Building Database Management on top of Category Theory in Coq

Jason Gross — jgross@mit.edu

POPL 2013

This document is available at http://web.mit.edu/jgross/ Public/POPL/jgross-student-talk.pdf. My category theory library is available at https://bitbucket.org/JasonGross/catdb.

Introduction — Databases and Category Theory

Categories Relational Databases Relational Database Schema = Category Usefulness

Outline

Introduction — Databases and Category Theory

Categories Relational Databases Relational Database Schema = Category Usefulness

Category Theory in Coq

Universe Levels Limits and Colimits

Categories

A category is:

a collection of objects,

Categories Relational Databases Relational Database Schema = Category Usefulness

イロト イヨト イヨト イヨト

臣

Categories Relational Databases Relational Database Schema = Category Usefulness

Categories

A category is:

- a collection of objects, together with
- arrows between those objects,

・ロト ・回ト ・ヨト ・ヨト

Categories Relational Databases Relational Database Schema = Category Usefulness

Categories

A category is:

- ► a collection of objects, together with
- arrows between those objects, together with
- a composition law for the arrows satisfying coherence conditions:
 - existence of identity
 - associativity

Categories Relational Databases Relational Database Schema = Category Usefulness

Categories

A category is:

- ► a collection of objects, together with
- arrows between those objects, together with
- a composition law for the arrows satisfying coherence conditions:
 - existence of identity
 - associativity

・ 同 ト ・ ヨ ト ・ ヨ ト

Categories Relational Databases Relational Database Schema = Category Usefulness

Relational Databases

A database schema for a relational database can be modeled as a

collection of tables,

・ロト ・日ト ・ヨト ・ヨト

Categories Relational Databases Relational Database Schema = Category Usefulness

Relational Databases

A database schema for a relational database can be modeled as a

- collection of tables, together with
- > a collection of attributes or column-labels for each table,

Categories Relational Databases Relational Database Schema = Category Usefulness

Relational Databases

A database schema for a relational database can be modeled as a

- collection of tables, together with
- a collection of attributes or column-labels for each table, together with
- integrity constraints

Categories Relational Databases Relational Database Schema = Category Usefulness

Relational Databases

A database schema for a relational database can be modeled as a

- collection of tables, together with
- a collection of attributes or column-labels for each table, together with
- integrity constraints

Categories Relational Databases Relational Database Schema = Category Usefulness

Relational Database Schema = Category

Categories Relational Databases Relational Database Schema = Category Usefulness

Relational Database Schema = Category

Categories Relational Databases Relational Database Schema = Category Usefulness

Relational Database Schema = Category

The diagrams are "the same".

Categories Relational Databases Relational Database Schema = Category Usefulness

Usefulness of Categorical Databases

Built in notion of path equivalence (multiple equivalent paths of foreign keys can be a pain in typical database management).

Categories Relational Databases Relational Database Schema = Category Usefulness

Usefulness of Categorical Databases

- Built in notion of path equivalence (multiple equivalent paths of foreign keys can be a pain in typical database management).
- Provides a rigorous language for data migration between databases (another hard task in standard database management).

Universe Levels Limits and Colimits

Category Theory in Coq

 Many people learn a proof assistant by coding up category theory.

Universe Levels Limits and Colimits

Category Theory in Coq

- Many people learn a proof assistant by coding up category theory.
- Category theory is relatively simple to code up.

Universe Levels Limits and Colimits

Category Theory in Coq

- Many people learn a proof assistant by coding up category theory.
- Category theory is relatively simple to code up.
 - Standard rigorous formulation of concepts exists in the literature.

Universe Levels Limits and Colimits

Category Theory in Coq

- Many people learn a proof assistant by coding up category theory.
- Category theory is relatively simple to code up.
 - Standard rigorous formulation of concepts exists in the literature.
 - It's rare to get caught up in minute details of proofs.

Universe Levels Limits and Colimits

Category Theory in Coq

- Many people learn a proof assistant by coding up category theory.
- Category theory is relatively simple to code up.
 - Standard rigorous formulation of concepts exists in the literature.
 - It's rare to get caught up in minute details of proofs.
 - If you can define something categorically, it's probably interesting.

Universe Levels Limits and Colimits

Universe Levels (Russel's Paradox)

Consider, naïvely, the set of all sets.

Universe Levels Limits and Colimits

Universe Levels (Russel's Paradox)

Consider, naïvely, the set of all sets. Does it contain itself?

Universe Levels Limits and Colimits

Universe Levels (Russel's Paradox)

Consider, naïvely, the set of all sets. Does it contain itself?
 It's a set, and it contains all sets, so it must.

Universe Levels Limits and Colimits

Universe Levels (Russel's Paradox)

- Consider, naïvely, the set of all sets. Does it contain itself?
 It's a set, and it contains all sets, so it must.
- Consider the set of all sets that do not contain themselves. Does it contain itself?

Universe Levels Limits and Colimits

Universe Levels (Russel's Paradox)

- Consider, naïvely, the set of all sets. Does it contain itself?
 - It's a set, and it contains all sets, so it must.
- Consider the set of all sets that do not contain themselves. Does it contain itself?
 - If it contains itself, then it is not a set that doesn't contain itself, and so it cannot be a member of itself; contradiction. Thus it cannot contain itself.

Universe Levels (Russel's Paradox)

- Consider, naïvely, the set of all sets. Does it contain itself?
 - It's a set, and it contains all sets, so it must.
- Consider the set of all sets that do not contain themselves. Does it contain itself?
 - If it contains itself, then it is not a set that doesn't contain itself, and so it cannot be a member of itself; contradiction. Thus it cannot contain itself.
 - If it does not contain itself, then it is a set that does not contain itself, and thus must be a member of itself; contradiction. Thus it cannot fail to contain itself.

Universe Levels (Russel's Paradox)

- Consider, naïvely, the set of all sets. Does it contain itself?
 - It's a set, and it contains all sets, so it must.
- Consider the set of all sets that do not contain themselves. Does it contain itself?
 - If it contains itself, then it is not a set that doesn't contain itself, and so it cannot be a member of itself; contradiction. Thus it cannot contain itself.
 - If it does not contain itself, then it is a set that does not contain itself, and thus must be a member of itself; contradiction. Thus it cannot fail to contain itself.
- This is the paradox of naïve set theory.

イロン 不同 とくほど 不同 とう

Universe Levels Limits and Colimits

Universe Levels

► This is the paradox of naïve set theory.

Solution: universe levels

イロト イヨト イヨト イヨト

Э

Universe Levels Limits and Colimits

Universe Levels

- This is the paradox of naïve set theory.
- Solution: universe levels
 - Set or Type(0) is the collection of all sets, Type(1) is the collection of all Type(0)s, ..., Type(i + 1) is the collection of all Type(i)s
 - The universe level of an object of type Type(i) is i

Universe Levels Limits and Colimits

Universe Levels

- This is the paradox of naïve set theory.
- Solution: universe levels
 - Set or Type(0) is the collection of all sets, Type(1) is the collection of all Type(0)s, ..., Type(i + 1) is the collection of all Type(i)s

The universe level of an object of type Type(i) is i

In some cases, Coq can infer the universe level of an inductive type from the universe levels of its parameters; when this happens, the inductive type is polymorphic over universe levels.

Universe Levels Limits and Colimits

Universe Levels

- This is the paradox of naïve set theory.
- Solution: universe levels
 - Set or Type(0) is the collection of all sets, Type(1) is the collection of all Type(0)s, ..., Type(i + 1) is the collection of all Type(i)s

The universe level of an object of type Type(i) is i

- In some cases, Coq can infer the universe level of an inductive type from the universe levels of its parameters; when this happens, the inductive type is polymorphic over universe levels.
- It's useful to talk about "a category whose objects are of type T" rather than just "a category".

Jason Gross — jgross@mit.edu

Database Management on top of Category Theory in Coq

Universe Levels Limits and Colimits

Limits and Colimits

 Categorical limits are like Cartesian products, subject to constraints about equality of components

Universe Levels Limits and Colimits

Limits and Colimits

- Categorical limits are like Cartesian products, subject to constraints about equality of components
- Categorical colimits are like disjoint unions, modulo equivalence relations

Universe Levels Limits and Colimits

Coq Category

Coq has all limits

- Product types provide products (function types, e.g, forall a : A, f a is the product ∏_{a∈A} f(a))
- ► Sigma types provide constraints about equality of components (e.g., { f : A → B | f a = f b })

Universe Levels Limits and Colimits

Coq Category

Coq has all limits

- ▶ Product types provide products (function types, e.g., forall a : A, f a is the product $\prod_{a \in A} f(a)$)
- Sigma types provide constraints about equality of components (e.g., { f : A → B | f a = f b })
- Coq has some colimits
 - Sigma types provide disjoint unions (e.g., { j : J & f j } is the disjoint union ∐_{j∈J} f(j))
 - Quotients are . . . hard

Universe Levels Limits and Colimits

Quotients

イロト イヨト イヨト イヨト

臣

Universe Levels Limits and Colimits

Quotients

- Quotients can be defined via axioms
 - ▶ proof_irrelevance; (A ↔ B) → A = B for propositions; either decidable existence, or a way of turning proofs of existence into objects

(constructive_indefinite_description :

(exists x, P x) \rightarrow { x | P x })

Not computational

Universe Levels Limits and Colimits

Quotients

- Quotients can be defined via axioms
 - ▶ proof_irrelevance; (A ↔ B) → A = B for propositions; either decidable existence, or a way of turning proofs of existence into objects

(constructive_indefinite_description :

(exists x, P x) \rightarrow { x | P x })

- Not computational
- Quotients can be defined via setoids

Limits and Colimits

Quotients

- Quotients can be defined via axioms
 - ▶ proof_irrelevance; $(A \leftrightarrow B) \rightarrow A = B$ for propositions; either decidable existence, or a way of turning proofs of existence into objects

(constructive_indefinite_description :

(exists x, P x) \rightarrow { x | P x })

- Not computational
- Quotients can be defined via setoids
 - All objects carry around extra information of what the equivalence relation is
 - This is somewhat clunky
 - Not first-class quotients

Universe Levels Limits and Colimits

Limits and Colimits (High-Level Summary)

There are two categorical constructions (limits and colimits) that are "dual"

Universe Levels Limits and Colimits

Limits and Colimits (High-Level Summary)

- There are two categorical constructions (limits and colimits) that are "dual"
- Coq's type-system fully implements only one of these (limits)

Universe Levels Limits and Colimits

Limits and Colimits (High-Level Summary)

- There are two categorical constructions (limits and colimits) that are "dual"
- Coq's type-system fully implements only one of these (limits)
- It's harder to define colimits inside of Coq than limits, in general, even for the ones that Coq does support

Universe Levels Limits and Colimits

Thank You!

Jason Gross — jgross@mit.edu Database Management on top of Category Theory in Coq

イロン 不同 とうほう 不同 とう

臣