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Categories

A category is:

I a collection of objects,

together with

I arrows between those objects, together with
I a composition law for the arrows satisfying coherence

conditions:
I existence of identity
I associativity
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Relational Databases

A database schema for a relational database can be modeled as a

I collection of tables,

together with

I a collection of attributes or column-labels for each table,
together with

I integrity constraints
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Usefulness of Categorical Databases

I Built in notion of path equivalence (multiple equivalent paths
of foreign keys can be a pain in typical database
management).

I Provides a rigorous language for data migration between
databases (another hard task in standard database
management).
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I Many people learn a proof assistant by coding up category
theory.

I Category theory is relatively simple to code up.
I Standard rigorous formulation of concepts exists in the

literature.
I It’s rare to get caught up in minute details of proofs.
I If you can define something categorically, it’s probably

interesting.
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Universe Levels (Russel’s Paradox)

I Consider, näıvely, the set of all sets.

I Consider the set of all sets that do not contain themselves.
Does it contain itself?

I This is the paradox of näıve set theory.
I Solution: universe levels

I Set or Type(0) is the collection of all sets, Type(1) is the
collection of all Type(0)s, . . . , Type(i + 1) is the collection of
all Type(i)s

I The universe level of an object of type Type(i) is i

I In some cases, Coq can infer the universe level of an inductive
type from the universe levels of its parameters; when this
happens, the inductive type is polymorphic over universe
levels.

I It’s useful to talk about “a category whose objects are of type
T” rather than just “a category”.
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I Solution: universe levels

I Set or Type(0) is the collection of all sets, Type(1) is the
collection of all Type(0)s, . . . , Type(i + 1) is the collection of
all Type(i)s

I The universe level of an object of type Type(i) is i

I In some cases, Coq can infer the universe level of an inductive
type from the universe levels of its parameters; when this
happens, the inductive type is polymorphic over universe
levels.

I It’s useful to talk about “a category whose objects are of type
T” rather than just “a category”.

Jason Gross — jgross@mit.edu Database Management on top of Category Theory in Coq

mailto:jgross@mit.edu


Outline
Introduction — Databases and Category Theory

Category Theory in Coq

Universe Levels
Limits and Colimits

Universe Levels
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Limits and Colimits

I Categorical limits are like Cartesian products, subject to
constraints about equality of components

I Categorical colimits are like disjoint unions, modulo
equivalence relations
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Coq Category

I Coq has all limits
I Product types provide products (function types, e.g,

forall a : A, f a is the product
∏

a∈A f (a))
I Sigma types provide constraints about equality of components

(e.g., { f : A → B | f a = f b })

I Coq has some colimits
I Sigma types provide disjoint unions (e.g., { j : J & f j }

is the disjoint union
⊔

j∈J f (j))
I Quotients are . . . hard
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Quotients

I Quotients can be defined via axioms

I proof irrelevance; (A ↔ B) → A = B for propositions;
either decidable existence, or a way of turning proofs of
existence into objects
(constructive indefinite description :

(exists x, P x) → { x | P x })
I Not computational

I Quotients can be defined via setoids
I All objects carry around extra information of what the

equivalence relation is
I This is somewhat clunky
I Not first-class quotients
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Limits and Colimits (High-Level Summary)

I There are two categorical constructions (limits and colimits)
that are “dual”

I Coq’s type-system fully implements only one of these (limits)

I It’s harder to define colimits inside of Coq than limits, in
general, even for the ones that Coq does support
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Thank You!
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