many computer scientists, especially those with an interest in pro­
gramming languages and formal specifications. But there is still disagreement
as to the real significance of category theory, even among specialists in these
areas. Some dismiss it as "abstract nonsense," whereas for others it has be­
come an important tool. Worse yet for the uninitiated, there are only a few
introductory textbooks on the subject—and none of them are easy reading.
Although the category theory literature is more accessible than it was a few
years ago, there is still no good way to get an impression with only a modest
amount of effort.

This paper is an "introduction to the introductions" to category theory—a
brief answer to the questions, "What is category theory?" "What are computer
scientists using it for?" "What are the basic concepts?" "Where can I learn
more?" The first section aims to ground the reader in the most common cate­
gorical terms and idioms, assuming as little specific mathematical background
as possible. The second section presents four case studies from the recent re­
search literature applying category theory to the semantics of computation.
A reading list at the end of the paper suggests pathways into the existing
literature—including textbooks, standard reference works, and a sampling of
important research papers.

C o n t e n t s

1 I n t r o d u c t i o n 4

2 T u t o r i a l 6

2.1 Categories and Diagrams 7

2.2 Monomorphisms, Epimorphisms, and Isomorphisms 15

2.3 Initial and Terminal Objects 16

2.4 Products 17

2.5 Equalizers 19

2.6 Pullbacks 20

2.7 Limits 23

2.8 The Limit Theoremf 25

2.9 Exponentiation 26

2.10 Functors 28

2.11 Natural Transformations 31

2.12 Adjoints 34

2.13 Cartesian Closed Categories 40

2.14 Topoif 41

3 C a s e S t u d i e s 43

3.1 Categorical Type Systems 43

3.2 Implicit Conversions and Generic Operators 46

3.3 Semantics 48

3.4 Recursive Domain Equations 49

4 L i t e r a t u r e S u r v e y 5 9

4.1 Textbooks 59

4.2 Introductory Articles 60

4.3 Reference Books 61

4.4 A Sampling of Research Papers 63

A P r o o f of t h e L imi t T h e o r e m 65

2

CONTENTS

B S u m m a r y of N o t a t i o n

Chapter 1

I n t r o d u c t i o n

...Our intention is not to use any deep theorems of category theory, but merely
to employ the basic concepts of this field as organizing principles. This might
appear as a desire to be concise at the expense of being esoteric. But in
designing a programming language, the central problem is to organize a variety
of concepts in a way which exhibits uniformity and generality. Substantial
leverage can be gained in attacking this problem if these concepts are defined
concisely within a framework which has already proven its ability to impose
uniformity and generality upon a wide variety of mathematics.

— Reynolds [69]

Category theory is a relatively young branch of pure mathematics, stemming from an
area—algebraic topology—that most computer scientists would consider esoteric. Yet its
influence is being felt in many parts of theoretical computer science.. A short list of im­
portant connections would include the design of both functional and imperative program­
ming languages, implementation techniques for functional languages, semantic models of
programming languages, semantics of concurrency, specification and development of al­
gorithms, type theory and polymorphism, specification languages, algebraic semantics,
constructive logic, and automata theory.

The breadth of this list points out an important point: category theory is not geared to
work in a particular setting; it is a foundational framework in the same sense as set theory
or graph theory. The difference is that it is more structured than, relying on more abstract
constructions and heavier notation. The cost, of course, is that categorical formulations
of concepts are often more difficult to grasp than their counterparts in other formalisms.
The benefit is that concepts may be dealt with at a higher level and hidden commonalities
allowed to emerge.

Recent issues of theoretical journals give ample evidence that, at least in some parts of
computer science, category theory is already an important tool. In a few areas—notably
domain theory and semantics of computation—it is now a standard language of discourse.
But there are conflicting opinions in the research community on the question of how much
category theory a computer scientist should know. Some authors see no use in bothering
with it at all unless you become a serious student of the subject.

On the other hand, most computer science research papers draw only on the notation and
some fairly shallow results of category theory. The "ADJ group," early proponents of

4

5

category theory in computer science, set a reassuring note in the introduction to one of
their papers [91]: "...do not succumb to a feeling that you must understand all of category
theory before you put it to use. When one talks of a 'set theoretic' model for some
computing phenomenon, [one] is not thinking of a formulation in terms of measurable
cardinals! Similarly, a category theoretic model does not necessarily involve the Kan
extension theorem or double categories."

The tutorial in Section 2 of this paper is intended to provide a deep enough treatment
of basic category theory that the reader will feel prepared to tackle some of the current
research papers applying category theory to computer science. It covers all of the essential
notation and constructions, and also a few more advanced topics (notably adjoints) that
are sometimes skipped in short introductions to the subject, but that seem relevant to an
appreciation of the field. Section 3 illustrates the concepts presented in the tutorial with
two applications to the design of programming languages, a summary of work in categorical
models of the semantics of programming languages, and a more detailed description of
category-theoretic tools for the solution of recursive domain equations. Section 4 briefly
surveys the available textbooks, introductory articles, and reference works on category
theory. A summary of notation used in the tutorial appears at the end.

Before moving on to the tutorial, I would like to express my gratitude to Nico Habermann
for suggesting this project, to DEC Systems Research Center and Carnegie Mellon Univer­
sity for support while the paper was being written, and to Rod Burstall, Luca Cardelli, Pe­
ter Freyd, Peppe Longo, Simone Martini, Gordon Plotkin, John Reynolds, and Dana Scott
for informative conversations. Comments and suggestions from Martin Abadi Violetta
Cavalli-Sforza, Scott Dietzen, Conal Elliott, Nico Habermann, Nevin Heintze, Peter Lee,
Mark Maimone, Spiro Michaylov, David Plaut, and John Reynolds have greatly improved
my presentation of the material and eliminated a number of errors in previous drafts. I
would also like to acknowledge an enormous debt to the labors of other authors, particu­
larly to Robert Goldblatt [31], Saunders Mac Lane [54], and David Rydeheard [76,77,78].
Their books (along with many others) were frequent guides in choice of examples and exer­
cises, organization of material, and proper presentation of the subject's "folklore." (There
are some points—marked in the text—where their presentations of concepts or examples
seemed sufficiently unimprovable that I chose to use them essentially verbatim. Errors
introduced during transcription of these sections are, like those remaining in the rest of
the text, my own responsibility.)

Chapter 2

T u t o r i a l

This section is a brief tutorial on the most important concepts of category theory. Its
purpose is threefold: first, to be complete enough that after finishing it the reader can
proceed to a more difficult textbook—or even directly to research papers applying cate­
gory theory to computer science—with relative ease; second, to cover the more advanced
topics of natural transformations and adjoints in sufficient depth that the reader comes
away with some sense of the contribution of category theory to mathematical thinking; and
third, to be reasonably short. The tension between these three dictates a fairly terse pre­
sentation, with examples in each subsection chosen to simultaneously illustrate a concept
and its applications. Usually a subsection will begin with a rigorous definition, perhaps
prefaced with an intuitive explanation of the construction, followed by examples of its use
in various contexts. Optional examples and sections (marked with a f) are not required
for understanding what follows, except for subsequent optional parts. A few exercises are
provided for the benefit of readers with time to spend on them.

6

2.1. CATEGORIES AND DIAGRAMS 7

2.1 Categories and Diagrams

What we are probably seeking is a "purer* view of functions: a theory of
functions in themselves, not a theory of functions derived from sets. What,
then, is a pure theory of functions? Answer: category theory.

— Scott [86, p. 406]

Category theory, like set theory, is a fundamental for mathematical discourse. In set theory,
the most primitive concept is element Sets are built out of elements; relations, functions,
and the whole host of other mathematical entities are special kinds of sets. In category
theory it is functions—or more abstractly, arrows—that are primitive. The source and
target of an arrow are simply called objects; whatever internal structure they may possess
is ignored. Similarly, an arrow between two objects is an atomic entity, described not in
terms of its action on elements of its source, but instead by its properties under composition
with other arrows.
The easiest way to define the notion of "category" is in terms of sets and functions. There is
nothing contradictory about this: category theory is not being put forward as a competitor
to set theory, but as an alternative with a different emphasis. In fact, our first example
will be the category whose objects are sets and whose arrows are functions: throughout the
tutorial, this category is an important source of intuition for more general constructions.
There have been various attempts to develop alternative foundations for category theory,
but they lie outside the scope of this discussion. For present purposes, "collections" are
just sets (or possibly proper classes, since we will have occasion to talk about things like
the "class of all sets," which is too big to be a set); "operations" are set-theoretic functions;
"equality" is set-theoretic identity.

1 D e f i n i t i o n A category C comprises

1. a collection of objects;
2. a collection of arrows (or morphisms);
3. operations assigning to each arrow / an object dom / , its domain, and an object

cod / , its codomain (we write f : A —> B or A B to show that A = dom / and
B = cod / ; the collection of all arrows with domain A and codomain B is written
C(A,B));

4. a composition operator assigning to each pair of arrows / and g, with dom g = cod / ,
a composite arrow go f : dom / —> cod g, such that the following law holds:

Associative Law: for any arrows / : A —• JB, g : B —> C, and h : C —• D
(with Ay By C, and D not necessarily distinct),

ho(gof) = (hog)of;

5. for each object A, an identity arrow id^ : A —• A, such that the following law holds:

Identity Law: for any arrow / : A -» B ,

id s ° f — f and / o id^ = / .

2.1. CATEGORIES AND DIAGRAMS 8

2 E x a m p l e The category S e t has sets as objects and total functions between sets as
arrows. Composition of arrows is set-theoretic function composition. Identity arrows are
identity functions.

To see that S e t is actually a category, let us restate its definition in the same format as
Definition 1 and check that the laws hold:

1. An object in Se t is a set.

2. An arrow / : A —• B in S e t is a total function from A into B. There is a small
but important difference between this definition and the usual definition of sets and
functions in set theory. In the category Se t , the codomain of a function (the set B)
is not the same as its range (the elements of B that are actually the value of / on
some element of A). For example, the identity function on the nonnegative integers
is not the same arrow as the inclusion function from the nonnegative integers to the
integers, although they have the same function graph.

3. For each function / with domain A and codomain B , dom / = A, cod / = B , and
/ e S e t (A , B) .

4. The composition of a total function / : A —• B with another total function G : B —> C
is a total function from A to C. Composition of total functions on sets is associative:
for any functions / : A —• B, G : B —* C, and H : C —• D , it is the case that
HO(GOF) = (HOG)OF.

5. For each set A, the identity function id^ is a total function with domain and codomain
A. For any function / : A —• B , the identity functions on A and B satisfy the
equations required by the identity law: id s o / = / and / o ID A = /.

The category laws are so obviously satisfied by S e t that it may seem as though Definition 1
is vacuous. The next example shows that there is usually some work to be done in showing*
that some given collections of objects and arrows form a category. (In more involved
examples than these, the work can be substantial!)

3 E x a m p l e A partial ordering < on a set P is a reflexive, transitive, and antisymmetric
relation on the elements of P . An order-preserving function from (P , <j>) to (Q , < g) is a
function / : P —> Q such that if P <P p', then F(P) <Q F(P').

The category P o s e t has as objects all partially-ordered sets and as arrows all order-
preserving functions.

Let us go once more through the exercise of checking this carefully against Definition 1:

1. An object in P o s e t is a set P with a reflexive, transitive, antisymmetric relation <P
defined on pairs of elements of P.

2. An arrow / : (P , < P) —• (Q , < g) in P o s e t is a total function from P into Q that
preserves the ordering on P , that is, such that if P <P p', then F(P) <Q F(P').

2.1. CATEGORIES AND DIAGRAMS 9

3. For each total order-preserving function / with domain P and codomain Q> dom / =
(P , < p) , cod / = (Q , < Q) , and / € P o s e t ((P , < P) , (Q , <Q)).

4. The composition of an total order-preserving function / : P —» Q with another total
order-preserving function g : Q —• R is a total function go f from P to R. Further­
more, if p <p p\ then since / preserves P's ordering, f(p) <q f{p'); then, since g
preserves Q'a ordering, g(f{p)) <I*<K/(P'))* So gof is order-preserving. Composition
of order-preserving functions is associative because each order-preserving function on
partially-ordered sets is just a function on sets, and composition of functions on sets
is associative.

5. For each partial order (P, <j>), the identity function idp preserves the ordering on P
and satisfies the equations of the identity law.

Another familiar algebraic structure, the monoid, also forms the basis of a category:

4 E x a m p l e A monoid (M, •, e) is a set M equipped with a binary operation • from pairs
of elements of M into M and a distinguished element e, such that (x • y) • z = x • (y • z) for
all x, y, z e M and e • x = x = x • e for all x € M. A monoid homomorphism from (M, •, e)
to (M', •', e') is a function f : M-> M' such that / (c) = e' and f(x • y) = / (x) / (y) . The
composition of two monoid homomorphisms is the same as their composition as functions
on sets. (Monoids are sometimes called "semigroups with identity.")

The category M o n has monoids as objects and monoid homomorphisms as arrows.
The check that M o n is actually a category follows exactly the same steps as for P o s e t .
It is easy to check that the composition of two functions that are both homomorphisms is
also a homomorphism.

A more general class of categories can be formed by taking all algebras with a given
signature as the objects of a category:

5 E x a m p l e Let f2 be a set of operator symbols, equipped with a mapping ar from
elements of f2 to natural numbers (for each o € f2, ar(o) is the arity of o). An Q-algebra A
is a set |Al (the carrier of A) together with, for each operator o of arity ar(o), a function
a0 : | A | o r ^ —> \A\ (the interpretation of o, mapping ar(o)-tuples of elements of the carrier
back into the carrier). An Q-homomorphism from an Q-algebra A to an Q-algebra B is
a function h : \A\ \B\ such that for each operator o € fi and tuple x i , X 2 . . . , x a r (0) of
elements of |A|, the following equation holds:

h{a0{xu x 2 , . . . ,«ar(o))) = h(h(*i),h(z2),..., A(x a r (0))) .

The category fi-Alg has fl-algebras as objects and n-homomorphisms as arrows.

In general, the objects in many categories can be thought of as "sets with structure,"
and the arrows as "structure preserving maps." (Such categories are often called concrete
categories.) From this perspective, it is easy to see why category theory is often described as

2.1. CATEGORIES AND DIAGRAMS 10

a generalization of universal algebra [14], which studies the common properties of algebraic
structures. The following table (adapted from Goldblatt [31]) lists a few of the categories
that fit this intuition:

CATEGORY OBJECTS MORPHISMS
S e t all sets all total functions between sets
F i n S e t finite sets functions between finite sets
P f h sets partial functions between sets
R e l sets binary relations between sets
V e c t vector spaces linear transforms
G r p groups group homomorphisms
M o n monoids monoid homomorphisms
P o s e t posets monotone functions
C P O complete partial orders continuous functions
M e t metric spaces contraction maps
T o p topological spaces continuous functions
n - A i g algebras with signature fi n-homomorphisms

The concrete categories form an important class, but there are many other interesting
categories. For example, here are a few useful finite categories:

6 E x a m p l e The category 0 has no objects and no arrows. The identity and associativity
laws are vacuously satisfied.

7 E x a m p l e The category 1 has one object and one arrow. By the identity law, the arrow
must be the identity for the object. The composition of this arrow with itself can only be
itself, which satisfies the identity and associativity laws. (Note that we didn't bother to
specify the precise identity of the object or arrow—for example, that the object was the
number 5 and the arrow was the total function mapping 5 to 5. What matters is only the
algebraic properties of the object and arrow, whatever they are, and these properties are
fully determined by the category laws.)

8 E x a m p l e The category 2 has two objects, two identity arrows, and an arrow from one
object to the other. Again, it doesn't matter what the objects and arrows represent, but to
make it easier to talk about them, we might call the objects A and B and the non-identity
arrow / . There is only one way to define composition; it is then easy to check that the
identity and associativity laws are satisfied.

9 E x a m p l e The category 3 has three objects (call them A, JB, and C) , three identity
arrows, and three other arrows: / : A —• JB, g : B —• C, and h : A —• C. (Again,
composition can be defined in only one way and both laws are satisfied.)

The last example is beginning to be complicated enough that it is hard to grasp from a bare
listing of the objects and arrows. To make such descriptions more manageable, category
theorists often use a graphical style of presentation:

2.1. CATEGORIES AND DIAGRAMS 11

1 0 D e f i n i t i o n A diagram in a category C is a collection of vertices and directed edges,
consistently labeled with objects and arrows of C (where by "consistently" we mean that
if an edge in the diagram is labeled with the arrow / and / has domain A and codomain
B, then the endpoints of this edge must be labeled with A and B).

In this notation, the categories 2 and 3 are displayed as follows:

A B ,0 ids
(Most authors blur the distinction between the vertices and edges in a diagram and the
objects and arrows with which they are labeled. Also, it is unusual for a diagram to display
the whole of a category as these two do. Diagrams are most often used to illustrate some
configuration of a small number of objects and arrows of particular interest within some
category.)
Note that since / , g> and h are the only non-identity arrows of 3 , it must be the case that
gof = h. (Why?)

Diagrams are used in category theory not only for visualizing categories, but also (and
much more importantly) for stating and proving properties of categorical constructions.
Such properties are often expressed by saying that a particular diagram "commutes."

1 1 D e f i n i t i o n A diagram in a category C is said to commute if, for every pair of vertices
X and Yf all the paths in the diagram from XtoY are equal (in the sense that each path
in the diagram determines a composite arrow and these composites are equal in C) . For
example, saying that "the diagram

commutes" is exactly the same as saying that / o ^ = j o / ' .
A useful refinement of this convention is to require that two paths be equal only when

one of them is longer than a single arrow. Thus the commutativity of the diagram

implies that ho / = / i o j , but not that / = g.

2.1. CATEGORIES AND DIAGRAMS 12

When a property is stated in terms of commutative diagrams, proofs involving that prop­
erty can often be given directly by "diagram chasing." The following simple proof demon­
strates the technique. (Observe how the equations correspond to paths in the diagram, and
how these paths are transformed by replacing one path through a commuting subdiagram
with another.)

12 P r o p o s i t i o n If both inner squares of the following diagram commute, then so does
the outer rectangle.

Proof:

(g'og)oa = g'o(go a)
g'o(bof)
(g'ob)of
(co/')o/
co(/'o/)

(by associativity)
(by the commutativity of the first square)
(by associativity)
(by the commutativity of the second square)
(by associativity).

(End of Proof)

A different class of categories is obtained by considering an individual algebraic structure
as forming a category.

13 E x a m p l e A poset (P, <) gives rise to a category whose objects are the elements of P.
Between each pair of objects p and p' such that p < p1 there is a single arrow (representing
this fact). There is no arrow between two objects p and p' when p j£ p1. Composition
of arrows is clearly associative (since there is at most one arrow between any given pair
of objects). The identity law of Definition 1 now corresponds to the reflexivity condition
for partial orders, while the existence of composite arrows corresponds to transitivity.
The antisymmetry condition is actually not required: in fact, every preorder (set P with
transitive and reflexive relation <) gives rise to a category.

1 4 E x a m p l e A monoid (M, •, e) may be represented by a category with a single object.
The elements of M are represented by arrows from this object to itself, the identity element
e is represented by the identity arrow, and the operation • is represented by composition
of arrows. Conversely, any category with a single object gives rise to a monoid. (We will
not bother to check the category axioms for this and future examples. The reader is still
encouraged to do so, however.)

2.1. CATEGORIES AND DIAGRAMS 13

Many branches of mathematics besides algebra have proved amenable to categorical treat­
ment. Of particular interest to computer science is the new field of "categorical logic,"
which arises from the following observation.

1 5 E x a m p l e By a twist of perspective, we can call the objects in an arbitrary category
formulas and the arrows proofs. An arrow / : A —• B is viewed as a proof of the implication
A —• B. In particular, the identity arrow id A : A —• A is an instance of the reflexivity
axiom, and the composition of arrows

f.A^B g:B->C
go f :A-+C

is a rule of inference asserting the transitivity of implication.

In addition to categories of mathematical objects from other domains, there are many
kinds of categories that can be built up from simpler categories.

1 6 E x a m p l e For each category C, the objects of the dual category C o p are the same as
those of C; the arrows in C o p are the opposites of the arrows in C. (That is, if / : A —• B
is a arrow of C , then / : B —• A is a arrow of C o p .) Composite and identity arrows are
defined in the obvious way.

Each of the definitions and theorems of category theory can be restated "with arrows re­
versed" as an equivalent definition or theorem in the dual category. In fact, most definitions
come in pairs—product/coproduct, equalizer/coequalizer, monomorphism/epimorphism,
pullback/pushout—with a "co-x" in a category C being the same thing as an "x" in C o p .

1 7 E x a m p l e For any pair of categories C and D , the product category C x D has as
objects pairs (A , B) of a C-object A and a D-object JS, and as arrows pairs (f,g) of
a C-arrow / and a D-arrow g. Composition and identity arrows are defined pairwise:
(f,g)° (h,*) = (/ ° M ° « ') a ^ d id<A,B) = (M A, M B)•

1 8 E x a m p l e Set"* is the category of arrows of Se t . Each arrow / : A B of S e t is
an object of Set"~\ A Set^-arrow from / : A —• B to f : A' —• B9 is a pair (a, b) of
Set-arrows such that the diagram

a

b
commutes (in S e t) . Composition in Set"* is defined by (a',6 1) o (a, b) = (a 1 o a, 6' o 6).
(This is a difficult example, included to give a little practice with the mind-bending feats
of abstract manipulation sometimes required to follow categorical arguments. Try checking
the category axioms with pencil and paper.)

Actually, this construction is completely general. For each category C we can define
the category of arrows over C by substituting C for S e t above.

2.1. CATEGORIES AND DIAGRAMS 14

19 E x e r c i s e s

1. A group (G, _ 1 , c) is a set G equipped with an operation • from pairs of elements of
G into G, a unary operation _ 1 , and a distinguished element e, such that:

(a) (x • y) • z = x • (y • z) for all x, y, and z in G\
(b) e • x = x = x • e for all x in G;
(c) x • x " 1 = e = x " 1 • x for all x in G.

Show how an arbitrary group can be considered as a category. (Hint: see Example 14.)

2. Show how an arbitrary set can be considered as a category. (Hint: see Example 13.)

3. Verify that each of the categories 0, 1, 2 , and 3 corresponds to a partial order. What
would the category 4 look like? The category 5? The category O m e g a ?

2 0 R e m a r k s f

• Some authors, especially computer scientists, prefer to think of composites in "dia­
grammatic" order rather than "functional," writing f\g instead oigof. The notation
given in Definition 1, though less convenient for some purposes, is standard and will
be used exclusively in this paper.

• Our definition of category is actually somewhat sloppy: It says that each arrow has a
particular domain and codomain—that is, that each arrow goes between two particu­
lar objects. So we would expect C(A, B) n C(A', B') = { } unless A = A' and B = B1.
But we also said that a function could be considered as an arrow from its domain to
any set containing its range.
This inconsistency could be rectified in at least two ways: First, the sets of arrows
between distinct pairs of objects in a category can be allowed to overlap. Second, the
notion of "function" (and similar notions like "relation") can be refined to explicitly
include a codomain as part of the function's identity. Some authors (Reynolds, for
example) favor the first approach, where notions like "function" have their ordinary
mathematical meaning. The cost of this approach is some extra complication in
later definitions (e.g., the definition of "functor"). Following what seems to be the
more standard practice, we will use the second approach in this paper, though (also
following standard practice) we will not bother to explicitly carry through the details
of making the sets of arrows be disjoint.

According to Mac Lane [54, pp. 29-30], the fundamental idea of representing a function
by an arrow first appeared in topology around 1940, probably in the work of Hurewicz
(c.f. [41]). Commutative diagrams were probably also first used by Hurewicz. Categories,
functors (Definition 60 below), and natural transformations (Definition 69) were discovered
by Eilenberg and Mac Lane [19], who also used commutative diagrams for the first time in
print. A direct treatment of categories in their own right appeared in 1945 [18]. The word
"category" was borrowed from Aristotle and Kant, "functor" from Carnap, and "natural
transformation" from the informal practice of the time.

2.2. MONOMORPHISMS, EPIMORPHISMS, AND ISOMORPHISMS 15

2.2 Monomorphisms, Epimorphisms, and Isomorphisms

When we reason about sets and functions, we are often interested in functions with special
properties, such as being injective (one-to-one) or surjective (onto) or defining an isomor­
phism. Appropriate analogues of these concepts also play an important role in categorical
reasoning.

2 1 D e f i n i t i o n An arrow / : B —• C in a category C is a monomorphism (or just monic)
if for any pair of C-arrows g : A —• B and h : A —• B with the same domain and with
codomain 2?, the equality / o j = foh implies that g = h.

22 P r o p o s i t i o n In S e t , the monomorphisms are just the injective functions.

Proof: Let / : B —• C be an injective function, and let g, h : A —• B be such that
fog = foh but g h. Then there is some element a € A for which g(a) ^ h(a). But then,
since / is injective, f(g(a)) ^ / (/ i (a)) , which contradicts our assumption that fog = foh.
This shows that / is a monomorphism.
Conversely, let / : B —• C be a monomorphism. If / is not injective, then there are
unequal elements 6,6' G B for which /(&) = /(&')• Let A be the one-element set { a } , and
let g : A —* £ map a to 6 while fc : A —> B maps a to V. Then /(<7(a)) = / (A(a)) ,
contradicting the assumption that / is a monomorphism. (i?nd o/ Proof)

2 3 C o n v e n t i o n The category to which an object or arrow belongs is often omitted
when it is unimportant or clear from context. We adopt this convention from now on,
using explicit qualifications like "for any pair of C-arrows. . ." rather than "for any pair of
arrows. . ." only when there is a possibility of confusion.

2 4 D e f i n i t i o n An arrow / : A —• B is a epimorphism (or just epic) if for any pair of
arrows g : B —• C and h : B —• C with domain B and common codomain, the equality
g o / = h o f implies that g = h.

25 P r o p o s i t i o n In S e t , the epimorphisms are just the surjective functions.

This correspondence provides a good mnemonic for remembering the definitions of
monomorphisms and epimorphisms. But be careful: the correspondence does not hold
in arbitrary categories. The "internal structure" of the objects in some categories can be
used to construct epimorphisms, for example, that are not surjective when considered as
functions on sets:

2 6 E x a m p l e Both (Z , + , 0) , the monoid of integers under addition, and (Z + , + , 0) , the
monoid of nonnegative integers under addition, are objects of the category M o n . The
inclusion function t : (Z + , + , 0) -* (Z , + , 0) that maps each nonnegative integer z to the
integer z is a monomorphism, as we would expect by analogy with Se t . But it is also an
epimorphism. To see this, assume that / o t = j o t for two homomorphisms / and g from

2.3. INITIAL AND TERMINAL OBJECTS 16

(Z , + , 0) to some monoid (Af, *, E). Take any zeZ. If z > 0, then it is the image under t
of the same z considered as an element of Z + , so f(z) = f{i(z)) = 0(*(*)) = g(z). If z < 0,
then —z > 0 and — z € Z+. We reason as follows:

In the rich world of categories, the analogues of injective and surjective functions over
sets are not sufficient to describe the full range of special kinds of arrows. These are the
most common, but many textbooks define others—retractions, sections, constant arrows,
coconstant arrows, zero arrows, bimorphisms, subobjects, quotient objects, and so on. We
will limit ourselves here to mentioning just one more variety.

27 D e f i n i t i o n An arrow / : A —• B is an isomorphism (or just iso) if there is an arrow
g : B —• A such that fog = id# and g o / = idx- The objects A and B are said to be
isomorphic if there is an isomorphism between them.

28 E x a m p l e A group is essentially the same thing as a one-object category where every
arrow is an isomorphism.

2 9 E x e r c i s e s

1. Prove Proposition 25.

2. Show that in any category, if two arrows / and g are both monic, then their compo­
sition g o / is monic. Also, if g o / is monic, then so is / .

3. Dualize the previous exercise: state and prove the analogous proposition for epics.
(Be careful of the second part.)

4. Show that the arrow g in Definition 27 is unique if it exists.

2.3 Initial and Terminal Objects

For the next several sections, we will be examining several sorts of "universal constructions"
in categories. The simplest of these is the notion of "initial object" (and its dual):

3 0 D e f i n i t i o n An object 0 is called an initial object if, for every object A, there is exactly
one arrow from 0 to A.

/(-*) /(-*) * / w /(-*+*)

(•(-))
9(-z)
9(-z)*f(z)
g(-z)*f(z)
g(-z) * f(z)
g(-z) * f(z)
g(z) * g(-z) * f(z)
9(0) * f(z)
/(*)•

E

2.4. PRODUCTS 17

3 1 D e f i n i t i o n Dually, an object 1 is called a terminal object if, for every object A, there
is exactly one arrow from A to 1.

Arrows from an initial object or to a terminal object are often labeled "!" to highlight
their uniqueness.

32 E x a m p l e In S e t , the empty set { } is the unique initial object: for every set 5 , the
empty function is the only function from { } to S. Each one-element set is a terminal object
in S e t , since for every set S there is a function from 5 to a one-element set {x} mapping
every element of S to x, and furthermore this is the only total function from S to {x}.

33 E x a m p l e In the category Q-Alg of algebras with signature ft, the initial object is the
"initial algebra" (or "term algebra") whose carrier consists of all finite trees where each
node is labeled with an operator from Q and where each node labeled with o has exactly
ar(o) subtrees. (It is easy to see that this defines an ft-algebra. The initiality of this algebra
is a standard result of universal algebra [14].) The unique homomorphism from the term
algebra to another ft-algebra is often called a "semantic interpretation function."

3 4 E x a m p l e Terminal objects can be used to provide a category-theoretic analogue
of "elements" of objects. The motivating observation is that, in the category Se t , the
functions from a singleton set to a set S are in one-to-one correspondence with the elements
of S. Moreover, if x is an element of 5 , considered as an arrow x : 1 —• S from some one-
element set i , and / is a function from S to some other set T, then the element f(x) in T
is exactly the one picked out by the composite function fox.

In categorical terms, an arrow from a terminal object 1 to an object S is called a global
element or constant of S.

35 E x e r c i s e s

1. Show that two terminal objects in the same category must be isomorphic. Use duality
to easily obtain a proof that any two initial objects are also isomorphic.

2. What are the terminal objects in S e t X Set? In Set"*? In a poset considered as a
category? What are the initial objects in these categories?

3. Name a category with no initial objects. Name one with no terminal objects. Name
one where the initial and terminal objects are the same.

2.4 Products

The usual set-theoretic definition of the "cartesian product" of two sets A and B is

A x B = {(a,6) | a e A and b € B}.

Using the observation of Example 34, we could perhaps define some sort of categorical
product construction using global elements. But this would be contrary to the style of

2.4. PRODUCTS 18

category theory, which tries to abstract away from elements, treating objects as black
boxes with unexamined internal structure and focusing attention of the properties of arrows
between objects. What we need is an "arrow-theoretic" characterisation of products. (Note
that here we are considering products within a category rather than products of categories
as in Example 17.)

What arrows are particularly relevant to products? Well, in order for an element of the
product to be useful there must be some way of breaking it apart to inspect the values
of its first and second components—that is, whenever we form a product of two sets A
and B we also specify "projection functions" TTI : A x B A and 2̂ : A x B —• B. The
projection functions wi and ̂ 2 capture the "productness" of A x B in the following sense.
Assume that for some other set C, there are two functions / : C —• A and g : C —• B.
Then we can form the "product function" (/ , g) : C —• A x J3, defined by:

(f,g)(x) = (f(x),g(x)).

This function is unique, in the sense that it is uniquely determined by / and g.

This motivates the general definition of categorical products:

3 6 D e f i n i t i o n A product of two objects A and B is an object A x f l , together with two
projection arrows iri : A x B —• A and TCI : A x B —* B, such that for any pair of arrows
/ : C —• A and g : C —+ B there is exactly one arrow (f,g) : C —• A x B making the
diagram

C

A B

commute—that is, such that 7Ti O (/ , g) = / and TT2 O (f,g) = g.

(Dashed arrows in commutative diagrams are used to represent arrows that are asserted
to exist uniquely when the rest of the diagram is filled in appropriately.)
Although it is customary to refer to just the object A x B as a product object, it is important
to remember that the projection arrows are also part of the definition. Formally, we might
define the product as the tuple {A x B,*ri,fl*2). This will become clearer in Section 2.7,
where products are shown to be an instance of a more general construction called limits.

We can now define arrows between product objects in terms of projection arrows:

37 D e f i n i t i o n If the product objects A x C and B x D exist, then for every pair of
arrows / : A —> B and g : C —• D, the product map fxg:AxC-+BxD is the arrow
(f oni,gon2).

2.5. EQUALIZERS 19

As with set-theoretic cartesian products, the categorical binary product construction can
be generalized to arbitrary "indexed products":

38 D e f i n i t i o n ! A product of a family (Ai)i€j of objects indexed by a set I consists
of an object YliGjAi and a family of projection arrows (7rt- : (I l i e i ^ t) such
that for each object C and family of arrows (/f- : C —• At)* € / there is a unique arrow
(fijiel' O —• (liter Ai) s}*ch that the following diagram commutes for all t e I:

C

(/<)«

n^-w—^
i€l

3 9 E x e r c i s e s

1. Note that Definition 36 says "a product . . ." rather than "the product " Products
(like all universal constructions) are defined only up to an isomorphism. Show that
this is the case—i.e., that if an object X with arrows ITA ' X —• A and TTB : X —• B
also satisfies the definition of ttX is a product of A and B" then X is isomorphic to
A x B. Conversely, show that any object isomorphic to a product object A x B is
also a product of A and B.

2. Show that (/ o h9g o h) = (/,</) o fc. (Hint: begin by drawing a diagram.)

3. Show that (/ x h) o (j , i) = (/ o j , f t o fc).

4. The dual construction, coproduct, corresponds to set-theoretic disjoint union. Dualize
definitions 36 and 38 to give the details of the construction.

5. To what does Definition 38 reduce when the index set I is empty?

2.5 Equalizers

Another useful categorical construct is the "equalizer" of two arrows.

4 0 D e f i n i t i o n An arrow e : X —* A is an equalizer of a pair of parallel arrows f : A—* B
and g : A —• B if

1. / o e = j o e ;

2. whenever e1 : X' —• A also satisfies / o e1 = g o e', there is a unique arrow A: : X1 —• X
such that e o A: = e1:

2.6. PULLBACKS 20

X £ - A f - t B
9

4 1 E x a m p l e The category S e t again provides the most intuitive illustration. Let / and
g be two functions in S e t with common domain A and codomain B, and let X be the
subset of A on which / and g are equal, that is:

X = {x | x € A and f(x) = g(x)}.

Then the inclusion function e : X —* A, which maps each element x e l t o the same x as
an element of A, is an equalizer of / and g.

The dual construction, coequalizer, provides a categorical analogue to the set-theoretic
notion of an equivalence relation. (See Arbib and Manes [1, p. 19], Goldblatt[31, p. 61],
or any standard textbook.)

42 E x e r c i s e s

1. Show that in a poset considered as a category, the only equalizers are the identity
arrows.

2. Show that every equalizer is monic.

3. Show that the converse is not true in all categories—that there is a category with a
monic arrow that does not equalize any pair of arrows. (Hint: think about the natural
numbers considered as a poset.)

4. Show that every epic equalizer is an isomorphism.

2.6 Pullbacks

The pullback is a very common and important construction.

43 D e f i n i t i o n A pullback of the pair of arrows / : A —• C and g : B —» C is an object P
and a pair of arrows g1 : P —> A and / ' : P —* B such that

2.6. PULLBACKS 21

1. fog' = f'og:

2. if t : X -* A and j : X I? are such that / o t = J O J , then there is a unique
Jfc : X - * P such that i = g1 ok and j = f ok:

This situation is commonly described by saying that / ' is the pullback (or inverse image)
of f along g and that g1 is the pullback of g along / . The example that motivates this
terminology comes, as usual, from Se t :

4 4 E x a m p l e Let / : B —> C be a function in S e t and A C C. Write / ~* (A) for the
inverse image of A under / (the set {6 | f{b) e A}) , and f\s for the restriction of / to S
(S C B). Then the following diagram is a pullback (that is, it depicts a situation where
the top and left sides of the square are the pullbacks of the bottom and right sides):

r \ A)

f\rl{A)

(To avoid a proliferation of names, • is used both as the name of the inclusion function
from A to C and of the one from / _ 1 (A) to B.)

Saying that "the diagram is a pullback" is actually more rigorous than it sounds, as we
shall see in a few pages.

2.6. FULLBACKS 22

45 E x a m p l e If A and B are subsets of the set C, then

A n JB — - B

is a pullback.

4 6 E x a m p l e More generally, let / and g be two Set-functions with common codomain
C. The pullback object P (it is unique in this case) is defined by:

P = {(a, b) | a € A, b € B , and / (a) = </(&)}.

(P is a subset of the cartesian product A x B.) The projections / ' and g' are defined by

/ ' (M » = 6,
« 7 ' (M » = a.

Pullbacks are sometimes known as "fibered products."

The next two examples begin to demonstrate the interdefinability of many category con­
structs:

47 E x a m p l e In any category with a terminal object, if

is a pullback, then P is a product of A and B (/ and g are projections).

48 E x a m p l e In any category, if

is a pullback, then e is an equalizer of / and g.

2.7. LIMITS 23

4 9 E x e r c i s e s

1. (The "Pullback Lemma.") Consider the following diagram:

(a) Prove that if both of the squares are pullbacks, then the outside rectangle (with
top and bottom edges the evident composites) is a pullback.

(b) Prove that if the outside rectangle and the right-hand square are pullbacks, then
the left-hand square is a pullback.

2. Show how to construct pullbacks from products and equalizers. That is, show that
in any category where every two objects have a product and every two arrows have
an equalizer, it is also the case that every two arrows with the same codomain have
a pullback. (Hint: see Example 46.)

3. State the dual notion, pushout and check that in S e t the pushout of / : A —• B and
g : A —• C is obtained by forming the disjoint union of A and B, and then identifying
f(x) with g(x) for each x € A by a coequalizer.

2.7 Limits
The reader may already have discerned a pattern in the definitions of products, equalizers,
and pullbacks. In each case, we describe a property and define a certain object (with some
accompanying arrows) to have the property "canonically," in the sense that any other
object with the property "factors uniquely through" the canonical one. (For example, if e
is an equalizer of / and G, then any arrow e1 such that / o e1 = g o e1 can be expressed as
the composite arrow of e with some unique arrow A:, that is, e1 = e o A;.) Such definitions
are called universal constructions; the entities they define are said to be universal among
entities satisfying the given property, or simply to have the universal property.

With this in mind, we proceed to the general definition of the "limit of a diagram."

5 0 D e f i n i t i o n Let C be a category and D a diagram in C. A cone for D is a C-object
X and arrows /t- : X —* Z?» (one for each object Di in D) , such that for each arrow g in D ,
the diagram

2.7. LIMITS 24

5 1 D e f i n i t i o n A limit for a diagram D is a cone {/,• : X —> 2} t } with the property that
if {ft : X9 —• D t } is another cone for D , then there is a unique arrow k : X9 —• X such
that the diagram

X9 * — — ^ j f

commutes for every Di in D .

The cones for a diagram D actually form a category; a limit is a terminal object in this
category. It follows that since terminal objects are unique up to isomorphism, so are limits.

52 E x a m p l e Given two C-objects A and B, let D be the diagram

A B

with two nodes labeled A and B and no edges. Then a cone for this diagram is just an
object X with two arrows / and g of the form

A limiting D-cone, if it exists, is one through which all such cones factor. But this is just
a product of A and B.

53 E x a m p l e Let D be the empty diagram with no nodes and no edges. A cone for D
in a category C is any C-object. (D has no nodes so the cone has no arrows.) A limiting
cone is then an object C with the additional requirement that for any C-object C9 (i.e.
for any D-cone) there is exactly one arrow from C to C In other words, C is a terminal
object.

5 4 E x a m p l e Let D be the diagram

B

with three nodes and two edges. Strictly speaking, a cone for D is an object P and three
arrows / ' , g9, and h:

V
r> J ^ r>

2.8. THE LIMIT THEOREM^ 25

But this is equivalent to

because h is completely determined as the common composite / o </' = /i = (/ o / ' .
Moreover, since P , / ' , and g1 form a limit, they have the universal property among

objects and arrows that make this diagram commute—that is, given any object P1 with
arrows /" , g", and h! making the analogous diagram commute, there will be a unique arrow
k from P9 to P such that g99, and h factor uniquely through A:. Ignoring h9 as before,
this shows that the limit of D is the pullback of / and g.

55 D e f i n i t i o n Dually, a cocone for a diagram D in a category C is a C-object X and
a collection of arrows /t- : D{ —• X. A colimit or inverse limit for D is then a cocone
{fi : Di —• X} with the "couniversal property" that for any other cocone { / / : Di —* X9}
there is a unique arrow k : X —• X9 such that the diagram

commutes for every object Di in D .

5 6 E x e r c i s e s

1. Let D be the diagram

9
Show that a limit for D is an equalizer of / and g.

2. In a poset (P, <) considered as a category (Example 13), all diagrams commute. To
what do the limit and colimit of a diagram correspond?

2.8 The Limit Theorem!

Of course, not all diagrams have limits. For example, in a category with no terminal object,
the empty diagram has no limit. In a category where the only arrows are identities—a
"discrete category"—no diagrams have limits. In fact, knowing just which diagrams do
have limits in a given category tells a lot about what that category is like.
One pleasant possibility is that all limits exist in the category in question—that given any
diagram D , there are always some object and arrows forming a cone for D and universal

2.9. EXPONENTIATION 26

among such cones. In fact, there is a general theorem showing that whenever limits exist for
very simple diagrams—products and equalizers—they must exist for arbitrary diagrams.
(To be more precise, the theorem does not give the existence of all limits, but only limits
of "small" diagrams—those whose sets of nodes and edges are really sets and not proper
classes. See Remark 66 for more details.)

57 T h e o r e m Let D be a diagram in a category C, with sets V of vertices and E of
edges. If every V-indexed and every JE7-indexed family of objects in C has a product, and
if every pair of arrows in C has an equalizer, then D has a limit.

Proof Sketch: A good candidate for the limit object would be the product Ylj€v Dl, since
it comes equipped with an arrow to each JDj. But this won't quite work because the arrows
from the product don't necessarily form commuting triangles with the edges De. If we form
the product Hjj^j^ Dj of the targets of the edges of D , then for each edge De : Dj —• Djy

there are two ways to get from the product of all vertices to the product of the targets of
edges: directly (by *rj), or via De (by De o TTJ). Thus we can form two families of edges
from Ili€V &i t o *be Dj's. Since Tlrj^j^ Dj is a product object, each family induces a
mediating arrow from IIj€V &I "t° ^iS^jeE ^ e r e s t ™ t i o n of Y[jey &i 'bat w e a r e

interested in is the one for which each arrow directly to Dj is equal to the one via Dt.
This is the equalizer of the two mediating arrows. {End of Proof)

The full proof appears in Appendix A. Readers are encouraged to examine it, both for its
own interest and as a nice example of categorical reasoning.

2.9 Exponentiation

Our final example of a universal construction is also the first that explicitly relates to
computation. Basically, we give a categorical interpretation of the notion of "currying"
whereby a two-argument function is reduced to a one-argument function by fixing the value
of the other argument.

We begin by sketching the construction in Se t , and then give the categorical definition.
(The presentation is adapted from Goldblatt's.)

Given two sets A and B, we can form the set BA of all functions with domain A and
codomain B—that is,

BA = {f: A — B}.

(Part of what makes this observation interesting is that we cannot do this in every category.
In S e t , it happens to be the case that BA is itself a set. In some other categories C, it
is similarly the case that C(A, B) is represented by an object of C. It is this representing
object that we want to identify in the general case.)

As usual, we want to characterize BA by arrows instead of elements. To do this, we observe
that associated with BA is a special evaluation function eval: BA x A —• B, defined by the
rule eval({fya)) = / (a) . (On input (/ , a) , with f : A —> B and a € A it yields as output
/ (a) € B.)

2.9. EXPONENTIATION 27

The categorical description of BA hinges on the observation that eval posseses a universal
property among all functions of the form (C x A) - ^ B. Given any such g, there is exactly
one function g* : C -* BA such that the following diagram commutes:

g* x idA

CxA

(Recall that g* x id A denotes a product mapping (Definition 37). On input (c,a) it yields
<<7*(c),a>.)
The idea here is that any particular c e C determines a function in BA if the first argument
at c, leaving the second argument free. Define gc to be the curried version of g for a
particular c e C:

9c(a) = g((c,a)).

Then g* is the function that takes each c to the appropriate curried version of g:

9*{c) = 9c

Now, for any (c, a) e C x A, we have:

(evalo(g*xidA))((c,a)) = eval((g*(c),a))
= eval((ge,a))
= 9c(a)
= 9((c,a)).

This shows that the function g* makes the diagram commute. To see that it is the only
function that makes the diagram commute, note that eval((g*(c)ya)) = g((c, a)) implies
that (<7*(c))(a) = </((c,a)), that is, that g*(c) must be a function that, for input a, yields
flf((c,a)). This function is ge.

The general categorical definition is as follows:

58 D e f i n i t i o n A category has exponentiation if it has a product for any two objects,
and if for any objects A and B there is an object BA and an evaluation arrow evalAB •
(BA x A) —• B such that for any object C and arrow g : (C x A) —• B there is a unique
arrow g* : C —* BA making

BA x A

CxA

commute—that is, a unique g* such that evalAB ° {9* x i^U) = 9-

2.10. FUNCTORS 28

5 9 E x e r c i s e s

1. Exponentiation in S e t X S e t is "componentwise" the same as in S e t . Check the
details of the construction.

2. Give the construction of exponentiation in S e t - * . (Difficult. See Goldblatt [31, p.
88].)

2.10 Functors
It should be observed that the whole concept of a category is essentially an
auxiliary one; our basic concepts are essentially those of of a functor and a
natural transformation...

— Eilenberg and Mac Lane [18]

In Section 2.1 we observed that many kinds of mathematical domains can be thought of as
categories. Since categories themselves consititute a mathematical domain, it makes sense
to ask whether there is a category of categories. In fact, there is: its objects are categories
and its arrows are certain structure-preserving maps between categories, called functors.

6 0 D e f i n i t i o n Let C and D be categories. A functor F : C —* D is a map taking each
C-object A to a D-object F(A) and each C-arrow / : A —• B to a D-arrow F(f) : F(A) —•
F(B), such that for all C-objects A and composable C-arrows / and gy

1. F (i d A) = i d F (A) ;

2. F(gof) = F(g)oF(f).

Type constructors provide a familiar example from computer science:

6 1 E x a m p l e (Adapted from Rydeheard [77].) Given a set 5 , we can form the set List(S)
of finite lists with elements drawn from S. This definition can be thought of as a mapping
List: S e t —•Set, the object part of a functor. The arrow part takes a function / : S —• S1

to a function List(f) : List(S) —* List(S') that, given a list £ = [*i,*2> • • - >*n]> "maps" /
over the elements of L:

List{f){L) = maplist(f)(L) = /(«„)].

Actually, the set of lists with elements from a set 5 has some additional structure that
we have not yet taken into account. There is an associative binary concatenation operation
* over List(S), and an empty list [] that acts as an identity for * (i.e. [] * L = L = L * []).
Thus, (List(S),*, []) is a monoid (Example 4), and List: S e t —• M o n is a functor taking
each set S to the monoid of lists with elements drawn from 5 .

The arrow part of List takes each set function / to a monoid homomorphism List(f) =
maplist(f). Indeed, the fact that maplist(f) is a homomorphism corresponds exactly to

2.10. FUNCTORS 29

the first two lines in the usual definition of mapliat:

maplist(f)([]) = []
mapliat(f){L * V) = mapliat(f)(L) * mapltst{f){L')
maplist(f)([s]) = [/(.)].

The third line, as we shall see in Section 2.12, ensures that these equations define the
homomorphism maplist, in the sense that it satisfies them uniquely.

One simple but very important class of functors is the forgetful functors, which operate by
forgetting part of the structure of structured objects. The letter U is often used to denote
a forgetful functor because one thinks of it as extracting an "underlying" structure (often
just a set).

6 2 E x a m p l e The forgetful functor U : M o n —• S e t sends each monoid (M, •, e) to the
set M and each monoid homomorphism h : (M,- ,e) (Af', •'>€') to the corresponding
function h : M —* M' on the underlying sets.

Another simple functor is the identity functor on a category:

63 E x a m p l e For each category C, the identity functor IQ takes C-object and every
C-arrow to itself.

Another innocent-looking class of functors will prove quite useful later on:

6 4 E x a m p l e Let C be a category with a product X x 7 for each pair X and Y of
objects. Then each C-object A determines a functor — x A : C —• C taking each object
B to B x A and each arrow / : B —* C to / x id^. (The "—" is used to show where the
argument object or arrow goes.)

The composition of two functors is defined by separately composing their effects on objects
and on arrows. Given functors F : A —> B and G : B —> C , the composite functor G o F
maps each A-object A to a C-object G(F(A)) and each A-arrow / : A —* A' to a C-arrow
G(F(f)) : G(F(A)) —* G(F(A')). Is is easy to check that this composition operation is
associative, and that the identity functors defined above are identities for composition of
functors.
With this observation, we are ready to define the category of all categories:

65 E x a m p l e The category C a t has categories as objects and functors as arrows.

2.10. FUNCTORS

66 R e m a r k At this point, we should mention an important technical concern. The
"size" of C a t is clearly enormous, so that we are led to wonder whether it can possibly
be considered as one of its own objects. (Readers familiar with Russell's Paradox may
be concerned that there is a similar problem lurking in this definition. There is.) To
avoid such questions, category theorists generally distinguish between "large" and "small"
categories. Small categories are those whose collections of objects and arrows are both
sets. Then C a t is defined more precisely to be the category of all small categories (which
is itself a large category).

Readers interested in foundational issues should refer to a standard text on category
theory such as Mac Lane [54] or Herrlich and Strecker [38]. There are also papers by
Mac Lane [55], Feferman [22], Grothendieck [32], Blass [8], Lawvere [48], and Benabou [6],
and a chapter in Hatcher's book [37].

Our final class of functors "internalizes" the notion of sets of arrows between objects:

67 E x a m p l e Given a category C , each C-object A determines a functor C(A, —) : C
S e t . This functor takes each C-object B to the set C(A, B) of arrows from A to B, and
each C-arrow / : B C to the function C (A , /) : C (A , B) C (A , C) that yields fog
for input g:

Using the "— notation" we might write this as C(A, /) = (/ o —) .
C (A , —) is called a horn-functor. (The origin of the term is in the frequent use of

arrows to model homomorphisms of various sorts.) The set C(A, B) is often called a "horn
set."

Again, concern for consistency motivates a restriction on this definition: the collections
of arrows between each two C-objects must be actual sets—not proper classes—for the
definition to make sense.

The functors we have considered so far have all been covariant. A contravariant functor is
one that maps objects to objects as before, but maps arrows to arrows going the opposite
direction. This is not really a new concept, however, since a contravariant functor F : C —•
D is exactly the same as a covariant functor F : C o p —> D . Similarly, product categories
can be used to define n-ary functors.

Using functors from opposite and product categories, it is possible to give a contravari­
ant version—and even a two-argument version (contravariant in the first argument and
covariant in the second)—of the horn-functor construction.

2.11. NATURAL TRANSFORMATIONS 31

68 E x e r c i s e s
1. Check carefully that the constructions in examples 62 through 67 define functors.
2. The powerset operator P takes each set S to the set P(S) = {T | T C 5 } (the set of

all subsets of 5) . Show that P can be extended to a functor P : S e t —• Se t .
3. Let M and N be two monoids considered as one-object categories. What are the

functors from M to N ?
4. By analogy with Example 67, define the "contravariant hom-functor" C(—, B) and

the "bifunctor" C (— , —) .

2.11 Natural Transformations
We are now reaching the realm where category theory begins to show its power—and also
its confusing habit of proceeding by continually adding new layers of abstraction. Hav­
ing defined mappings from one category to another—functors—we now proceed to define
"structure-preserving mappings," called natural transformations between functors! The
concept of "naturality" is central in many mathematical applications of category theory;
indeed, category theory itself was originally developed in order to deal systematically with
natural transformations.
What is a structure-preserving map between functors? Given two functors F : C —• D
and G : C —• D , we can think of each of them as "projecting a picture of C inside of
D ." Natural transformations arise when we try to imagine "sliding" the picture of F onto
the picture of G in such a way that the "C-ness" of the picture is preserved. For each
C-object A, we define an arrow rA from the F-image of A to its G-image. To ensure
that the structure of C is preserved, we require that for each C-arrow / : A —> B , the
transformations rA and TB take the end points of the F-image of / to the endpoints of the
G-image of / .

The formal definition is as follows:

6 9 D e f i n i t i o n Let C and D be categories, and F and G functors from C to D . A
natural transformation r from F to G (written r : F G) is a function that assigns to
every C-object A a D-arrow TA : F{A) -> G(A) such that for any C-arrow / : A -* B the
diagram on the right commutes (in D) :

TA F{A)

Hf)

B F(B)

G(A)

G(f)

^G(B)

If each component of r is an isomorphism in D , then r is called a natural isomorphism.

70 E x a m p l e For any functor Fy the identity natural transformation tp : F -=+ F takes
each object A to the identity arrow idF(A)- (I n f a c t > lF is a natural isomorphism.)

2.11. NATURAL TRANSFORMATIONS 32

In categories with exponentiation (Definition 58) it turns out that the evaluation mapping
forms a natural transformation. For simplicity, we give the construction in the category
S e t .

7 1 E x a m p l e For a fixed set A , the map taking B to BA x A can be extended to a functor
FA : S e t —• S e t as follows:

FA{B) = B A x A,

FA(f) = (/ o -) x i d A .

Alternatively:
FA = (-X A)o(-)A,

where (—) A takes each B to BA and each / : C - * B to (/ o —) : CA -> BA and (— x A)
is the "right product" functor of Example 64.

The fact that eval: FA ^ I&et a natural transformation follows from the commuta-
tivity of the diagram

C A X A evalAc

evalAB
which in turn follows by checking that for any / : A C and a 6 A,

(goevalAC){{f,a)) = g {ev<dAC ((/ , a))
= 9(f(«))
= (tof){a)
= evalAB({g° f,*))
= evalAB{FA{g){a))
= (e « t f A B o F A ^)) « / , a » .

Natural transformations are ubiquitous in category theory. One of their uses is in defining
categories of functors.

72 E x a m p l e Let C and D be categories. Let F, G, and H be functors from C to D . Let
<r : F -=+ G and r : G H be natural transformations. Then for each C-arrow / : A B
we can draw the following composite diagram:

F(A) OA •G(A) H(A)

Hf) H(f)

F(B) -?2-+G(B)—2-+H(B)

2.11. NATURAL TRANSFORMATIONS 33

Since both squares commute, so does the outer rectangle. This shows that the composite
transform (roa) : F H7 defined by (r o a) x = f x o a A , is natural.

Composition of natural transforms is associative and has, for each functor F. the iden-
tity tp. Thus, for every two categories C and D , we can form a functor category D ,
whose objects are functors from C to D and whose arrows are natural transformations
between such functors.

73 E x a m p l e A category with no arrows other than identity arrows is essentially a set.
If C and D are both sets, then D is also a set, namely the set of total functions from C
t o D .

7 4 E x a m p l e For any category C , C * is isomorphic to C itself. (1 is the one-point
category defined in Example 7.)

75 E x a m p l e Recall (Example 8) that 2 is a category with two objects and one non-
identity arrow from one object to the other. For any category C, the functor category C
is exactly the arrow category C"~* (Example 18). Its objects are the arrows / : A —> B
of C. (Technically, they are functors from 2 to C, but each such functor picks out just
one arrow in C, and this choice completely determines the object part of the functor.) Its
arrows are pairs (h, k) of C-arrows (why?) for which the following diagram commutes:

76 E x e r c i s e s

1. Show that every category C is naturally isomorphic to the category C x i .

2. Recall the List functor of Example 61. Let rev be the "reverse" operation on lists,
that is, rev(S) : List(S) —» List(S) takes each list with elements in S to its reverse.
Show that rev is a natural transformation.

3. Let P be a preorder regarded as a category and C be an arbitrary category. Let
5 , T : C —* P be functors. Show that there is a natural transformation r : S T (it
will be unique) if and only if S(C) < T(C) for every C-object C.

2.12. ADJOINTS 34

2.12 Adjoints
The slogan is, "Adjoint functors arise everywhere",

— Mac Lane [54]

Adjoints, developed by Kan in 1958, are considered one of the most important ideas in cat­
egory theory, and also perhaps the most significant contribution of category theory to the
broader arena of mathematical thinking. A great variety of mathematical constructions—
including many parts of category theory itself—are examples of adjoints.

The concept is quite a bit more intricate than anything we have encountered so far. The
best way to grasp it is by working through the details of as many examples as possible.
We begin with one important example, the "free monoid," then give a formal definition of
adjunction, and then proceed to further examples.

This section is inspired by Rydeheard's excellent short article [76].

We begin by showing that the monoid (List(S)9 *, []) of Example 6 1 , also known as the free
monoid generated by the set 5 , has a very special property among monoids:

7 7 P r o p o s i t i o n If / : S —• Af is any function from the set S to the underlying set M of
a monoid (M, •, e), then there is exactly one monoid homomorphism / * : (List(S), *,[])—*
(M,«,e) such that the following diagram commutes (where i is the injection taking an
element s e S to the list [s] of length 1):

Proof: Define / * to be the monoid homomorphism taking each list *2> • • - > s n] to the
product f(si) • ffa) f(3n) in (Af,-,c) and taking the empty list [] to e. This
definition clearly satisfies the conditions for being a monoid (1 and 2) and makes the
diagram commute (3):

1. / * ([]) = « .

2. / # ([» i , « a , . . . , » »] * [t i , * a , . . . , *m]) = f* *2, • • • , *n]) • f*([*i. *2, • • •, *m])> and

2.12. ADJOINTS 35

Now assume that some other also satisfies these conditions. For any L e List(S), we
show, by induction on the length of L, that (L) = / * (£) , and thus that / * ' = / * . If
L = [], the first condition forces / * (L) = c = If L = [s\, 82,... ,sn] (n > 1), then
L = [8i}*[82,... , *„] . By the third condition, = = = =
/*([«!.]). By the induction hypothesis, / * ([S2 , . . . ,sn]) = /*([«2> • • • >*n])- Now by the
second condition, f*'(L) = /* ' ([* i]) • f#'([s2,...,sn}) = f*([Sl]) • f*([s2)... ,sn\) =
f*(L). (End of Proof)

The function / * is called the "extension of / " because it agrees with / on the elements of
5 , that is, f*([a)) = [/(.)].

Let us make this construction even more concrete by considering a particular instance.

78 E x a m p l e (Adapted from Rydeheard [76].) The operation of the length function can
be described by a set of recursive equations:

length([]) = 0
length(L * V) = length{L) + length{L')
length(i(s)) = 1.

The two monoids involved are (Lt8t(S)> *, []) and (Z+, + , 0). The first two lines of the
definition say that length is a homomorphism from the monoid of lists over the set S to
the monoid of natural numbers. The third fine says that the following triangle commutes
(where 1 is the constant function mapping every a € S to 1):

S L-+Li8t{S)

NSSSSVS\^^ length

The properties of monoid homomorphisms together with the commutativity of the
triangle correspond exactly to the definition of the length function. Thus, saying that the
definition is proper—that it actually defines a function—is the same as asserting that there
is a unique arrow in the category M o n satisfying the commuting triangle.

This motivates the general definition of adjunction:

7 9 D e f i n i t i o n An adjunction consists of

• a pair of categories C and D ;

• a pair of functors F : C —• D and G : D —• C;

• a natural transformation 17 : Iq (G O F);

2.12. ADJOINTS 36

such that for each C-object X and C-arrow / : X —• G(Y), there is a unique D-arrow
/* : F(X) —• y such that the following triangle commutes:

G(F(X))

G(f#)

G(Y)

The reader should check that this definition correponds exactly to the example above. The
categories C and D are S e t and M o n , respectively. The functor F is List: S e t —> M o n .
The functor G is the forgetful functor U : M o n —• S e t that takes each monoid (Af, •, e)
to its underlying set M and each homomorphism to the corresponding function on the
underlying sets. The natural transformation r; is the family of functions is : S —• List(S)
that take each element of S to a singleton list. The length function is the / # corresponding
to the / that takes every element of S to the number 1.

In the example the forgetful functor U was left implicit in several places (for example, wher­
ever we considered a monoid homomorphism as a function on sets). Writing U everywhere
it belongs, the diagram in the example matches the one in the definition precisely:

S—%—U{(List(S)} *,[]))

N N N S \ ^ ^ U(length)

tf((z+,+,o))

8 0 R e m a r k s

• We say that (F9 G) is an adjoint pair of functors. F is the left adjoint of G. G is the
right adjoint of F.

• The natural transformation r\ is called the unit of the adjunction. For each D-object
Y there is an arrow i%(Y) : ^(^(Y)) —• Y. This assignment defines a natural trans­
formation e : (F o G) l y called the co-unit of the adjunction.

• The functors F and G determine each other and the natural transformations r\ and e
to within an isomorphism.

2.12. ADJOINTS 37

• A given functor F may or may not have a right or left adjoint. Freyd's Adjoint
Functor Theorem gives necessary and sufficient conditions for the existence of left
adjoints. (By duality, the same theorem characterizes the conditions for existence of
right adjoints.) See Arbib and Manes [1, pp. 13Iff], Mac Lane [54, pp. 116S], Herrlich
and Strecker [38, pp. 2073], or any standard reference on category theory.

• The forgetful functor on a variety of algebras always has a left adjoint, but only
occasionally a right adjoint. In the cases most frequently encountered, the left adjoint
of a forgetful functor turns out to be something like a free algebra, while the right
adjoint (when it exists) usually describes a subset with some closure property. See
Cohn [14, p. 314].

• Adjoint functors have many pleasant theoretical properties. For example, functors
that are left adjoints preserve colimits (i.e. map colimiting cones in the source category
to colimiting cones in the target category) and, dually, right adjoints preserve limits.

There are other, equivalent definitions of adjunction. The one given here seems to be the
simplest for gaining an initial grasp of the concept. However, practicing category theorists
normally prefer to think in terms of an isomorphism

I>(F(X),Y)SiC{X,G<y))

that is natural in both X and Y—i.e., a two-variable natural transformation that preserves
structure as both X and Y vary and that is a bijection for all X and Y.
Another way of saying the same thing is that adjointness occurs when there is an exact
correspondence between D arrows from F(X) to Y and C-arrows from X to G(Y):

F(X)

I
I
T

(Note that in this "diagram," the two dotted arrows and the horizontal arrows are in three
different categories!)
The bijection is often presented schematically:

X -> G{Y)
F(X) — Y

The reader who has persevered this far is urged to consult a standard textbook for more
details on alternative treatments of adjoints. For the remainder of this section we will stick
to the original definition and attempt to deepen the concept with several examples.

Categorical limits and colimits have a simple interpretation in terms of adjunctions, as the
next three examples show.

G{Y)

2.12. ADJOINTS 38

8 1 E x a m p l e The initial object 0 in a category C arises as a left adjoint to the constant
functor T : C —• 1, where 1 is the one-object category. The unit of the adjunction is the
single arrow in 1 . The co-unit picks out the unique C-arrow from 0 to each C-object.

82 E x a m p l e If C is a category with a product object A x B for every pair of objects A
and By then the product functor P : C x C —• C, which takes a pair of objects (A, B) to
the product object A x B , is the right adjoint of the "diagonal functor" A : C —• C x C
taking each C-object C to (C, C):

C-^AxB
(C,C)

The correspondence with Definition 79 is:

<A,B>

F = A
G = P
X = C
Y = <A,B)
ric = (i d c , i d c) .

The universal diagram for the unit of the adjuntion is:

(i d c , i d c)
C CxC

AxB

8 3 E x a m p l e In the definition of exponentiation (Definition 58), the assignment of a g*
to each g establishes a bijection between the sets C (C x A, B) and C(C, BA). To see this,
suppose g* = h*. Then g = evalAB ° (<7* x i<Li) = CMIAB ° (h* x id A) = so the assignment
is injective. On the other hand, for any g* : C —> BA, define g = evalAB ° (<7*)• By the
uniqueness of g*> it must be the case that g* = g* , so the assignment is also surjective.

This correspondence of sets of arrows signals the presence of an adjunction:

C —» BA

C x A—+ B

The details are as follows. First, we pick a C-object A and hold it fixed during the
construction. Now, the "right product" functor (— x A) of Example 64 has as its right
adjoint the functor (—) A of Example 71.

In this example, it is the co-unit of the adjunction that is most revealing. In general,
the co-unit is a natural transform e : (FoG) IB, such that for each arrow g : F(X) —• Y

2.12. ADJOINTS 39

there is a unique arrow g* : X —• G(Y) for which the following diagram commutes: The
universal diagram for the co-unit of the adjunction is:

F(G(Y)) € Y • Y

F(X)

In the present instance, ey is just the evaluation arrow evalAB °f Definition 58 and, for
each g : Cx A—> B the arrow g* : C —• BA is the same as the one defined in Definition 58.
Filling in the labels on the diagram that defines the co-unit, we see that it exactly matches
Definition 58:

Cx A

Finally, remember that the construction so far has assumed a fixed C-object A. The
category C "has exponentiation" if the functor (— x A) has a right adjoint for every A.

Many other mathematical constructions are examples of adjoints. Here are some briefer
examples illustrating the range of situations where adjunctions can be found:

8 4 E x a m p l e Let In t = (Z, <) and R e a l = (R, <) be the integers and reals with the usual
ordering, both considered as categories. It is easy to see that the inclusion U : In t —• R e a l
is a functor. In the other direction, the ceiling function \r], taking each r e R to the
smallest integer greater or equal to r, is also a functor (r < r1 implies that \r\ < | V] ,
where "<" in each case stands for an arrow). In fact, the ceiling functor is left adjoint to
U. To see this, observe that r < Ef([r"|) for each r. This is the unit of the adjunction.
The universal property of C7"(fr]) in the diagram of Definition 79 corresponds to the word
"smallest" in the definition of the ceiling function.

This example appears in Rydeheard and Burstall's book [78], where it is attributed
to Pratt. Adjunctions between partial orders are also known as Galois connections
(see [54,60]).

85 E x a m p l e (Also from Rydeheard and Burstall [78].) The category G r a p h has directed
multi-graphs as its objects. An arrow / : G —• H in G r a p h is a structure-preserving map
between graphs, that is, a mapping v from vertices of G to the vertices of H and a mapping
e from the edges of G to the edges of H, such that for each edge x of G, the endpoints in

2.13. CARTESIAN CLOSED CATEGORIES 40

H of the image of x under c are the images under v of the endpoints of x in G. (Note the
similarity to the definition of functors!)

Two nodes m and n in a graph G are said to be strongly connected if there is a path in G
from m to n and a path from n to m. A subgraph C C G i s strongly connected if every pair
of nodes in C is strongly connected. A strong component of a graph is a maximal strongly-
connected subgraph. The strong components of a graph themselves form an acyclic graph
which is a quotient of the original graph (that is, each node corresponds to an equivalence
class of strongly-connected nodes in the original). The mapping taking a graph to the
acyclic graph of its strongly-connected components may be expressed as a left adjoint to
the inclusion functor from A c y c l i c G r a p h to G r a p h .

8 6 E x a m p l e Goguen [25] defines a category of finite state automata and a category of
observable behaviors. The "minimal realization" functor turns out to be left adjoint to the
"behavior o P functor. (Also see [29].)

87 E x e r c i s e s

1. Dualize Example 81
2. The universal diagram for the unit of the product adjunction in Example 82 does not

correspond directly to the universal property of products in Definition 36. Draw the
co-unit diagram.

3. Show that the categorical coproduct (see the exercise in Section 2.4) arises as a left
adjoint to the diagonal functor A.

4. What is the unit of the adjunction is Example 83? Give an intuitive interpretation
to the mapping from / to / * .

5. Show that the floor function from R e a l to Int is right adjoint to the inclusion U.

2.13 Cartesian Closed Categories

. . . But is category theory the long-sought answer? No, no, not at all. Category
theory pure provides nothing explicitly aside from identity functions... as it
stands, category theory has no existential import. (It was not meant to.) Set
theory has "too much" existential import. (It was meant to.) What we seek is
the middle way—and an argument that the middle way is natural and general.

There is no need to build up unnecessary suspense: the middle way is the
theory of the (so called) cartesian closed categories....

— Scott [86, p. 408]

Cartesian closed categories, introduced by Lawvere, are essentially "function spaces" in
a categorical setting. It has been shown that there is an exact correspondence between
CCCs and certain typed lambda calculi, which provides a convenient algebraic treatment
of models for lambda calculi. Also, CCCs can be used as the basis of a translation of
functional languages into variable-free "combinator expressions," which can be efficiently
interpreted by a "categorical abstract machine." (See [15].)

2.14. TOPOI} 41

88 D e f i n i t i o n A cartesian closed category (CCC) is a category with

1. a terminal object i ;

2. products (that is, a product object A x B for every pair of objects A and S) ;

3. exponentiation.

8 9 E x a m p l e The category S e t is cartesian closed, with BA = S e t (A, B).

9 0 E x a m p l e The category C a t is cartesian closed, with the functor category
(Example 72).

Example 83 motivates an alternative definition of cartesian closedness:

9 1 A l t e r n a t e D e f i n i t i o n A category C is cartesian closed if it has products, and if the
functor (— x A) : C —* C has a right adjoint for every C-object A.

92 E x e r c i s e s

1. Given a set 5 , show that the partial order (P(S)>C) is a cartesian closed category.

2. Prove that in any cartesian closed category, BAxA' is naturally isomorphic to (BA)A*
for all objects A, A', and B.

3. Let S be the set of sentences of propositional logic. We can consider 5 as a preorder
(Sy <) , where p < q means that from p we can derive q directly from some axiomatiza-
tion of the logic. Show that S forms a cartesian closed category, with product given
by conjunction of propositions and the exponential qp corresponding to "p implies

2.14 Topoif

The average mathematician, who regards category theory as "generalized ab­
stract nonsense," tends to regard topos theory as generalized abstract category
theory. And yet S. Mac Lane regards the rise of topos theory as a symptom
of the decline of abstraction in category theory, and of abstract algebra in
general....

What, then, is the topos-theoretic outlook? Briefly, it consists in the rejec­
tion of the idea that there is a fixed universe of "constant" sets within which
mathematics can and should be developed, and the recognition that the notion
of "variable structure" may be more conveniently handled within a universe
of continuously variable sets than by the method, traditional since the rise of
abstract set theory, of considering separately a domain of variation (i.e. a topo­
logical space) and a succession of constant structures attached to the points of
this domain....

— Johnstone [42, p. xvi]

2.14. TOPOI] 42

A topos is a cartesian closed category with an object, called a sub object classifier, that
represents truth values. This allows the definition of an "internal logic" of the topos. It
turns out that there is an exact correspondence between toposes (or topoi) and theories in
higher-order intuitionistic logic (see [47]).

The theory of topoi is an extremely rich and sophisticated area of study. We give just the
bare definition here, with no explanation of how it works or where it is used. (Thinking of
the correspondence between subsets and characteristic functions in set theory may provide
some glimmers of intuition.) For more information, see the textbooks of Lambek and Scott
[47], Johnstone [42], Goldblatt [31], or Barr and Wells [5], or the introductory papers of
Mac Lane [53] or Freyd [24].

93 D e f i n i t i o n Let C be a category with terminal object 1. A subobject classifier for
C is a C-object Q together with a C-arrow t : 1 —* fi such that for each monic arrow
/ : A —• C, there is a unique Xf : C ~"* 0 (called the "character of / ") that makes the
following diagram commute:

A I , C

(Recall that ! stands for the unique arrow from A to 1.)

9 4 D e f i n i t i o n A topos is a cartesian closed category equipped with a subobject classifier.

95 E x a m p l e The categories Se t , C a t , Set"*, and (for any B and C) C B are all topoi.

Chapter 3

C a s e S t u d i e s

This section uses the notation developed in the tutorial to sketch some actual applications
of category theory in computer science. The first two subsections cover the essentials of
two papers on the design of programming languages using category theory. The third
outlines some of the applications of category in the semantic description of programming
languages. All three subjects are treated here just deeply enough to give a feel for how
category theory is brought to bear in different situations. The fourth section describes in
more detail the use of category theory as a unifying tool in domain theory. Enterprising
readers should find that the material in the tutorial makes the original papers reasonably
accessible.

3.1 Categorical Type Systems

Tatsuya Hagino has developed the idea of using category theory as the basis for the type
structure of a programming language. His paper on "A Typed Lambda Calculus with
Categorical Type Constructors" [35] describes a uniform category-theoretic mechanism
for declaring types and presents a lambda calculus incorporating this mechanism. He
shows that the evaluation of expressions in this calculus always terminates even though
the calculus can be used to define infinite data structures.

One of the simplest programming languages is the simply-typed lambda calculus. Its type
structure is captured by two rules:

1. some predefined set of base types is given;

2. for any two types a and r, the expression a —• r is also a type.

The calculus itself is then defined by giving rules for forming typed terms (programs) and
rules for reducing (executing) these terms.

It is fairly easy to prove some useful theorems about this language. For example, every
well-typed program is strongly normalizing—that is, every program can be reduced to a
normal (or canonical) form, and a normal form will always be reached no matter in which
order the reduction rules are applied.

But this language is too simple to be of any practical value. Before we can use it to ex­
press interesting programs, we need to specify some base types (the natural numbers, for

43

3.1. CATEGORICAL TYPE SYSTEMS 44

example) and add some more type constructors like products (records) and sums (variant
records or disjoint unions). Unfortunately, this complicates the language and makes prop­
erties like strong normalization more difficult (or even impossible) to prove. Worse yet,
these properties must be proved again each time we think of another type constructor or
base type that we've forgotten to add.
The proper approach, of course, is to try to work in a more abstract setting by defining a
small set of powerful type constructors from which all of the ones we want can be derived
as special cases. Then we can prove the theorems we care about once and for all. One
such "high-level constructor" is the least-fixed-point operator p. If a* is a type expression
with a free variable />, then fx p.a denotes the least type satisfying the recursive equation

\ip.a = a[(tAp.cr)/p],

where <r[(fAp.a)/p] denotes the result of replacing all occurrences of p in a with \ip.a.
The type of natural numbers, for example, no longer needs to be primitive. It can be
defined as

Nat = fjLp.l + p,

where 1 is a type with one element and + is the sum (disjoint union) constructor. This is
good, but of course we still have to define 1 and + as primitives. It would be desirable, if
possible, to eliminate even these.

At this point, category theory enters the picture. Hagino describes a general categorical
type constructor called "F, G-dialgebras." Both the least fixed point operator /* and its
dual, the greatest fixed point operator p , arise as special objects in the category of F, G-
dialgebras. Other type constructors arise, in turn, as combinations of /x and "p.

9 6 D e f i n i t i o n Let C and D be categories and let F and G be functors from C to D .
The category D A l g (^ , G) of F, G-dialgebras is defined as follows:

• its objects are pairs (A, /) where A is a C-object and / : F(A) —* G(A) is a D-arrow;

• its arrows h : (A, /) —• (B, g) are C-arrows h : A —• B for which the following diagram
commutes:

F(A) 1 - G (A)

To illustrate the definition, let us demonstrate how dialgebras can be used to define prod­
ucts. (A similar construction can be given for any kind of left or right adjoint.)

97 E x a m p l e Let C be a category with products and let A and B be two C-objects.

file:///ip.a

3.1. CATEGORICAL TYPE SYSTEMS 45

Define the functors F, G : C C x C by

F(C) =

Hf) =
(C,C)
(/,/>

G(C) = <A,B>
G(f) = (I D A , I D B) .

It can be shown that DAlg(.F,G) has a terminal object 1. In this case, let 1 —
(A x JB,(7Ti,7T2)), that is, assign the names A x B , *ri, and x j to the components of the
terminal Fy G-dialgebra. (The reader may want to pause and check the details of what we
have done.)

Now, because (A x B , (TI,7T2)) is a terminal object in D A l g (i ? , , G) , there must be a
unique DAlg(JF, G)-arrow h from any D Alg(jF, G)-object (C, (/ ,$)) to (A x J3, (t f i , ^)) .
Furthermore, from the definition of F, G-dialgebras, this h will be such that the following
diagram commutes:

»- (A, J5) (c , c)

(A x B , A x B)

<IDA,IDB)

(A , B)
(^ 1 ^ 2)

But this is just a different way of drawing the ordinary universal diagram for products:
C

Terminal objects in the category of F, G-dialgebras turn out to correspond exactly to the
types defined by equations of the form Jlp.a. Initial objects correspond to types defined by
equations of the form pp.a. This means that F, G-dialgebras van be used as the semantics
of a lambda calculus whose type constructors are /£ and /J (and —>). Hagino presents such
a calculus, gives its reduction rules, and shows the the calculus is strongly normalizing
by arguing that the class of functions that can be computed in it are just the primitive
recursive functions.

The datatypes that can be defined in the calculus include not only natural numbers,
products, sums, and recursive data types like lists, but also, via the JI constructor, infinite
structures like infinite (sometimes called "lazy") lists and trees. This suggests an elegant
way of adding facilities for "lazy functional programming" to languages like Standard ML
[36]. In fact, Hagino's language CPL (described in his Ph.D. thesis [34]) goes one step
further, eliminating even the basic —• type constructor by giving up lambda calculus itself
and working with left and right adjoints in a completely categorical setting.

3.2. IMPLICIT CONVERSIONS AND GENERIC OPERATORS 46

3.2 Implicit Conversions and Generic Operators

John Reynolds, in his paper on "Using Category Theory to Design Implicit Conversions
and Generic Operators," [69] has applied category theory to a thorny problem in the design
of programming languages.
Most languages support at least a limited form of "generic operators." For example, it
would be a shame to have to distinguish two separate addition operators:

+jnt : Int x Int —• Int

+|ka/ Real x Real —• Real.

Instead, the single operator + is considered to have two different signatures:

+ : Intx Int Int

+ : Real x Real Real.

The compiler must now decide which of these is intended in a given situation.
Another convenience provided by many languages is the ability to write an Int in a context
where a Real is expected to appear, relying on the compiler to insert an "implicit conver­
sion" from Int to Real as required by the context. For example, if x is a Real variable and
t is an Int variable, we could simply write

x : = i
instead of

x:=Int-to-Real(i).

The designers of some languages (notably PL/I and Algol 68) have actually combined these
two mechanisms, making it possible to write

x:=t + j

instead of
x™Int-to-Real(i) +Reai Int-to-Real(j)

or

x™Int-to-Real{i +jnt j).

But a question immediately arises: which of these did we mean? Unfortunately, the
usual approach—trying to specify exactly where implicit conversions will be inserted in
expressions involving generic operators—has led in practice to complex, confusing, and even
inconsistent language definitions. Reynolds suggests an alternative approach, based on the
observation that, mathematically speaking, it doesn't matter which of the interpretations of
x;=i + j is chosen by the compiler. He suggests, in fact, that this observation be enshrined
as a requirement for the design of the conversions and generic operators themselves: their
specification should not be considered well-formed unless they can be inserted in any order
by the compiler without affecting the meaning of any program.

3.2. IMPLICIT CONVERSIONS AND GENERIC OPERATORS 47

The mathematical tools Reynolds chooses to carry out this program are a generalization
of Higgins' Algebras with Schemes of Operations [39], which in turn can be thought of
as a generalization of the conventional Many-Sorted Algebras used by Goguen, Thatcher,
Wagner, and Wright [30]. (The roots of this approach to the semantics of programs go back
to the work of Burstall and Landin [12].) Reynolds calls his formalism Category-Sorted
Algebra.

The essence of the approach lies in viewing the types of a given programming language as
forming a partial order fi, for example:

NS (the universal type)

Real Bool

Int

This partial order can then be considered as a category, where the unique Q-arrow a < r
represents the fact that values of type a may be implicitly converted to values of type r. The
actual conversion functions are the images of the < arrows under a functor B : Q —• Set .
(The object part of this functor maps each type a to the set of values of type a.)
Finally, the fact that generic operators and implicit conversions may be inserted in either
order by the compiler corresponds to the commutativity of diagrams like the following:

^ { I n t J n t) ^B(Int) B(Int) x B{Int)

B(Int < Real)
xB(Int< Real)

B(Real) x B(Real)

B(Int < Real)

• B(Real) 7+ (Real, Real)

(Here 7 + is a family of Set-functions for performing addition, indexed by the types of the
two values being added.)

Such diagrams, Reynolds shows, may elegantly be viewed as natural transformations.

This view of data types leads to a general notion of algebraic semantics, which Reynolds
uses in the second half of the paper to analyze a simple expression language derived from
Algol 60. (Also see his paper on "The Essence of Algol" [70].) More recently, he has
used similar techniques in designing the type system of the language Forsythe [74] and,
with Frank Oles, in describing the semantics of imperative languages with nested block
structure [62,63]. The notes for his course on Semantics as a Design Tool [68] cover the
details of category-sorted algebras and related constructions in great depth. The techniques
of Reynolds and Oles are also discussed in an introductory article by Tennent [90].

3.3. SEMANTICS 48

3.3 Semantics

One area of computer science where the relevance of category theory is practically undis­
puted is semantic models of programming languages. Peter Dybjer has surveyed the work
in this area in his article, "Category Theory and Programming Language Semantics: an
Overview" [16].
Dybjer distinguishes mathematical semantics, which concerns methods for interpreting
programming languages in mathematical structures from set theory, algebra, or topology,
from operational semantics. The applicability of category theory to the latter seems to
be minimal. Within mathematical semantics, Dybjer distinguishes topological methods
(denotational semantics and domain theory) from algebraic (universal algebra). Both
were influenced early on by category theory. In domain theory, Scott [83] showed that the
continuous lattices with continuous functions form a cartesian closed category. In algebraic
semantics, "algebraic theories" were developed by authors such as Elgot [20,21], Burstall
and Thatcher [13], and the AD J group [95]. [The idea of giving a categorical description
of theories is originally due to Lawvere [49].]
Later, important papers by Wand [94], Smyth and Plotkin [88], and Lehmann and Smith
[51] used category theory to unify different methods of solving domain equations and
to connect denotational semantics with initial algebra semantics. Plotkin [67] developed
lecture notes for a whole course on domain theory in categorical terms. Barendregt [3]
found a natural unifying description of various models of the lambda calculus in terms of
cartesian closed categories.
Dybjer goes on to discuss three specific approaches in more depth:

• The connection between category theory and type theory is based on Lambek's ob­
servation [44,45,46] that the cartesian closed categories are in perfect correspondence
with a certain class of typed lambda calculi (specifically, the A/Jry-calculi with sur-
jective pairing). This has led a number of theorists to the conclusion that cartesian
closure provides the appropriate notion of a model of the typed lambda calculus [86].

• The connection between category theory and domain theory is very rich, but quite
complicated. Domain theory incorporates the notion of "partial elements" in order
to assign meaning to programs whose computation may not terminate. This re­
quirement has given rise to a number of formulations of domains as cartesian closed
categories [7,33,66,67,83,84,85,87].

• The connection between category theory and algebraic semantics arises from the
notion of "initial" or "free" algebra [12,21,27,95]. The abstract syntax of a program­
ming language may be thought of as the initial object in a category of S-Algebras,
where S is intuitively the grammar defining the language. A "meaning map" is then
the unique homomorphism from the initial algebra to some semantic algebra.

One controversial point in any discussion of the applicability of category theory to computer
science is how much of category theory people are interested in using. Some authors (e.g.

3.4. RECURSIVE DOMAIN EQUATIONS 49

Reynolds) use category theory simply as a powerful and uniform notational framework for
masses of complicated but relatively shallow detail. On the other side, Dybjer cites papers
by Lehmann [52] and Goguen and Burstall [26] where what he feels are deep theorems of
category theory are applied to computational situations.

3.4 Recursive Domain Equations

One of the great successes of category theory in computer science has been the development
of a "unified theory" of the constructions underlying denotational semantics, specifically
the solution of recursive domain equations. Equations like

D S At + (D -+ D)

(where At is a fixed domain) can be solved by finding least fixed points of functions mapping
domains to domains—in this case, of the function

/ (X) = At+ (X^X).

(The solution to this equation, in particular, provides a good domain for the semantics of
an untyped A-calculus computing over some collection of atoms.)

Scott's inverse limit construction [83] provided the basic insight that the key to finding
such fixed points is taking UA —• B" to mean not all functions from A to 23, but only the
continuous ones. (This construction is also discussed by Reynolds [72] and Stoy [89], and
in an excellent expository chapter in Schmidt's book [81].) But there are many possible
definitions of "domain" and "continuous" for which the construction can be carried out;
the details in each case are similar, but not identical. To cope with a proliferation of special
cases, it was important to find a general characterization of the conditions under which a
given equation would have a solution over a given class of domains.

Smyth and Plotkin's paper, "The Category-Theoretic Solution of Recursive Domain Equa­
tions" [88] builds on earlier work of Wand [92,93] to give a definitive treatment of these
matters. This section develops a simplified version of their results.

Our central example throughout the section will be the equation F(X) = At + (X —> X).
The key shift of perspective from the domain-theoretic to the more general category-
theoretic approach lies in considering F not as a function on domains, but as a functor on
a category of domains. Instead of a least fixed point of the function, we will be looking for
an initial fixed point of the functor.

We turn now to the task of developing enough of the general theory that we can state all
of this precisely.

98 D e f i n i t i o n Let K be a category and F : K - ^ K a functor. A fixed point of F is a
pair (A, a), where A is a K-object and a : FA —• A is an isomorphism. A prefixed point of
F is a pair (A, a) , where A is a K-object and a is any arrow from FA to A.

3.4. RECURSIVE DOMAIN EQUATIONS

Prefixed points of a functor F are also called F-algebras. They form the objects of a
category:

9 9 D e f i n i t i o n Let K be a category and F : K —• K a functor. The category F - A l g has
as objects the prefixed points of F. Given objects (A, a) and (A', a1} of F - A l g , an arrow
/ : (A, a) —• (A', a') (called an F-homomorphism) is a K-arrow / : A —• A' such that the
following diagram commutes:

1 0 0 F a c t (Lemma 1 of [88].) The initial F-algebra, if it exists, is also the initial fixed
point of F in K.

This allows us to work in the more structured setting of F-algebras. Next, we need to
define some basic conditions on K and F that ensure the existence of an initial F-algebra.

1 0 1 D e f i n i t i o n An uj-chain in a category K is a diagram of the following form:

An (jjop-chain is a diagram of the following form:

Recall that a cocone /i : A —* X of of an u-chain A is a K-object X and a collection of
K-arrows {/it : Di —> X \ i > 0} such that for all t > 0, /it- = o / t-.

Dually, a cone \k : X —• A of an a; o p-chain A is a K-object X and a collection of
K-arrows : X —> Z>, \ i > 0} such that for all t > 0, / i , = / t- o / i t + 1 .

A colimit ft: A —> X is a cocone with the property that if v : A —• X1 is also a cocone,
then there exists a unique mediating arrow k : X —* X' (we will often say "from /i to i/")
such that for all i > 0, V{ = k o m. Colimits of cj-chains are sometimes referred to as
u>-co limits.

An OJ°p-limit of an a^-chain A is a cone / i : X —» A with the property that if v : X' ~>
A is also a cone, then there exists a unique mediating arrow k : X' —• X such that for all
* > 0, /if* o fc = V{.

We write JLK (or just _L) for the initial object of K (if it has one), and ! f o r the unique
arrow from _L to each K-object A. It is also convenient to write

3.4. RECURSIVE DOMAIN EQUATIONS 51

for all of A except DQ and /o . By analogy, /A is {/A,- | I > 1 } . For the images of A and /A
under F we write

FA = J^Do 2^Di FZ?2

and 2*> = {F/A, | S > 0 } .

With these definitions in hand, we can state Smyth and Plotkin's "Basic Lemma":

102 L e m m a Let K be a category with initial object _L and let F : K —• K be a functor.
Define the a>-chain A by

where by F% we mean the iterated composition (t times) of F: F°(f) = /, Fx(f) = F(f),
F 2 (/) = F (^ (/)) , etc. If both /A : A —» 2? and Fy, : FA —• -F25 are colimits, then the
initial ^-algebra exists and is (D,d), where d : FD —• D is the mediating arrow from 2̂ /A
to

Proof: Let (2?', <?) be any j^-algebra. Define v : A -» D1 by

i / n +i = i ' o F (i / n) .

To show that v is a cocone, we prove by induction that the following diagram commutes
for all n:

I'N+L

2?'
For n = 0 this is clear, since ± is initial. For n + 1 we have:

i / n + 2 o , F N + 1 (! ± - . F (±)) = <*' ° *Vn+i) ° ^ N + 1 (! JL-+F(.L)) (b Y t h e definition of v)
= O F (i / n + i O i r n (!x~.F(i .))) (since 2*1 is a functor)
= d'o F(un) (by ind. hyp.)
= vn+i (by definition).

We need to show that there is a unique F-homomorphism / : (D,d) —• (Df

9d').
First, suppose / is such a homomorphism. The uniqueness of / follows from the fact that
it is the mediating arrow from p to v\ to see this, we use induction again to show that

= / ° A*N for each n. Again, the case for n = 0 is clear. For n + 1, we have:

/ o = f o do F(fXn) (by the definition of d)
= d1 O 2 ? , (/) O F(/jLn) (since / is an JP-homomorphism)
= d' O F(f O /x n) (since 2*1 is a functor)
= d1 o F(vn) (by the induction hypothesis)
= vn+1 (by definition).

3.4. RECURSIVE DOMAIN EQUATIONS 52

Second, to show that / exists, we define it as the mediating arrow from /x to u (so that
un = f o fin for all n > 0). We will show that / o d and <? o Ff are both mediating arrows
from Ffi to which implies that they are equal, and that / is an -F-homomorphism as
required.
In the first case,

(/ o d) o Fnn = jo /x n +i (by the definition of d)
= (by the definition of /) .

In the second case,

(d9 o Ff) o FfMn = d9 o F(f o (in) (since F is a functor)
= d9 o F{un) (by the definition of /)
= ^n+i (by the definition of v).

{End of Proof)

The Basic Lemma is a fundamental tool for finding initial fixed points of functors. But
applying it directly in each situation where a fixed point is needed would be quite tedious
(see Exercise 114). To make it more useful, Smyth and Plotkin go on to develop a theory of
"O-categories" that captures the essentials of what is required to apply the lemma (mainly,
the use of embeddings). This allows them to state simpler conditions guaranteeing the
applicability of the lemma. The remainder of this section summarizes a part of this theory,
using the example from the beginning of the section as motivation.
To begin an attack on the example, we need to be more precise about where we want to
solution to live.

1 0 3 D e f i n i t i o n Recall that a partial order is a set P equipped with a reflexive, transitive,
antisymmetric relation Cp . (We usually omit the subscript.) An aj-sequence is a sequence
{p% | * > 0} C P in which V/ > 0, pi C p f +i- An upper bound of an a>-sequence {pi \ i > 0}
is an element p such that Vi > 0, pt- C p. The least upper bound (or lub) of {pi | s > 0} is
an upper bound that is less than or equal to every other upper bound—that is, an element
p such that p is an upper bound of of {pt- | t > 0} and, whenever p9 is also an upper bound
o f { p . | t > 0 } , P C p ' .

A given o;-sequence may or may not have a lub. If an o;-sequence {pt- | t > 0} does have
a lub, it is written Un>oPn (or just U P n) -

A partial order P in which every o;-sequence has a lub is called u-complete. If it also
has a least element (written ±p or just ±) , P is called an oj-complete pointed partial order.

A function f : P —> Q (where P and Q are co-complete pointed partial orders) is
monotonic iff for all pi ,P2 € P, pi C jn implies f{p\) C /(P2). It is continuous iff
it is monotonic and for each o;-sequence {pi \ i > 0} it is the case that f{\Jn>oPn) —

L 4 o (/ (P n)) -

1 0 4 D e f i n i t i o n The category C P O has uncomplete pointed partial orders as objects
and u;-continuous functions as arrows.

3.4. RECURSIVE DOMAIN EQUATIONS 53

105 E x e r c i s e Check that C P O satisfies the category laws of Definition 1.

This is almost a category where we can build a solution to the example equation, but we
need one further refinement: the notion of a category of embeddings.

1 0 6 D e f i n i t i o n A category K is an O- category iff

1. for every pair of K-objects A and B , the hom-set K (A , B) is a partial order in which
every u>-sequence has a lub;

2. composition of K-arrows is an ^-continuous operation with respect to this ordering—
that is, if / QK(ATB) / ' and g QK(B,c) 9*, then go f QK(A,c) 9'°f \ and if {/t- | i > 0 } is
an a>-sequence in K(A, B) and | i > 0 } is an o;-sequence in K (B , C), then U(?n °
/») = (U«7n)°(LI/n) .

For example, C P O is an O-category when its hom-sets are ordered "pointwise":

/ ECPO(A,B)/ ' iff V o 6 A . / (a) C B / ' (a) .

107 D e f i n i t i o n Let K be an O-category and let / : A —• B be a K-arrow such that for
some arrow fR:B—* A,

/ * o / = i d A and fofRQidB.

Then / is called an embedding and fR is called a projection.

108 F a c t Each embedding / determines a unique projection fR and vice versa.

1 0 9 D e f i n i t i o n If A is an o;-chain in an O-category K,

A = D0 Dx D2

where each fa is an embedding, then we write AR for the a; o p-chain obtained by replacing
each embedding /t- with the corresponding projection fR:

fR fR fR

AR = D0£- DXA- D 2 £ - . . .

1 1 0 D e f i n i t i o n Let K be an O-category. The category of embeddings o / K , written K^,
has as objects the objects of K and as arrows the K-arrows that are embeddings.

It is in C P O ^ that we can construct an initial fixed point of the functor F(X) = At+ (X —•
X). In order to express F as a functor from C P O ^ to C P O £ , we need to define the more
primitive functors At, + , and Primarily because of the contravariance of -» in its
first argument, we must take a somewhat roundabout route. First, we define At, + , and
-» over C P O and C P O ° P rather than CPOE. We then use them to build a functor
G : C P O ° P x C P O C P O , from which we derive a functor G E : C P O 2 5 x CTOE ->
C P O ^ . Finally, from G E we derive the functor FE : CFOE CPOE.

3.4. RECURSIVE DOMAIN EQUATIONS 5 4

(f + 9)(c)={

111 Definition
1. For any CPO-object A, the constant functor A is defined by:

A(B) = A,
A{f) = i d A .

2. The functor + : C P O x C P O -» C P O is defined on objects by

A + B = {{0,a)\aeA}
U {{l,b)\b€B}
U {±A+B},

where the partial order on A + B is given by

c QA+B C' iff (c =J-yi+B)

V (3a, a' e A. c = (0, a) A c' = (0, a') A a CA a')

V (36,6' e £. c = (1,6) A c' = (1,6') A 6 CB 6').
The action of + on arrows / : A —• A' and g : B —» B' is:

f (0 , / (o)) if 3o e A. c = (0,o)
(1,^7(6)) i f 3 6 € B . c = (l , 6)

+B* otherwise.
3. The functor C P O ° P x C P O -> C P O is defined on objects by

A —• J3 = C P O (A , B)y

the ^-complete pointed partial order whose elements are the continuous functions
from A to B under the pointwise ordering:

fQA^Bf' iff V a € A . / (a) C B / ' (a) .

The action of —• on a C P O o p - a r r o w / : A —• A1 (that is, an of-continuous function
from A! to A) and a CPO-arrow g : B —• B9 is:

(/ ^ 5) W = ffo^o/.

We can't quite define JF from these components. In fact, F is not a functor on C P O
because it only takes one parameter and uses it on both sides of the —• functor, which is
contravariant in one argument and covariant in the other. For our F acting on objects, this
is no problem. But if the argument to F is an arrow / : A —• B we get stuck: there is no
way to get from this arrow to one running the opposite direction, because we cannot always
derive an ^-continuous function / ' : B —• A from an ^-continuous function / : A —• B.
However, we can define a functor G : C P O ° P x C P O -» C P O that is only a small step
away from F:

G{X, Y) = At+ (x - > y) ,
G(f,g) = A t + (/ - > *) .

The next step is to find a functor GE : C P O 2 * x C P O 1 5 -> C P O * \

3.4. RECURSIVE DOMAIN EQUATIONS 55

112 D e f i n i t i o n Let K be an O-category. A functor T : K°P x K -+ K is locally
monotonic iff it is monotonic on the hom-sets of K—that is, if for f,f':A—*B'va. K o p

and g,g' : C D in K , / C / ' and g C g' imply that T(f,g) C T(f',g').

1 1 3 F a c t (Special case of Smyth and Plotkin's Lemma 4.) If T : K°P x K - * K is locally
monotonic, it can be used to define a covariant functor TE : JS.E x ~BLE —* ~K.E by putting

TE(X,Y) = T(X,Y),
TB{f,g) = T{fR,g).

For our example, this functor is:

GE(X,Y) = At+(X^Y),
GE(f,g) = idM + {fR-+g).

Now, since GE is covariant in both its arguments, we can define FE simply by:

FE(X) = GE(X,X),
FE(f) = GE(f, /),

or more explicitly:

FE(X) = At + {X -* X),
FE(f) = «U+ (/ * - /) .

At this point, it would be possible to check the conditions of the basic lemma directly. The
diagram A in C P O ^ is:

To be more succinct in what follows, we can abbreviate

A , = (FEY{±)
Si = (FEY(\±^FB{±)),

and write:

A = A 0 A i a 2

The colimit object I? is the uncomplete pointed partial order whose elements are infinite
tuples of "compatible" elements of the A,-'s,

D = { (x 0 , x i , x 2 , . . .) | Vt > 0. xi e At- A xt- = St^(xi+1)},

with the "componentwise" ordering:

3.4. RECURSIVE DOMAIN EQUATIONS 56

(xo, Xi, X2, . . .) E (XQ, X I , X2,. . .) iff Vl > 0. X{ Q x\.

The elements of the colimit / i : A —• D are given by:

/Ufa) = (. . . , S £ 2 (* £ i (* s)) , * £ i (x ,) , **, 5 t (x f) , **u(ft(**)), . . .)

1 1 4 E x e r c i s e (Difficult.) The reader can gain a better appreciation for the importance
of the more general theory to follow by working through the details of applying the basic
lemma. The main steps are checking that:

1. D is an uncomplete pointed partial order;

2. \JL is a colimit:

(a) each is an embedding;
(b) fi is a cocone;
(c) if v : A —* D' is a cocone, then k : D —• D\ defined by k = \J(vn o satisfies:

i. is an embedding;
ii. Vt > 0. k o m = i/,-;

iii. A: is the unique arrow satisfying Vt > 0. k o /it- = i/f«;

3. -P/i : FA —• is a colimit.

Readers not familiar with the details of the domain-theoretic version of the inverse limit
construction should consult a textbook for guidance. (Schmidt [81] is a good choice: he
works with domains that are similar to these, and provides about the right level of detail.)

We now summarize the steps in the more general approach. In brief, it consists of defining
"global" conditions on a category VLE and a functor TE that ensure the applicability of
the basic lemma, and then finding easily checkable "local" conditions on K and T that
imply the global conditions.

115 D e f i n i t i o n A category K is an uncomplete pointed category (or just OJ-category) iff
it has an initial element and every unchain has a colimit.

1 1 6 D e f i n i t i o n A functor F : K —• K is u-continuous iff it preserves uncolimits—that
is, if whenever A is an unchain and /i : A —• A is a colimit, F^ : FA —• FA is also a
colimit.

1 1 7 F a c t If K is an uncategory and F : K —• K is uncontinuous, the conditions of the
basic lemma are satisfied.

These are the global conditions. The local condition for a category KE to be an uncategory
is the existence in K of w-limits. (This is an instance of the well-known "limit/colimit"
coincidence noticed by Scott [83].)

3.4. RECURSIVE DOMAIN EQUATIONS 57

118 F a c t (See Smyth and Plotkin's Theorem 2.) Let K be an O-category and A be an
or-chain in K^. If AR has a limit in K, then A has a colimit in "KE.

1 1 9 F a c t C P O has all o; o p-limits.

Proof Sketch: Let A be the w o p -chain:

A = D o j ! L D l J L . D 2 j L

Then the limit D (an a>-complete pointed partial order) is

D = {<do,<*i,<*2,...> | Vt > 0. d i € Di A d i = / < (* + !) }

under the componentwise ordering. The elements of the limit u : D —• A are the projec­
tions:

Ui((d0,di,d2,...)) = d i .

(End of Proof)

From these facts, it follows that CPOE is an o;-category. All that remains is to show that
FE is ^-continuous.

120 D e f i n i t i o n Let K be an O-category and /i : A —> A a cocone in K^. Then \i is
an O- colimit of A provided that { / i n o \LR j n > 0 } is an u;-sequence in the ordering on
K (A , A) , and that LJ(/x n ° Mn) = I D A -

The motivation for the definition of O-colimits is purely technical: these are exactly the
conditions that are needed to make Smyth and Plotkin's Theorem 2 go through. (But they
are not arbitrary: they should be familiar to anyone who has been carefully through the
details of a domain-theoretic inverse limit construction.)

1 2 1 D e f i n i t i o n An O-category K is said to have locally determined u-colimits of em-
beddings provided that whenever A is an o;-chain in K E , \x is a colimit of A in iff \x is
an O-colimit of A.

122 F a c t (Corollary to Smyth and Plotkin's Theorem 2.) Suppose that K is an O-
category in which every o; o p-chain has a limit. Then K has locally determined colimits of
embeddings.

1 2 3 D e f i n i t i o n A functor T : K o p x K —» K is locally continuous iff it is continu­
ous on the hom-sets of K—that is, if whenever { / n : A B \ n > 0 } is an u;-sequence in
K ° P (A , B) and {gn : C -> D \ n > 0 } is an o/-sequence in K (C , D) , then T(UfnM9n) =
U (T</ n ,*»>) .

1 2 4 F a c t (Smyth and Plotkin's Theorem 3.) If T : K ° P x K -> K is locally continuous
and K has locally determined colimits of embeddings, then TE is o;-continuous.

3.4. RECURSIVE DOMAIN EQUATIONS 58

Our functor G is easily shown to be locally continuous (from the definitions of + , —*, and
constant functors, and the fact that composition of functors preserves local continuity).
Thus, GE is co-continuous, from which it is easy to see that FE is o/-continuous. By
Fact 117, the conditions of the basic lemma are therefore satisfied by C P O 5 and FE.
This gives us an initial .F 5-algebra, which by Lemma 100 is also the initial fixed point
of FE in C P O 5 . Because the objects of C P O 5 are the same as those of C P O and an
isomorphism in C P O 5 is also an isomorphism in C P O , this gives us a solution in C P O
to the equation D ~ FE(D).

Chapter 4

L i t e r a t u r e S u r v e y

4.1 Textbooks

Categories for the Working Mathematician (Mac Lane [54]) is the standard, heavyweight
reference for category theory. It cannot easily be used as an introduction to the subject,
since it assumes considerable mathematical maturity, and (especially for the examples)
expertise in areas such as algebraic topology that the computer science reader almost cer­
tainly does not posess. Nevertheless, Mac Lane's writing is sufficiently lucid that following
along at 10% comprehension can be as valuable as checking every detail of another book.
His volume belongs on the bookshelf of every serious student of the field.

Topoi: The Categorial Analysis of Logic (Goldblatt [31]) may be the best book for the
beginner. I t is criticized by category theorists for being misleading on some aspects of
the subject, and for presenting long and difficult proofs where simpler ones are available.
On the other hand, it makes liberal use of simple, set-theoretic examples and motivating
intuitions—much more so than any other introduction. Although Goldblatt's main topic
is topoi, the first 75 pages are devoted to standard category theoretic fundamentals and
the later chapters on functors and adjoints can be read without the intervening material
on topos theory. (Other standard works on topoi and categorical logic include books by
Johnstone [42] Barr and Wells [5], and Lambek and Scott [47], and articles by Freyd [24]
and Mac Lane [53].)

Computational Category Theory (Rydeheard and Burstall [78]) extends the authors' work
on "programming up category theory," described in several earlier articles [10,11,80] and (in
greater depth) in Rydeheard's thesis [79]. Starting from the observation that "categories
themselves are the models of an essentially algebraic theory and nearly all the derived
concepts are finitary and algorithmic in nature," it presents a self contained introduction
to essentially the same parts of category theory as Section 2 of the present paper, in
almost entirely computational terms. Each concept is defined as a datatype in ML and
each construction as a working algorithm.

Arrows, Structures, and Functors: The Categorical Imperative (Arbib and Manes [1]) was,
for several years, the only reasonable introduction to category theory for nonspecialists. Its
treatment of the important basic concepts is fairly complete, and it provides a number of
clear examples from areas of college algebra and automata theory that readers are likely to

59

4.2. INTRODUCTORY ARTICLES 60

be familiar with. However, some of the examples—especially those in automata theory—
may be more involved than their intrinsic interest justifies. The exposition is extremely
clear on the easier material but less so in difficult sections.

Algebraic Approaches to Program Semantics (Manes and Arbib [58]) is a later book by the
same authors. It presents a self-contained exposition of basic category theory and two dif­
ferent approaches to categorical denotational semantics—the order semantics of Scott and
Strachey, and the authors' own partially additive semantics. Except for "mathematically
mature" readers, it is a bit too dense to be a good first book on either category theory or
semantics.

Categories (Blyth [9]) is a short introduction to the basic categorical notions. The writing
is terse and the examples are drawn solely from mathematics. The computer scientist
whose purpose is simply to gain enough grounding in category theory to read research
papers in computer science, as opposed to delving into category theory for its own sake,
may find it too much work. However, it includes numerous exercises with solutions, making
it a good choice for self-study if the reader has some background in algebra.

Category Theory for Computer Science (Barr and Wells [4]) is still in draft form at the time
of this writing, but promises to be an excellent addition to the literature. Despite alluring
claims in the preface that the only prerequisites are "some familiarity with abstract math­
ematical thinking, and some specific knowledge of the basic language of computer science
of the sort taught in an introductory discrete mathematics course," this book is not for the
faint-hearted. The exposition is terse, abstract, and mostly lacking in explicit connections
to previously-known subjects. Nevertheless, the coverage of aspects of category theory
relevant to computer science is very complete, including several topics not covered in most
introductions (including the Grothendiek construction, the unifying notion of "sketches as
a systematic way to turn finite descriptions into mathematical objects," cartesian closed
categories, and toposes).

Universal Algebra (Cohn [14]) is the standard reference on universal algebra, which has
numerous applications in the study of semantics. (Familiar structures studied in this
field include lattices, free algebras, boolean algebras, and formal grammars.) Much of the
presentation is couched in categorical terminology.

4.2 Introductory Articles

"A Junction Between Computer Science and Category Theory: I, Basic Definitions and
Concepts (part 1)" (Goguen, Thatcher, Wagner, and Wright [29]) is the first of a well-
known series of articles by the "ADJ group." It begins with a nice discussion of the
relevance of category theory to computer science, introduces some background definitions
and notation for sets and algebras, and develops the concepts of categories and functors.
Copious examples are provided, mostly from algebra and automata theory.

4.3. REFERENCE BOOKS 61

a A Junction Between Computer Science and Category Theory: I, Basic Definitions and
Concepts (part 2)" (Goguen, Thatcher, Wagner and Wright [28]) continues the previous
report. It covers graphs and diagrams and their relation to categories, as well as natural
transformations. Again, the discussion is supplemented with numerous examples. One
significant example—a categorical technique for proving correctness and termination of
flow-diagram programs—is developed at length. The presentation of category theory in
these two reports is far from complete, but pedagogically excellent: all definitions and
examples are presented carefully and in good detail. Unfortunately, the notation they use
to accomplish this tends to be somewhat heavy (and occasionally nonstandard).

"An Introduction to Categories, Algebraic Theories and Algebras" (Goguen, Thatcher,
Wagner and Wright [27]) presents the ADJ group's categorical approach to universal
algebra, based on Lawvere's concept of an algebraic theory [50]. It consists of a fairly self-
contained introduction to basic category theory, developed in parallel with an exposition
of algebraic theories and their applications to universal algebra.

"Notes on Algebraic Fundamentals for Theoretical Computer Science" (Thatcher and
Wright [91]) is a broad, terse summary of what the authors feel is the necessary ground­
work for mathematically sound work in theoretical computer science. In addition to a
section on categories (which emphasises adjoints), the notes include sections on set the­
ory, partial orders, many-sorted algebras, ordered algebras, continuous algebras, algebraic
theories, and the solution of equations within theories.

"Cartesian Closed Categories and Typed A-Calculi" (Lambek [44]) is the most accessi­
ble (but still quite technical!) introduction to the isomorphism between cartesian closed
categories and typed lambda calculi, written by the developer of the idea. (See Lambek
and Scott's book [47] for a more complete development, and a paper by Huet [40] for an
alternative formulation of the theory. Curien's categorical combinators [15] are based on
a similar idea.)

"Relating Theories of the Lambda Calculus" (Scott [86]) gives a different development
of the relation between cartesian closed categories and lambda calculi. The first section
motivates CCCs as a general "theory of types," from the perspective of the philosophy
of logic. It then reveals that theories in typed lambda calculus are just cartesian closed
categories. Later sections discuss the relation between typed and untyped lambda calculus,
intuitionistic type theories and CCCs, and combinatory algebras. The early sections of the
paper are not too technical for beginners.

4.3 Reference Books

Category Theory (Herrlich and Strecker [38]) is an excellent comprehensive reference on all
aspects of pure category theory. Unlike most category theory texts, its level of pedagogical
care is high enough (and its prerequisites modest enough) that it can profitably be read by
any computer scientist who wants to understand a categorical concept in maximum depth
and generality. It is currently out of print.

4.3. REFERENCE BOOKS 62

Categories (Schubert [82]) is another good, heavyweight reference on pure category theory.

Abelian Categories (Freyd [23]) is another useful reference, particularly for the notion of
representability.

Theory of Categories (Mitchell [61]) was the first comprehensive exposition of category
theory.

Introduction to Higher Order Categorical Logic (Lambek and Scott [47]) is an attempt
to reconcile mathematical logic with category theory as approaches to the foundations of
mathematics. The first section is a terse overview of category theory from perspective
of categorical logic. The second section shows that typed lambda calculi are equivalent
to cartesian closed categories, and that untyped lambda calculi are similarly related to
certain algebras. The second section explores the relationship between intuitionistic type
theory and toposes. The final section discusses the representation of numerical functions
(recursion theory) in various categories.

Categorical Combinators, Sequential Algorithms and Functional Programming (Curien [15])
describes a "Categorical Abstract Machine" based on the connection between cartesian
closed categories and typed lambda calculi and intended as a practical implementation
technique for functional languages.

Categories for Denotational Semantics (Asperti and Longo [2]) is a streamlined intro­
duction to the applications of parts of category theory in denotational semantics. Topics
include some of the standard ones—cartesian closed categories and lambda calculi (pre­
sented in semantic terms, however, rather than the usual syntactic style), universal arrows
and adjunctions, cones and limits—as well as newer work by the authors and their col­
leagues on partial* morphisms, internal category theory, and internal CCCs as models of
the polymorphic lambda calculus. It is still in draft form.

Algebraic Theories (Manes [59]) studies "equationally-definable classes" both set-
theoretically and as a category. For the computer scientist, it is an abstract view of the
mathematical structures from universal algebra and category theory that form the basis
of many algebraic approaches to semantics. The book assumes some knowledge of algebra
and toplogy, but includes a self-contained presentation of "enough category theory for our
needs and at least as much as every pure mathematician should know."

Algebra (Mac Lane and Birkhoff [56]) is a comprehensive treatment of abstract algebra
at the undergraduate level, organized according to the unifying "categorical insights" that
have emerged in that field in the latter half of this century. Category theory per se
is introduced at the end of the book, generalizing the special cases that have appeared
throughout (i.e. showing the step from concrete categories to arbitrary categories, and
from universal constructions to adjoints).

4.4. A SAMPLING OF RESEARCH PAPERS 63

The Lambda Calculus (Barendregt [3]) is well known as the standard reference on lambda
calculus. It includes a good discussion of models of the lambda calculus in arbitrary
cartesian closed categories (see pp. 107, 477, etc.).

Category Theory Applied to Computation and Control (E.G. Manes, editor [57]) is the
proceedings of one of the first important conferences on category theory in computer
science. It includes a number of seminal papers.

Category Theory and Computer Programming (Pitt, Abramsky, Poigne, and Rydeheard,
editors [64]) is a large conference proceedings with several tutorials on various aspects of
basic category theory (some particularly good ones were mentioned above), as well as a
number of important research papers.

Category Theory and Computer Science (Pitt, Poigne, and Rydeheard, editors [65]) is the
proceedings of the most recent meeting of the same conference.

4.4 A Sampling of Research Papers

"Type Algebras, Functor Categories, and Block Structure" (Oles [63]) presents a con­
densed version of some of the results in the author's P i . D . thesis [62]. It shows how
category-theoretic notions, in particular functor categories, can be used to explain the
semantics of languages with updatable stores, procedures, and block-structure. In such
languages, not only is the store itself modifiable, but even the "shape" of the store can
change as the program enters and exits blocks. Functors and categories of functors provide
an elegant way of describing stores, semantics of expressions and programs, and algebras
of types.

"Preliminary Design of the Programming Language Forsythe" (Reynolds [74]) describes
the design of a language that attempts to capture the "essence" of Algol 60 [70] in as
general and uniform a framework as possible. Category theory plays a central organizing
role in the design and description of Forsythe's type system.

"Continuous Lattices" (Scott [83]) establishes the existence of semantic domains satisfy­
ing isomorphism equations like D S D —• D , thus providing the first known models of
the untyped lambda calculus. Although this paper is couched in topological rather than
categorical terms, the influence of categorical intuitions is apparent.

"Profinite Solutions for Recursive Domain Equations" (Gunter [33]) studies the category
of "profinite" semantic domains, "an especially natural and, in a sense, inevitable class of
spaces," and addresses some difficulties with solving recursive domain equations over the
profinite semantic domains.

4.4. A SAMPLING OF RESEARCH PAPERS 6 4

"On Functors Expressible in the Polymorphic Typed Lambda Calculus" (Reynolds and
Plotkin [75]) develops a categorical proof of the nonexistence of a model of the polymorphic
typed lambda calculus [71] in which types denote sets and S —+ S9 denotes the set of all
functions from S to S'. The paper is a joint exposition of Plotkin's generalization (to an
abstract categorical setting) of an earlier result by Reynolds [73].

"Doctrines in Categorical Logic" (Kock and Reyes [43]) is a survey of category-theoretic
methods in logic, organized by "doctrines," that is, ".. .categorical analogues of fragments
of logical theories which have sufficient category-theoretic structure for their models to be
described as functors." Equational, cartesian, finitary coherent, and infinitary coherent
logic are covered, as well as (briefly) higher order logic and set theory.

"A Categorical Unification Algorithm" (Rydeheard and Burstall [80]) is an interesting
example of using categorical reasoning to derive an algorithm. It is based on the observation
that unification can be considered as a coequalizer in an appropriate category. Adding
some basic theorems about the construction of coequalizers provides a correctness proof
of a recursive construction of the unification function. Finally, the whole construction is
encoded in Standard ML. (The same derivation also appears as a chapter in Rydeheard
and Burstall's book [78].)

Universal Theory of Automata: A Categorical Approach (Ehrig et al [17]) presents a
unified description of a theory of automata, encompassing deterministic, partial, linear,
topological, nondeterministic, relational, and stochastic automata in a common (categori­
cal) framework.

Appendix A

P r o o f o f t h e L i m i t T h e o r e m

T h e o r e m Let D be a diagram in a category C , with sets V of vertices and E of edges.
If every V^-indexed and every ^-indexed family of objects in C has a product, and if every
pair of arrows in C has an equalizer, then D has a limit.

Proof: (Adapted from Arbib and Manes [1, p. 45]. Also see [54, p. 109].) Begin by
forming the following V-indexed and ^-indexed products and projections:

lev

I"
Di­

l l Dj

For each Dj at the top of the diagram there is an arrow TTJ : {Tlj€v DJ) —• By
the universal property of indexed products, this implies the existence of a unique arrow
P : (Tllev Dj) —• (IIJJ^J€E

 s u c k ***** *e o p =
 *J *or e a c ^ e c* g e e 1 I ~+ J- Similarly, for

each Dj at the bottom right there is an arrow (De o wj) : (I l jev Dj) —• Dj, which implies
the existence of a unique arrow q : (IljeV Dj) —• {Hj^JeE Dj) such that 7re o q = De o wj
for each edge e : I —» J . Let h be the equalizer of p and q. Set fj = njoh for each I eV.

We claim that {fj:X-* Dj} is a limit for D . We must show first that it is a cone for D ,
and furthermore that it is universal among cones for D (that if { /} : X' -> Dj} is also a

65

66

cone for D , then there exists a unique arrow k : X9 —• X such that / / o f c = / j for every
vertex J).

For each edge e : I —• J in E, the commutativity of the diagram

D, A D]

x

is established as follows (referring to the diagram above):

Deo fj = Deoxjoh (by the definition of / /)
= ne o q o h (by the universality of q)
= ireopoh (since h equalizes p and q)
= oh (by the universality of p)
= / j (by the definition of fj).

This shows that { / / : X —> Z)j} is a cone. We must now show that it is universal among
cones.

Assume that { / } : X9 —• Dj} is a cone for D . By the universal property of products, there
is a unique arrow h9 : X9 —• d l j e v Di) s u c ^ that iri o h9 = / } for each / € V. For any edge
e : J —• J in i2,

ireopoh9 = fcj oh9 (by the definition of p)
= / j (by the definition of /i')
= Deo f9

T (since { / } : X ' —> JD/} is a cone)
= Deonjoh9 (by the definition of h9)
= ireo qo h9 (by the definition of g).

This establishes the commutativity of the diagram

X1

qoh9

n ^

which, by the universal property of the product, implies that p o h' = q o h'.

Since h is an equalizer of p and q, the universal property of equalizers guarantees the

67

existence of a unique k : X1 —• X such that hok = h'. It is easy to see from the diagram

that

fjok=xjohok = 7 C i o h ! = z fj.

Finally, we must show that the arrow k is unique. But if A;' also satisfies / / o k1 = / } , then
as TTj o h o A:1 = nj o h! for all I € V , the universal property of the product guarantees (by
the same argument as above) that ho k' = h1. The unique arrow with this property is A:,
so k = k1. {End of Proof)

125 E x e r c i s e s

1. Specialize the proof of Theorem 57 to show how to construct limits of diagrams in
Se t .

2. Show that essentially the same construction gives limits of diagrams in P o s e t .

3. Apply the dual of Theorem 57 to show how to construct colimits of diagrams in S e t

Appendix B

S u m m a r y o f N o t a t i o n

N o t a t i o n C o n c e p t SEE

c category p. 7
A object p. 7
f :A-*B arrow p. 7
fog composition p. 7

identity arrow p. 7
dom / , cod / domain and codomain p. 7

C° P dual category p. 13

c r arrow category p. 13
C x D product category p. 13
(A,B) object of product category p. 13

(f,g) arrow of product category p. 13

(A,B) product object p. 18
x i , x 2

projections p. 18
(f,g):C-+AxB pair of arrows p. 18
fxg.AxB^CxD product arrows p. 18

Hies Ai indexed product p. 19

*j projections p. 19

BA exponential object p. 27
eval :BAxA-*C evaluation arrow p. 27

9* currying p. 27

functor p. 28
identity functor p. 29

T:F natural transformation p. 31
rA : F(A) G(A) component of a natural transform p. 31

0,1 initial and terminal objects p. 16
D C functor category p. 32
f* extension of / p. 34

68

B i b l i o g r a p h y

[1] Michael Arbib and Ernest Manes. Arrows, Structures, and Functors: The Categorical
Imperative. Academic Press, 1975.

[2] Andrea Asperti and Giuseppe Longo. Categories for denotational semantics. May
1988. Draft book.

[3] H. P. Barendregt. The Lambda Calculus. North Holland, Revised edition, 1984.

[4] Michael Barr and Charles Frederick Wells. Category theory for computer scientists.
October 1987. Draft book.

[5] Michael Barr and Charles Frederick Wells. Toposes, Triples, and Theories. Springer-
Verlag, 1984.

[6] Jean Benabou. Fibered categories and the foundations of naive category theory. Jour­
nal of Symbolic Logic, 50(l):10-37, March 1985.

[7] G. Berry and P.L. Curien. Sequential algorithms on concrete data structures. Theo­
retical Computer Science, 20:265-321, 1982.

[8] A. Blass. The interaction between category theory and set theory. In J.W. Gray,
editor, Proc. of the Special Session on the Mathematical Applications of Category
Theory, 89th meeting of the American Mathematical Society, American Mathematical
Society, 1984. Contemporary Mathematics, 30.

[9] T. S. Blyth. Categories. Longman, 1986.

[10] R. Burstall and D. Rydeheard. Computing with categories. In David Pitt, Samson
Abramsky, Axel Poigne, and David Rydeheard, editors, Category Theory and Com­
puter Programming, pages 506-519, Springer-Verlag, September 1985. LNCS 240.

[11] R.M. Burstall. Electronic category theory. In Mathematical Foundations of Computer
Science, Rydzyna, Poland, 1980. Invited paper.

[12] R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach.
Machine Intelligence, 4:17-43, 1969.

[13] R.M. Burstall and J.W. Thatcher. An algebraic theory of recursive program schemes.
In E.G. Manes, editor, Proceedings of the AAAS Symposium on Category Theory Ap­
plied to Computation and Control, San Francisco, California, Springer-Verlag, 1975.
LNCS 25.

69

BIBLIOGRAPHY 70

[14] Paul M. Cohn. Universal Algebra. D. Reidel, revised edition, 1981. Originally pub­
lished in 1965 by Harper and Row.

[15] P-L Curien. Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming. Pittman, 1986. Available from John Wiley and Sons.

[16] Peter Dybjer. Category theory and programming language semantics: an overview. In
David Pitt, Samson Abramsky, Axel Poigne, and David Rydeheard, editors, Category
Theory and Computer Programming, pages 165-181, Springer-Verlag, September 1985.
LNCS 240.

[17] H. Ehrig, K.-D. Kiermeier, H.-J. Kreowski, and W. Kuehnel. Universal Theory of
Automata: A Categorical Approach. B.G. Teubner, Stuttgart, 1974.

[18] S. Eilenberg and S. Mac Lane. General theory of natural equivalences. Trans. Am.
Math. Soc, 58:231-294, 1945.

[19] S. Eilenberg and S. Mac Lane. Group extensions and homology. Ann. Math., 43:757-
831, 1942.

[20] C.C. Elgot. Algebraic theories and program schemes. In E. Engeler, editor, Sym­
posium on Semantics of Algorithmic Languages, pages 71-88, Springer-Verlag, 1971.
Lecture Notes in Math 188.

[21] C.C. Elgot. Monadic computation and iterative algebraic theories. In Logic Collo­
quium ylS, pages 175-230, North Holland, Bristol, England, 1975.

[22] Solomon Feferman. Set-theoretical foundations of category theory. In S. Mac Lane,
editor, Reports of the Midwest Category Seminar III, pages 201-247, Springer-Verlag,
1969. Lecture Notes in Mathematics, No. 106.

[23] Peter Freyd. Abelian Categories: An Introduction to the Theory of Functors. Harper
and Row, 1964.

[24] Peter Freyd. Aspects of topoi. Bull. Austral. Math. Soc, 7:1-76, 1972.

[25] J.A. Goguen. Realization is universal. Math. Sys. Th., 6:359-374, 1973.

[26] J.A. Goguen and R.M. Burstall. Some fundamental tools for the semantics of com­
putation; part 1: comma categories, colimits, signatures, and theories. Theoretical
Computer Science, 31:175-209, 1984.

[27] J.A. Goguen, J. W. Thatcher, E.G. Wagner, and J.B. Wright. An Introduction to Cat­
egories, Algebraic Theories and Algebras. Technical Report RC-5369, IBM Research,
April 1975.

[28] J.A. Goguen, J. W. Thatcher, E.G. Wagner, and J.B. Wright. A junction between
computer science and category theory: I, Basic definitions and concepts. Technical
Report RC-5908, IBM Research, March 1976. (part 2).

BIBLIOGRAPHY 71

[29] J.A. Goguen, J. W. Thatcher, E.G. Wagner, and J.B. Wright. A junction between
computer science and category theory: I, Basic definitions and concepts. Technical
Report RC-4526, IBM Research, September 1973. (part 1).

[30] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial algebra semantics
and continuous algebras. J. ACM, 24(l):68-95, 1977.

[31] Robert Goldblatt. Topoi: The Categorial Analysis of Logic. North Holland, 1984.

[32] A. Grothendeick. Categories fibrees et descente. Revetements etales et group fon-
damental. In Seminaire de Gemetrie Algebrique du Bois-Marie 1960/61 (SGA 1),
expose VI, Institut des Hautes Etudes Scientifiques, Paris, 1963. Reprinted in Lecture
Notes in Math No. 224 (Springer-Verlag, 1971).

[33] Carl Gunter. Profinite Solutions for Recursive Domain Equations. PhD thesis,
Carnegie-Mellon University, 1985. CMU-CS-85-107.

[34] Tatsuya Hagino. A Category Theoretic Approach to Data Types. PhD thesis, Univer­
sity of Edinburgh, 1987.

[35] Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In
D.H. Pitt, A. Poigne, and D.E. Rydeheard, editors, Category Theory and Computer
Science, Springer-Verlag, September 1987. LNCS 283.

[36] Robert Harper, Robin Milner, and Mads Tofte. The Semantics of Standard ML: Ver­
sion 1. Technical Report ECS-LFCS-87-36, Computer Science Department, University
of Edinburgh, 1987.

[37] William S. Hatcher. Foundations of Mathematics. W. B. Saunders Co., 1968.

[38] H. Herrlich and G.E. Strecker. Category Theory. Allyn and Bacon, 1973.

[39] P.J. Higgins. Algebras with a schema of operators. Math. Nachr., 27:115-132, 1963.

[40] Gerard Huet. Cartesian closed categories and lambda calculus. In Guy Cousineau,
Pierre-Louis Curien, and Bernard Robinet, editors, Combinators and Functional Pro­
gramming Languages, Springer-Verlag, May 1985. LNCS 242.

[41] W. Hurewicz. On duality theorems. Bull. Am. Math. Soc, 47:562-563, 41.

[42] P.T. Johnstone. Topos Theory. Academic Press, 1977.

[43] A. Kock and G.E. Reyes. Doctrines in categorical logic. In J. Barwise, editor, Hand­
book of Mathematical Logic, pages 283-313, North Holland, 1977.

[44] J. Lambek. Cartesian closed categories and typed lambda-calculi. In Guy Cousineau,
Pierre-Louis Curien, and Bernard Robinet, editors, Combinators and Functional Pro­
gramming Languages, Springer-Verlag, May 1985. LNCS 242.

BIBLIOGRAPHY 72

J. Lambek. Deductive Systems and Categories II. Springer-Verlag, 1969. Lecture
Notes in Math 86.

J. Lambek. From A-calculus to cartesian closed categories. In J.P. Seldin and J.R.
Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Academic Press, 1980.

J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge
University Press, 1986.

F. W. Lawvere. The category of categories as a foundation for mathematics. In
Proceedings of the Conference on Categorical Algebra (La Jolla, 1965), pages 1-20,
Springer-Verlag, 1966.

F. W. Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis, Columbia
University, 1963. Announcement in Proc. Nat. Acad. Sci. 50 (1963), pp. 869-873.

F.W. Lawvere. Functional semantics of algebraic theories. Proceedings of the National
Academy of Science, 50:869-872, 1963.

D. J. Lehmann and M.B. Smyth. Data types (extended abstract). In Proceedings 18th
IEEE Symposium on Foundations of Computer Science, pages 7-12, 1977.

D.J. Lehmann. On the algebra of order. Journal of Computer and System Sciences,
21, 1980.

S. Mac Lane. Sets, topoi, and internal logic in categories. In Proc. Logic Coll., North
Holland, Bristol, 1973.

Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
1971.

Saunders Mac Lane. One universe as a foundation for category theory. In S. Mac
Lane, editor, Reports of the Midwest Category Seminar III, pages 192-200, Springer-
Verlag, 1969. Lecture Notes in Mathematics, No. 106.

Saunders Mac Lane and Garrett Birkhoff. Algebra. MacMillan, 1967.

E.G. Manes, editor. Proceedings of the AAAS Symposium on Category Theory Applied
to Computation and Control, San Francisco, California, Springer-Verlag, 1975. LNCS
25.

Ernest Manes and Michael Arbib. Algebraic Approaches to Program Semantics.
Springer-Verlag, 1986.

Ernest G. Manes. Algebraic Theories. Springer-Verlag, 1976. Graduate Texts in
Math, volume 26.

BIBLIOGRAPHY 73

[60] A. Melton, D.A. Schmidt, and G.E. Strecker. Galois connections and computer
science applications. In David Pitt, Samson Abramsky, Axel Poigne, and David
Rydeheard, editors, Category Theory and Computer Programming, pages 299-312,
Springer-Verlag, September 1985. LNCS 240.

[61

[62;

[63

[64

[65

[67;

[68

[69

[70;

[71

[72

[73

B. Mitchell. Theory of Categories. Academic Press, 1965.

Frank J. Oles. A Category-Theoretic Approach to the Semantics of Programming
Languages. PhD thesis, Syracuse University, 1982.

Frank J. Oles. Type algebras, functor categories, and block structure. In Maurice
Nivat and John C. Reynolds, editors, Algebraic Methods in Semantics, Cambrige
University Press, 1985.

David Pitt, Samson Abramsky, Axel Poigne, and David Rydeheard, editors. Category
Theory and Computer Programming, Springer-Verlag, September 1985. LNCS 240.

D.H. Pitt, A. Poigne, and D.E. Rydeheard, editors. Category Theory and Computer
Science, Springer-Verlag, September 1987. LNCS 283.

G.D. Plotkin. A powerdomain construction. SIAM Journal of Computing, 5:452-487,
1976.

Gordon Plotkin. Domains. 1980. Lecture notes, Department of Computer Science,
University of Edinburgh.

John Reynolds. Semantics as a design tool. Fall 1988. CMU course notes (a previous
version was distributed in Spring, 1987).

John Reynolds. Using category theory to design implicit conversions and generic
operators. In N.D. Jones, editor, Proceedings of the Aarhus Workshop on Semantics-
Directed Compiler Generation, Springer-Verlag, January 1980. LNCS 94.

John C. Reynolds. The essence of algol. In de Bakker and van Vliet, editors, Algo­
rithmic Languages, pages 345-372, IFIP, North Holland, 1981.

John C. Reynolds. An introduction to the polymorphic lambda calculus. 1988. Intro­
duction to the section on "Polymorphic Lambda Calculus" in "Logical Foundations of
Functional Programming, Proceedings of the Year of Programming Institute", edited
by Gerard Huet, to be published by Addsion Wesley.

John C. Reynolds. Notes on a Lattice-Theoretic Approach to the Theory of Compu­
tation. Technical Report, Syracuse University, School of Computer and Information
Science, October 1972. Revised March, 1979.

John C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen,
and G. D. Plotkin, editors, Semantics of Data Types, pages 145-156, Springer-Verlag,
1984. LNCS 173.

BIBLIOGRAPHY 74

[74] John C. Reynolds. Preliminary Design of the Programming Language Forsythe. Tech­
nical Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

[75] John C. Reynolds and Gordon D. Plotkin. On Functors Expressible in the Poly-
morphic Typed Lambda Calculus. Technical Report CMU-CS-88-125, Computer Sci­
ence Department, Carnegie Mellon University, 1988. Submitted to Information and
Computation. This version will also appear in "Logical Foundations of Functional
Programming, Proceedings of the Year of Programming Institute," edited by Gerard
Huet, to be published by Addsion Wesley.

[76] David Rydeheard. Adjunctions. In David Pitt, Samson Abramsky, Axel Poigne, and
David Rydeheard, editors, Category Theory and Computer Programming, pages 53-57,
Springer-Verlag, September 1985. LNCS 240.

[77] David Rydeheard. Functors and natural transformations. In David Pitt, Samson
Abramsky, Axel Poigne, and David Rydeheard, editors, Category Theory and Com-
puter Programming, pages 43-52, Springer-Verlag, September 1985. LNCS 240.

[78] David E. Rydeheard and Rod M. Burstall. Computational Category Theory. Prentice
Hall, 1988.

[79] David Eric Rydeheard. Applications of Category Theory to Programming and Program
Specification. PhD thesis, University of Edinburgh, 1981. CST-14-81.

[80] D.E. Rydeheard and R.M. Burstall. A categorical unification algorithm. In David
Pitt, Samson Abramsky, Axel Poigne, and David Rydeheard, editors, Category Theory
and Computer Programming, pages 493-505, Springer-Verlag, September 1985. LNCS
240.

[81] David A. Schmidt. Denotational Semantics: A Methodology for Language Develop­
ment. Allyn and Bacon, 1986.

[82] Horst Schubert. Categories. Springer-Verlag, 1972.

[83] Dana Scott. Continuous lattices. In F.W. Lawvere, editor, Toposes, Algebraic Geom­
etry, and Logic, pages 97-136, Springer-Verlag, 1972. Lecture Notes in Math 274.

[84] Dana Scott. Domains for denotational semantics. In M. Nielson and E.M. Schmidt,
editors, Automata, Languages, and Programming, 9th Colloquium, pages 577-613,
Springer-Verlag, 1982. LNCS 140.

[85] Dana Scott. Lectures on a Mathematical Theory of Computation. Technical Re­
port PRG-19, Oxford University, Programming Research Group, May 1981.

[86] Dana Scott. Relating theories of the A—calculus. In J.P. Seldin and J.R. Hindley, edi­
tors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
Academic Press, 1980.

BIBLIOGRAPHY 75

[87] M.B. Smyth. Effectively given domains. Theoretical Computer Science, 5:257-274,
1977.

[88] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain
equations. SI AM Journal of Computing, l l (4):761-783, 1982.

[89] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program­
ming Language Theory. MIT Press, 1977.

[90] R.D. Tennent. Functor-category semantics of programming languages and logics. In
David Pitt, Samson Abramsky, Axel Poigne, and David Rydeheard, editors, Category
Theory and Computer Programming, pages 206-224, Springer-Verlag, September 1985.
LNCS 240.

[91] James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. Notes on algebraic funda­
mentals for theoretical computer science. June 1978. Lecture notes from summer on
Foundations of Artificial Intelligence and Computer Science, Pisa.

[92] M. Wand. Fixed-point Constructions in Order-Enriched Categories. Technical Re­
port 23, Computer Science Department, Indiana University, Bloomington, Indiana,
1977.

[93] M. Wand. Fixed-point constructions in order-enriched categories. Theoretical Con-
puter Science, 8:13-30, 1979.

[94] M. Wand. On recursive specification of data types. In E.G. Manes, editor, Proceedings
of the AAAS Symposium on Category Theory Applied to Computation and Control,
San Francisco, California, Springer-Verlag, 1975, LNCS 25.

[95] J.B. Wright, J.A. Goguen, J.W. Thatcher, and E.G. Wagner. Rational algebraic the­
ories and fixed point solutions. In Proceedings 17th IEEE Symposium on Foundations
of Computer Science, Houston, Texas, 1976.

	Carnegie Mellon University
	Research Showcase
	1-1-1988

	A taste of category theory for computer scientists
	Benjamin C. Pierce
	Recommended Citation

