
More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Jason Gross’ Wishlist for Coq

POPL 2014 — Coq Users Meeting

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

1 More Powerful Judgmental Equality

2 Higher Inductive Types

What are they?

How are they useful?

Implementation

3 The Rest of my Wishlist

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality

More Powerful Judgmental Equality

Warning: Some of my proposals get rather insane,
so the further on in this section they are, the more
grains of salt you should be taking them with.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: η for records

η for records

Implemented by Matthieu Sozeau; in 8.5, I can now
have (Cop)op ≡ C for categories C!

It would still be nice to have

∀ x y : unit, x ≡ tt ≡ y.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: η for inductives

η for inductive types

I want

∀ A B (x : A + B),

match x with

| inl x’ ⇒ inl x’

| inr x’ ⇒ inr x’

end ≡ x

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: η for inductives

η for inductive types

I want

∀ A (x y : A) (p : x = y),

match p in (_ = y’) return (x = y’) with

| eq_refl ⇒ eq_refl

end ≡ p

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

I want a match to eat up unused arguments:

match p as p’ in (T x _)

return (T’ x p’ → T’’ x p’)

with

| con1 ⇒ (λ _ ⇒ val1)

...

end y

≡
Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

I want a match to eat up unused arguments:

≡
match p as p’ in (T x _)

return (T’’ x p’)

with

| con1 ⇒ val1

...

end
Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

And many more. . . (see Appendix)

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Judgmental Groupoid Laws

Judgmental Groupoid Laws

I want (the option of) Types to be strict
∞-groupoids

(p−1)−1 ≡ p (p−1 is eq sym p)

p ◦ (q ◦ r) ≡ (p ◦ q) ◦ r (p ◦ q is eq trans p q)

p ◦ 1 ≡ p ≡ 1 ◦ p (1 is eq refl)

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Axiom K-based Pattern Matching When It’s Provable

K-Based Pattern Matching

I want K-based pattern matching on types which
Coq can infer are hSets (satisfy uniqueness of
identity proofs, and therefore K), any maybe for
types where I can prove K. Alternatively, maybe a
“strict 0-truncation” operator, and support for K
there.

Proposal by Pierre Corbineau: “The K axiom in Coq
(almost) for free”1

1http://coq.inria.fr/files/adt-2fev10-corbineau.pdf

Jason Gross’ Wishlist for Coq

http://coq.inria.fr/files/adt-2fev10-corbineau.pdf

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Irrelevant Types

Irrelevant Types

I want types with judgmental (proof) irrelevance,
like dotted fields in Agda. These are strict hProps.

Current work: Miquel’s implicit calculus of
constructions (ICC), B. Barras and B. Bernardo’s
decidable version (ICC*)

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Reflection When We Can Have It

Limited Equality Reflection

I want equality reflection whenever it doesn’t break
things

(∀ (x : T) (pf : x = x), pf = eq_refl)

→ ∀ (x : T) (pf : x = x), pf ≡ eq_refl

(What’s a general rule? Inductive type families with
one constructor which are all provably equal to that
constructor?)

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Postulating Judgmental Equality

Postulating Judgmental Equality?

Voevodsky suggests (and Dan Grayson has worked
on implementing) having two equality types, a
non-fibrant reflected equality type, and a fibrant
intensional equality type. Perhaps Coq should go
this route one day?

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes

I also want:

(λ x y =⇒ x + y) ≡ (λ x y =⇒ y + x)

(done in CoqMT by Pierre-Yves Strub)
ability to add computation rules for axioms

univalence
functional extensionality
higher inductive types
internalized parametricity

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
Implementation Properties

should be optional extensions

should be customizable, with plug-ins or flags or
both

type-checking should still be decidable

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Judgmental Equality
My Wishes: Why?

Why?

Theorem proving is easier when the type-checker
does more work for me.

And it seems like an interesting system to play with.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types

Higher inductive types are:

Inductive types

freely generated with higher path structure
(non-trivial equalities)

Example: The interval (0 ; 1)

Inductive Interval :=

| zero : Interval

| one : Interval

| seg : zero = one.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types
Why?

Higher inductive types are useful for:

Homotopy type theory (making basic spaces)

Quotient types

Formalizing version control systems (according
to Dan Licata2)

Proving functional extensionality

2“Git as a HIT”,
http://dlicata.web.wesleyan.edu/pubs/l13git/git.pdf

Jason Gross’ Wishlist for Coq

http://dlicata.web.wesleyan.edu/pubs/l13git/git.pdf

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types
Proving functional extensionality

Definition functional_extensionality A B f g

: (∀ x, f x = g x) → f = g

:= λ H ⇒ f_equal

(λ i x ⇒
match i return B with

| zero ⇒ f x

| one ⇒ g x

| seg ⇒ H x

end)

seg.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types
Proving functional extensionality

:= match seg in (_ = y)

return ((λ x ⇒ f x)

= (λ x ⇒ match y with

| zero ⇒ f x

| one ⇒ g x

| seg ⇒ H x

end))

with

| eq_refl => eq_refl

end.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types
How?

Note that higher inductive types don’t magically
give you computational functional extensionality.

You must solve computational functional
extensionality to implement computational HITs.

(Similar story for implementing computational
univalence, another feature on my wishlist.)

Breaks canonicity (jugdmentally), preserves it up to
propositional equality? (conjecture by Voevodsky for UA)

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types
Current Work

Yves Bertot’s private inductive types;3 adapted
by Matthieu Sozeau

Comparatively easy to implement
Allows one to disable pattern matching on inductive
types outside a module, which is sufficient to
implement a trick by Dan Licata4

Equalities are axioms; not computational
Only eliminators, no pattern matching

Burno Barras has some partial work that’s more
computational5

3http://coq.inria.fr/files/coq5_submission_3.pdf
4http://homotopytypetheory.org/2011/04/23/

running-circles-around-in-your-proof-assistant/
5https://github.com/barras/coq/tree/hit

Jason Gross’ Wishlist for Coq

http://coq.inria.fr/files/coq5_submission_3.pdf
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://github.com/barras/coq/tree/hit

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types
My Wishes

I want:

to be able to define and pattern match on
higher inductive types

all tactics should support HITs

judgmental reduction rules for matching on
paths from HITs
equality should not be special

typechecker should not depend on standard library
c.f. proposal for pattern matching justifying K6

6“The K axiom in Coq (almost) for free”
http://coq.inria.fr/files/adt-2fev10-corbineau.pdf

Jason Gross’ Wishlist for Coq

http://coq.inria.fr/files/adt-2fev10-corbineau.pdf

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types (without equality in the kernel)
Possible Generalization (I)

If equality isn’t special, then HITs can put
inhabitants in arbitrary types

BAD, if it allows us to give a proof of False

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types (without equality in the kernel)
Possible Generalization (I)

If equality isn’t special, then HITs can put
inhabitants in arbitrary types

BAD, if it allows us to give a proof of False

Inductive BAD : Set :=

| silly : BAD

| terrible : False.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types (without equality in the kernel)
Possible Generalization (I)

If equality isn’t special, then HITs can put
inhabitants in arbitrary types

BAD, if it allows us to give a proof of False
Idea: Require providing an inhabitant of the
appropriate type family

Used to pick out which branch of pattern matching
to use
Simply reduces when the provided term sits in the
right type (not just right type family)

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types (without equality in the kernel)
Possible Generalization (I)

Inductive Interval : Type :=

| zero : Interval

| one : Interval

| seg : zero = one

and picking

| seg : zero = _ := eq_refl.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types (without equality in the kernel)
Possible Generalization (II)

Inductive _==_ ‘(x : A) : ∀ {B}, B → Type :=

| refl1 : x == x

| refl2 : x == x.

Inductive foo : Type :=

| bar : nat → foo

| proof1 : ∀ (n : N), bar 2 == bar (S (S n))

| proof2 : ∀ (n : N), bar 0 == bar 1

and picking

| proof1 : ∀ n, bar 2 == _ := λ n ⇒ refl1

| proof2 : ∀ n, bar 0 == _ := λ n ⇒ refl2.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

What are they?
How are they useful?
Implementation

Higher Inductive Types (without equality in the kernel)
Possible Generalization (III)

Mike Shulman tells me this might be saying that a
generalized higher inductive type is a polynomial
functor F together with an object of F (1).

We still need computation rules for this. (See
Appendix)

Also an implementation, and justification of
consistency.

Jason Gross’ Wishlist for Coq

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

The Rest of my Wishlist (I)

This was just a small (but important) part of my wishlist. The rest:

a better story for namespacing7

induction-recursion, induction-induction, etc.

very dependent types, insanely dependent types (Σ as Π)8

better coinduction (should be compositional, maybe based on
copatterns)

size/type-based termination

support for explicit universe level variables (without loosing
the default of typical ambiguity)

7https://coq.inria.fr/bugs/show_bug.cgi?id=3171
8https://github.com/UlfNorell/insane, “Formal Objects in Type

Theory Using Very Dependent Types” http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.39.4169&rep=rep1&type=pdf

Jason Gross’ Wishlist for Coq

https://coq.inria.fr/bugs/show_bug.cgi?id=3171
https://github.com/UlfNorell/insane
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.4169&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.4169&rep=rep1&type=pdf

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

The Rest of my Wishlist (II)

parallel version of all: solve when there are no evars in the
goal

a search that searches the entire standard library, and not just
currently Required files

a search which is up to unification, rather than up to pattern
matching

coercions that don’t care about the uniform inheritance
condition9

faster rewrite

automatic generation of the equivalence between record types
and nested sigma types

ability to write theorems that apply to all records, which are
specialized at type-inference time (a la typeclasses or mtac)

9https://coq.inria.fr/bugs/show_bug.cgi?id=3115

Jason Gross’ Wishlist for Coq

https://coq.inria.fr/bugs/show_bug.cgi?id=3115

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

The Rest of my Wishlist (II)

notations should be able to pick a meaning based on the type
of their constituents (but must have a consistent scope for
each term across all meanings) (can currently be hacked with
boilerplate, typeclasses, and $(...)$ to remove the
typeclasses)10

better handling of open terms in Ltac, and support for
recursing under binders in tactics (maybe fixed with new
tactic engine?)11

easier use of ML plugins (I don’t want to have to recompile
them myself)

typed/monadic tactic language

10https://coq.inria.fr/bugs/show_bug.cgi?id=3090
11https://coq.inria.fr/bugs/show_bug.cgi?id=3106 and

https://coq.inria.fr/bugs/show_bug.cgi?id=3102

Jason Gross’ Wishlist for Coq

https://coq.inria.fr/bugs/show_bug.cgi?id=3090
https://coq.inria.fr/bugs/show_bug.cgi?id=3106
https://coq.inria.fr/bugs/show_bug.cgi?id=3102

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

The Rest of my Wishlist (III)

more uniform support for canonical structures (like ssr has)

support for reflective simplification (maybe a native reifier
which runs at type inference time, and a special type in the
stdlib or something for syntax)

rewrite that alternates simpl and argument inference

rewrite which matches the head by pattern matching and the
rest by unification

variant of @? patterns for [pattern]ing on things other than
bound indices and parameters, heuristically12

have a function scope like type scope13

12https://coq.inria.fr/bugs/show_bug.cgi?id=3148
13https://coq.inria.fr/bugs/show_bug.cgi?id=3080

Jason Gross’ Wishlist for Coq

https://coq.inria.fr/bugs/show_bug.cgi?id=3148
https://coq.inria.fr/bugs/show_bug.cgi?id=3080

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

The Rest of my Wishlist (IV)

a variant of Hint Rewrite which infers arguments based on
pattern matching then runs simpl on the hypothesis, then
rewrites with the simplified hypothesis

’where’ clauses in records should permit abbreviations14

variant of abstract which finishes the subproof with
Defined rather than Qed (and another variant which finishes
it with Defined and then runs Global Opaque on the
constant)

allow overriding symmetry, reflexivity15

14https://coq.inria.fr/bugs/show_bug.cgi?id=3066
15https://coq.inria.fr/bugs/show_bug.cgi?id=3113

Jason Gross’ Wishlist for Coq

https://coq.inria.fr/bugs/show_bug.cgi?id=3066
https://coq.inria.fr/bugs/show_bug.cgi?id=3113

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

The Rest of my Wishlist (V)

etransitivity should take an optional term with holes16

where clauses in records should support (only parsing)17

support for simultaneous generation of terms binding scopes18

better handling (speed-wise) of large terms and types (native
projections might fix this)

16https://coq.inria.fr/bugs/show_bug.cgi?id=3065
17https://coq.inria.fr/bugs/show_bug.cgi?id=3067
18https://coq.inria.fr/bugs/show_bug.cgi?id=3123

Jason Gross’ Wishlist for Coq

https://coq.inria.fr/bugs/show_bug.cgi?id=3065
https://coq.inria.fr/bugs/show_bug.cgi?id=3067
https://coq.inria.fr/bugs/show_bug.cgi?id=3123

More Powerful Judgmental Equality
Higher Inductive Types

The Rest of my Wishlist

Thanks!

Questions?

Jason Gross’ Wishlist for Coq

More Stronger Judgmental Equality
Computation Rules for HITs

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

I want matches to distribute over arrows

match p as p’ in (T x _)

return (∀ y : T’, T’’ x p’ y)

with

| con1 ⇒ f1

...

end

≡
Jason Gross’ Wishlist for Coq

More Stronger Judgmental Equality
Computation Rules for HITs

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

I want matches to distribute over arrows

≡ (λ y : T’ ⇒
match p as p’ in (T x _)

return (T’’ x p’ y)

with

| con1 ⇒ f1 y

...

end)
Jason Gross’ Wishlist for Coq

More Stronger Judgmental Equality
Computation Rules for HITs

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

I want a match whose branches unify to disappear
(if the return type is constant)

match p return T with

| _ ⇒ val

end ≡ val

Jason Gross’ Wishlist for Coq

More Stronger Judgmental Equality
Computation Rules for HITs

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

I want matches to distribute over inductive types
(when the branches unify appropriately)

match p as p’ in (T x _)

return (T’ (f x p’))

with

| con1 ⇒ Build_T’ _ con1 val1

...

end

≡ Jason Gross’ Wishlist for Coq

More Stronger Judgmental Equality
Computation Rules for HITs

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

I want matches to distribute over inductive types
(when the branches unify appropriately)

≡
Build_T’

(match p with | con1 ⇒ f _ con1 | ... end)

(match p with | con1 ⇒ con1 | ... end)

(match p with | con1 ⇒ val1 | ... end)

Jason Gross’ Wishlist for Coq

More Stronger Judgmental Equality
Computation Rules for HITs

Judgmental Equality
My Wishes: Computation Rules for match

More computation rules for match

I want matches on matches to reduce to matches
which return matches

match (match ... with ... end) with ... ⇒ ... end

≡
match ... with ... ⇒ ... (match ... with ... end) end

Jason Gross’ Wishlist for Coq

More Stronger Judgmental Equality
Computation Rules for HITs

Computation Rules for HITs
Proposed computation rule for HITs

Given a higher inductive type T and a path
constructor p : a = b, we should have

match p in (_ = y)

return (P (fixmatch {h} y with

| a => c

| b => d

| p => f

end)) with

| eq_refl => g

end

≡ Jason Gross’ Wishlist for Coq

More Stronger Judgmental Equality
Computation Rules for HITs

Computation Rules for HITs
Proposed computation rule for HITs

Given a higher inductive type T and a path
constructor p : a = b, we should have

≡
match f in (_ = y) return (P y) with

| eq_refl => g

end

Jason Gross’ Wishlist for Coq

	More Powerful Judgmental Equality
	Higher Inductive Types
	What are they?
	How are they useful?
	Implementation

	The Rest of my Wishlist
	Appendix
	More Stronger Judgmental Equality
	Computation Rules for HITs

