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ABSTRACT

In this paper, we explore various sparse regularization tech-
niques for analyzing fMRI data, such as LASSO, elastic net
and the recently introduced k-support norm. Employing spar-
sity regularization allow us to handle the curse of dimension-
ality, a problem commonly found in fMRI analysis. We test
these methods on real data of both healthy subjects as well
as cocaine addicted ones and we show that although LASSO
has good prediction, it lacks interpretability since the result-
ing model is too sparse, and results are highly sensitive to the
regularization parameter. We find that we can improve pre-
diction performance over the LASSO using elastic net or the
k-support norm, which is a convex relaxation to sparsity with
an `2 penalty that is tighter than the elastic net. Elastic net
and k-support norm overcome the problem of overly sparse
solutions, resulting in both good prediction and interpretable
solutions, while the k-support norm gave better prediction
performance. Our experimental results support the general
applicability of the k-support norm in fMRI analysis, both for
prediction performance and interpretability.

Index Terms— Functional magnetic resonance imaging
(fMRI), variable selection, sparsity regularization

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a wide
spread modality within the field of neuroimaging, that mea-
sures brain activity by detecting associated changes in blood
flow. The goal of fMRI data analysis is to detect correla-
tions between brain activation and a task the subject performs
during the scan. Many statistical methods have been pro-
posed for analyzing fMRI data, including generalized linear
model [1, 2], support vector machines [3], independent com-
ponent analysis [4, 5] and kernel canonical correlation analy-
sis [6, 7]. All these methods have to deal with (a) data that lie
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in a high-dimensional space, with ten of thousands of voxels,
(b) a small number of samples, due to the high cost and time
consuming nature of the fMRI acquisition procedure, and
(c) high levels of noise that arise from different sources, such
as system noise and random neural activity.

Sparsity regularizers are key statistical methods for im-
proving predictive performance in the event that the number
of observations is substantially smaller than the dimensional-
ity of the data, as is the case in fMRI analysis. The main meth-
ods considered here are the LASSO [8], the elastic net [9],
and the k-support norm [10]. The former two are frequently
applied sparsity regularizers developed in the statistics liter-
ature, while the latter is a recently introduced method that
is mathematically related to the elastic net (cf. Section 2).
The former two have previously been applied to fMRI anal-
ysis [11], while we are the first to apply the k-support norm
to the best of our knowledge. We apply these methods to
two different real data sets, the first consists of a healthy sub-
ject viewing a movie [4, 1, 12] while the second one consists
of both cocaine addicted and healthy non-drug-using subjects
performing a monetary reward task [13, 14]. Previous works
that have explored sparsity regularization in fMRI are numer-
ous and include [11, 15].

The rest of the paper is organized as follows: we first
introduce the sparse regularization techniques (Section 2).
Then, we present our results on two real data sets (Section 3)
and we conclude with a discussion (Section 4).

2. APPROACH

2.1. Sparsity Regularization and the k-support Norm

In the sequel, we assume that we have a sample of labeled
training data {(x1, y1), . . . , (xn, yn)} ∈

(
Rd × R

)n
where

xi is the output of a fMRI scan, and yi is a ground truth label
that we would like to be able to predict.

A cornerstone of statistical inference is the application of
regularized risk, in which a loss function is evaluated over a
sample of data and is linearly combined with a regularizer that
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Table 1. A summary of the regularizers considered in this
work.

Regularizer Ω(w)
LASSO [8] λ1‖w‖1

Elastic net [9] λ1‖w‖1 + λ2‖w‖2
2

k-support [10] λ‖w‖sp
k (see Equation (2))

penalizes some norm of the prediction function. For simplic-
ity, we concern ourselves only with squared error of a scalar
output and a linear function class

arg min
w∈Rd

λΩ(w) +
1
n

n∑
i=1

(〈w, xi〉 − yi)
2 (1)

where λ is a scalar parameter controling the degree of reg-
ularization and Ω is a scalar valued function monotonic in
a norm of w. Sparsity regularization is a key family of pri-
ors over linear functions that prevents overfitting, and aids
interpretability of the resulting models [8, 9, 10, 11, 15]. Key
to the mathematical understanding of sparsity regularizers is
their interpretaion as convex relaxations to quantities involv-
ing the `0 norm, which simply counts the number of non-zero
elements of a vector. Two of the most important sparsity reg-
ularizers, the LASSO [8] and the elastic net [9], are achieved
by setting Ω to be the `1 norm of w or a linear combination
of the `1 and squared `2 norms, respectively (Table 1). The
elastic net has been employed in situations where there may
be multiple correlated signals that should be combined to im-
prove prediction accuracy, a case where the LASSO would
yield a higher variance predictor.

The `1 norm, which is the sum of the absolute values of
the vector, has an important interpretation as the convex re-
laxation of the `0 norm, meaning it is the tightest sparsity
norm that retains convexity, which is key for computational
tractability. While the LASSO can therefore be interpreted as
employing the convex hull of the `0 sparsity regularizer, the
elastic net is looser than the convex hull of a norm that com-
bines `2 regularization with sparsity [10]. However, one may
employ the k-support norm, which is exactly the convex hull
of that hybrid norm. The k-support norm can be computed as

‖w‖sp
k =

k−r−1∑
i=1

(|w|↓i )
2 +

1
r + 1

(
d∑

i=k−r

|w|↓i

)2
 1

2

(2)

where |w|↓i is the ith largest element of the vector and r is the
unique integer in {0, . . . , k − 1} satisfying

|w|↓k−r−1 >
1

r + 1

d∑
i=k−r

|w|↓i ≥ |w|↓k−r. (3)

The k-support norm is closely related to the elastic net, in that
it can be bounded to within a constant factor of the elastic

net, but leads to slightly different sparsity patterns. One can
see from Equation (2) that the norm trades off a squared `2
penalty for the largest components with an `1 penalty for the
smallest components. While initial experiments have shown
promising results with the k-support norm for a range of ma-
chine learning problems [10], to the best of our knowledge
this study is the first to apply the approach to fMRI.

2.2. fMRI Analysis of Cocaine Addiction

The neuropsychological experiment for cocaine addiction
data set has a block design, that included six sessions, with
each of them having different conditions. The two varying
conditions are the monetary reward (50¢, 25¢ and 0¢) and
the cue shown (drug words, neutral words). The session
consists of an initial screen displaying the monetary reward
and then presenting a sequence of forty words in four dif-
ferent colors (yellow, blue, red or green). The subject was
instructed to press one of four buttons matching the color of
the word they had just read. The subjects were rewarded for
correct performance depending on the monetary condition.
In this paper, we focus on the monetary conditions only, and
more specifically the session of 50¢ following [14]. The
dataset consists of 16 cocaine addicted individuals and 17
control subjects. These were the subjects that complied to the
following requirements: motion < 2mm translation, < 2◦

rotation and at least 50% performance of the subject in an
unrelated task [13]. For each subject a contrast map was
computed using the statistical parametric mapping package
SPM2 (http://www.fil.ion.ucl.ac.uk/spm/).

3. RESULTS

Results are presented on two fMRI datasets. The first consists
of a healthy subject in a free-viewing setting. Data collection
was previously described in [4, 1], while the pre-processing
followed [12]. The discriminative task is the prediction of a
“Temporal Contrast” variable computed from the content of a
movie presented to the subject [7]. This dataset was employed
for the quantitative evaluation due to its larger sample size.
The second dataset consists of control and cocaine addicted
subjects [13, 14], as described in Section 2.

The performance of the different sparse regularization
techniques, shown in Figure 1, is evaluated as the mean cor-
relation over 100 trials of random permutation of the data
described in [12]. In each trial, 80% of the data are used to
train the method, while the remaining 20% are used to evalu-
ate the performance. More specifically, Figure 1(a) shows the
mean correlation between LASSO and elastic net against the
number of non-zero variables (i.e voxels), while Figure 1(b)
shows the mean correlation for the k-support norm against
different k values–which are correlated with the number of
non-zero coefficients. LASSO achieves a maximum mean
correlation of 0.1198 for 44 non-zero variables, elastic net
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(b) k-support norm

Fig. 1. Mean Pearson correlations between the label and prediction on the hold-out data over 100 trials for the dataset described
in [12] (higher values indicate better performance). Error bars show the standard deviation. The LASSO achieves its best
performance with a sparsity level substantially lower than the elastic net, as it suppresses correlated voxels (Figure 1(a)). The
k-support norm performs better than the LASSO, elastic net, or Laplacian regularization reported in [7], and is a promising
candidate for sparsity in fMRI analysis (Figure 1(b)). (Figure best viewed in color.)

a maximum mean correlation of 0.1189 for 866 non-zero
variables, while k-support norm a maximum of 0.129 for
k = 800. This is substantially higher than was previously
reported in [7].

We have additionally visualized the brain regions pre-
dicted when applying the LASSO and the k-support norm
to the data from [13, 14]. For each, we have selected slices
through the brain that maximize the sum of the absolute
values of the weights predicted by the respective methods.
These results are presented in Figure 2 and discussed in the
next section.

4. DISCUSSION

The main area of activity shown in Figure 2(b) is the rostral
anterior cingulate cortex (rostral ACC). It has been shown
to be deactivated during the drug Stroop as compared to
baseline in cocaine users vs. controls even when perfor-
mance, task interest and engagement are matched between
the groups [13] and that its activity is normalized by oral
methylphenidate [16]–which similarly to cocaine blocks the
dopamine transporters increasing extracellular dopamine–an
increase that was associated with lower task-related impul-
sivity (errors of commission). This region was responsive
(showed reduction in drug cue reactivity) to pharmacothera-
peutic interventions in cigarette smokers [17, 18], and may
be a marker of treatment response in other psychopathology
(e.g., depression). The LASSO does not show a meaningful
sparsity pattern (Figure 2(a)).

In this work, we have investigated the applicability of
sparsity regularizers in fMRI analyses. We have shown that
the k-support norm can give better predictive performance

than the LASSO and elastic net, while having favorable
mathematical and computational properties. Furthermore,
the brain regions implicated in addiction by the k-support
norm coincide with previous results on addiction, indicating
that the k-support norm is additionally useful for generating
sparse, but correlated, regions suitable for interpretation in
a medical-research setting. In the specific task of cocaine
addiction, the k-support norm has implicated the involvement
of the rostral ACC, in line with previous studies, while the
LASSO did not lead to an interpretable result. We therefore
consider the k-support norm as a promising tool for sparsity
in fMRI analysis and believe it merits future study.1
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(a) LASSO (b) k-support norm

Fig. 2. A visualization of the areas of the brain selected by the LASSO and by the k-support norm applied to the data described
in [13]. The LASSO leads to overly sparse solutions that do not lend themselves to easy interpretation (Figure 2(a)), while
the k-support norm does not suppress correlated voxels, leading to interpretable and robust solutions (Figure 2(b)). A medical
interpretation of the result presented in Figure 2(b) is given in Section 4. (Figure best viewed in color.)
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