
Computational Higher Inductive Types
Computing with Custom Equalities

Jason Gross
jgross@mit.edu

MIT CSAIL Student Workshop

April 10, 2014

mailto:jgross@mit.edu


Properties of Equality

Warm Up: Linked Lists

Example: Unordered Sets
Canonical Inhabitants
Higher Inductive Types

Computing with Higher Inductive Types

Thank you



Properties of Equality

I Reflexivity: x = x

I Symmetry: if x = y then y = x

I Transitivity: if x = y and y = z , then x = z

I Leibniz rule: if x = y , then f (x) = f (y)



Warm Up: Linked Lists

I Two constructors: nil, or [], and cons

I Two accessors on non-nil lists: head and tail

I Equality is defined on an element-by-element basis
I [] = []
I [] 6= [a, . . .]
I [a, . . .] 6= []
I [x0, x1, . . . , xn] = [y0, y1, . . . , ym] iff [x1, . . . , xn] = [y1, . . . , ym]

and x0 = y0
I Fairly easy to prove the properties of equality

I In Coq, Agda, and Idris, you get all of these properties for free



Example: Unordered Sets

I nil, or ∅
I add

I remove

I contains

I Often implemented internally as a list or a tree

I Equality is then implemented as “is one a permutation of the
other?”

I Fairly easy to prove that it’s an equivalence relation

I Leibniz rule (if x = y , then f (x) = f (y)) is harder
I In Haskell, Agda, Coq, and Idris, the Leibniz rule is false! (or

at least not internally provable)
I The problem is that either you don’t have private fields, or you

can’t make use of the fact that everything is defined in terms
of your public methods.



Example: Unordered Sets
Solution 1: Canonical Inhabitants

I Give up private fields, but use element-wise equality

I Define a type of “sorted lists without duplication”, and call
them sets

I Now we can use element-wise equality, and get Leibniz (and
other properties) for free

I What if we don’t have an ordering on the elements, only
equality?

I Is this really what we wanted? We asked for unordered sets,
and instead made sorted lists.



Example: Unordered Sets
Solution 2: Higher Inductive Types

I Higher Inductive Types

I Keep the built-in equality (so we get the properties for free),
but turn it into equality up to permutation

I How do we get that it’s an equivalence relation for free?
I Take the reflexive symmetric transitive closure of the given

relation

I How do we get Leibniz for free?
I Require proving it each time you define a particular function
I To define a function that deals with unordered sets, you have

to simultaneously prove that your function is invariant under
permutations



Computing with Higher Inductive Types

I It seems simple enough, so what’s the problem?

I Having higher inductive types gives you functional
extensionality (if f (x) = g(x) for all x , then f = g), which
doesn’t yet have a good computational interpretation in Coq
nor Agda nor Idris

I Equality in Coq and Agda (--without-K) actually has a rich
structure

I If you look at proofs of equality, and equality of these proofs,
and you iterate this process, you get enough math to do
topology!

I This is Homotopy Type Theory



Thank you

Thanks!

Questions?



Example: Unordered Sets
Solution 3: Parametricity

I Make use of the fact that private fields are private

I Very hard to do!

I Can probably be done by way of parametricity (aka “theorems
for free”), or a generalization of it

I Parametricity can be given a computational interpretation,
but it’s very non-trivial to do so


	Properties of Equality
	Warm Up: Linked Lists
	Example: Unordered Sets
	Canonical Inhabitants
	Higher Inductive Types

	Computing with Higher Inductive Types
	Thank you
	Parametricity

