Automated Chemical Reaction Extraction from Scientific Literature

Jiang Guo, A. Santiago Ibanez-Lopez, Hanyu Gao, Victor Quach, Connor W. Coley, Klavs F. Jensen, and Regina Barzilay*

ABSTRACT: Access to structured chemical reaction data is of key importance for chemists in performing bench experiments and in modern applications like computer-aided drug design. Existing reaction databases are generally populated by human curators through manual abstraction from published literature (e.g., patents and journals), which is time consuming and labor intensive, especially with the exponential growth of chemical literature in recent years. In this study, we focus on developing automated methods for extracting reactions from chemical literature. We consider journal publications as the target source of information, which are more comprehensive and better represent the latest developments in chemistry compared to patents; however, they are less formulaic in their descriptions of reactions. To implement the reaction extraction system, we first devised a chemical reaction schema, primarily including a central product, and a set of associated reaction roles such as reactants, catalyst, solvent, and so on. We formulate the task as a structure prediction problem and solve it with a two-stage deep learning framework consisting of product extraction and reaction role labeling. Both models are built upon Transformer-based encoders, which are adaptively pretrained using domain and task-relevant unlabeled data. Our models are shown to be both effective and data efficient, achieving an F1 score of 76.2% in product extraction and 78.7% in role extraction, with only hundreds of annotated reactions.

INTRODUCTION

Scientific literature (e.g., journal articles and patents) has long been a critical information source to synthetic chemists for finding ways to perform particular chemical reactions or synthetic procedures of interest. To reduce the time and costs entailed by information retrieval, as well as to facilitate access to reaction data, commercial efforts have been invested in constructing structured databases from unstructured literature, such as Reaxys® and SciFinder among others. These databases are generally populated by human experts through manual extraction from literature, which is costly, time consuming, and expertise intensive, especially with the exponential growth of chemical scientific publications in recent years. This challenge motivates the development of automated methods for reaction extraction from unstructured literature data.

Information extraction in the chemical domain has gained increasing attention over the past decade. Existing work has concentrated on named entity recognition (NER) and the extraction of their associated properties, such as OSCAR (Open Source Chemistry Analysis Routines), and Chem-DataExtractor. Only very few works have targeted the extraction of chemical reactions which, compared to chemical compounds extracted by NER, are more structured, informative, and also practically useful. NER helps in associating compounds with documents, but chemists still need to go to the original article to see the context for that species, whereas reactions are often what the chemist wants to know about. Two representative toolkits developed for this purpose are ChemicalTagger and OPSIN. ChemicalTagger went beyond entity extraction and used a grammar-based phrase parser to identify action phrases and relationships between entities. It has been specifically developed for extracting information from patents, taking advantage of its highly stylized and formulaic language. OPSIN took a mixture of outputs from ChemicalTagger and employed a set of rules to determine four essential chemical roles, including product, reactant, solvent, and catalyst. These rule-based systems represent good starting points for this endeavor, but they are heavily dependent on manually designed rules and are sensitive to the noise introduced by either language use or preprocessing steps, which limits their scalability to nonpatent data such as journal articles. Language used in academic journals is often of higher complexity and less formulaic than patent literature. For instance, one sentence can describe multiple reactions or one reaction with different products/yields under different conditions. This complexity requires the development of more advanced natural language processing (NLP) models with higher capacity. Another type of reaction data which is growing in popularity is synthesis action sequences, which

Special Issue: From Reaction Informatics to Chemical Space

Received: March 10, 2021
Published: June 11, 2021

Published: 2021 American Chemical Society

https://doi.org/10.1021/acs.jcim.1c00284

contain details required by a bench chemist or a robotic system to conduct a reaction. Mehr et al. parsed synthetic procedures in literature into machine-executable actions via pattern matching with expert-defined heuristics. Vaucher et al. instead presented a deep-learning sequence to sequence model to convert unstructured experiment procedures into action sequences, using a combination of expert annotation and a rule-based system for training.

In this study, we focus on developing a method for automatically parsing journal articles and extracting reactions into a schema that is consistent with prior databasing efforts like Reaxys and SciFinder. We devised a schema that represents chemical reactions in a unified structured semantic frame, which contains a major product as the central element and a set of essential chemical roles as its associated slots. Consider the following passage drawn from the chemical literature: Reaction of diphenylacetylene with complex 19A led to only cycloheptadienone 23A in 30% yield; with (phenyl-cyclopropyl)-carbene complex 19B, cycloheptadienone 25 was produced in 53% yield.

There are two reactions described in the passage with products being 23A and 25 respectively (they are identifiers pointing to specific structures in diagrams). For the reaction that produces 23A, reactants include diphenylacetylene and 19A, and yield is 30%. The same chemical (e.g., diphenylacetylene in the example above) can participate in multiple reactions. Note that this schema is not complete in terms of what is needed to reproduce a reaction but can greatly benefit chemists in multiple ways. Besides providing chemists with structured and easily accessible reaction information, data in this format can also be directly utilized in computer-aided chemistry for training automated systems of reaction prediction, reaction condition recommendation, and synthesis planning.

We proposed a two-stage cascading framework for reaction extraction, which consists of two primary submodules: product extraction and reaction role labeling. At the first stage, a sequence tagging model is employed to recognize all the possible products mentioned in the given (preprocessed) text. For each of the products, a role labeling model is then used to extract all possible reaction roles from their context and fill corresponding slots as defined in the schema. Both models are data driven and built with deep neural networks and thus require annotated data for the training and evaluation in the very first place. To this end, we have defined comprehensive guidelines for annotating chemical literature texts to obtain chemical reaction data, from which task-specific training data can be further compiled for product extraction and reaction role labeling, respectively.

Considering that reaction data sets are both labor intensive and expertise demanding to annotate, we sought to reduce the reliance on a huge amount of labeled data typically required for supervised training of deep neural models. Inspired by the recent dominant pretraining-and-finetuning paradigm in NLP, we first pretrained a Transformer-based text encoder, named ChemBERT, on vast amounts of unlabeled literature texts. This encoder was then coupled with task-specific decoders and fine-tuned using the limited amount of annotations of each end task. In addition, input texts to reaction role labeling are expected to be reaction relevant, i.e., describing at least one chemical reaction and its major product, thus forming a much confined subspace of the general chemical literature texts. Given this fact, we introduced an adaptive pretraining approach with reaction-relevant text retrieval to find a subspace of the unlabeled data that is more distributionally similar to our target task. Continual pretraining on this subspace produced a task-adaptive encoder, ChemRenBERT, which brought further improvements to reaction role labeling.

Experiments show that our models are both effective and data efficient. We achieved an F1 score of 76.2% for product extraction and 78.7% for role labeling, using only hundreds of training instances for each task. The code, annotated data, and trained models for reaction extraction are publicly available to the community.

METHODS

Reaction Schema. A chemical reaction can be described as a process of chemical transformation from one set of chemical substances to another. A desired reaction schema is thus supposed to be informative enough to reflect such a transformation, primarily including the source chemicals, the outcomes, and the reaction conditions. In addition to being chemically informative, we expect the schema to be succinct and friendly to data-driven models. Following this design principle, we introduced a schema that represents reactions in a unified semantic frame, which contains product as a central factor and eight associated reaction roles (reactants, reaction type, catalyst/reagents, workup reagents, solvent, temperature, time, and yield) as slots to be filled. Table 1 contains detailed explanations for each of the predefined roles in the schema.

Table 1. Reaction Schema Used in This Work, with Detailed Explanations of Each Specific Role

<table>
<thead>
<tr>
<th>Reaction Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Chemical substance that is the final outcome (major product) of the reaction</td>
</tr>
<tr>
<td>Reactants</td>
<td>Chemical substances that contribute heavy atoms to the product</td>
</tr>
<tr>
<td>Catalyst/Reagents</td>
<td>Chemical substances that participate in the reaction but do not contribute heavy atoms (e.g., acid, base, metal complexes)</td>
</tr>
<tr>
<td>Workup reagents</td>
<td>Chemical substances that are used after the reactions to terminate the reactions or obtain the products (e.g., quenching reagents, extraction solvent, neutralizing acids/bases)</td>
</tr>
<tr>
<td>Solvent</td>
<td>Chemical substances that are used to dissolve/mix other chemicals, typically quantified by volume and used in stoichiometric amounts (e.g., water, toluene, THF)</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature at which the reaction occurs</td>
</tr>
<tr>
<td>Time</td>
<td>Duration of the reaction performed</td>
</tr>
<tr>
<td>Reaction type</td>
<td>Descriptions about the type of chemical reaction</td>
</tr>
<tr>
<td>Yield</td>
<td>Yield of the product</td>
</tr>
</tbody>
</table>

Data and Annotations. In contrast to the majority of published chemical information extraction tools that use patent information, the target source of text we considered in this work is journal articles. To this aim, we used a collection of ~200,000 published articles in multiple chemistry journals from 1906 to 2016. Details are shown in Table 2 regarding the number of articles per journal and Figure 2 regarding the number of articles by publication date.

For each reaction-relevant article, only a few passages of the whole body text contain well-formed reaction descriptions, and they are usually not explicitly sectioned. We first employed a set of rules based on keywords matching (e.g., afford/s/ed, 2036 https://doi.org/10.1021/acs.jcim.1c00284 J. Chem. Inf. Model. 2022, 62, 2035–2045
yield/s/ed, produce/s/ed, etc.) and section filtering for the selection of the passages most likely containing reaction information. In particular, we discarded the experimental sections, as reaction descriptions in these sections often contain very detailed procedures about the synthesis, which are not well aligned to our schema. The resulting passages are then preprocessed (sentence splitting, tokenization) using the ChemDataExtractor toolkit.5 Next, we fed all preprocessed passages into our annotation tool23 built on Amazon Mechanical Turk (MTurk). We equipped the tool with rich features that allow annotators to (1) annotate and validate reaction roles, (2) reject and classify a paragraph, and (3) consult the original article for greater context.

We employed 13 graduate students and postdocs in chemistry or chemical engineering laboratories and two postdocs in computer science for the first-round annotation. Then, we manually checked the annotation quality and consistency and refined our annotation guideline by clarifying some ambiguous terms, followed with an additional overall validation process by the same annotators. The entire annotation process took 280–240 h for the first-round annotation with a passage-level accuracy of 89.3%, and 40 h for the refining phase. The resulting corpora contains 329 passages, each annotated with one or more reactions. We followed a 8:1:1 ratio to split our corpora into training, development, and test sets. Table 3 summarizes the data statistics. The scarcity of training data raises severe challenges to learning a high-performance model.

Table 3. Data Statistics of Annotated Reaction Corpus, Including Number of Passages, Reactions, Passages with Multiple Reactions, and Product–Role Relation Pairs

<table>
<thead>
<tr>
<th></th>
<th>Passages</th>
<th>Reactions</th>
<th>Passages (multireactions)</th>
<th>Product–Roles (relation pairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>251</td>
<td>599</td>
<td>159</td>
<td>2457</td>
</tr>
<tr>
<td>Develop</td>
<td>41</td>
<td>96</td>
<td>22</td>
<td>482</td>
</tr>
<tr>
<td>Test</td>
<td>37</td>
<td>111</td>
<td>22</td>
<td>469</td>
</tr>
</tbody>
</table>

Model. Task Formulation. We formulated the reaction extraction task as a structure prediction problem which takes a sequence of tokens as input, and outputs the reaction structures, each containing a set of product–role relation pairs. We proposed a two-stage pipeline framework, combining a product extraction module and a reaction role labeling module for the extraction of reactions. At the first stage, the product extraction module aimed to identify all possible product entities from the given text. For each of the products, the reaction role

![Figure 1. Example of extracted reactions using the proposed schema. The passage was drawn from Chen et al.22](image)

![Figure 2. Number of journal articles by publication date in our corpus.](image)

Table 2. Number of Articles per Journal in Our Corpus

<table>
<thead>
<tr>
<th>Journal name</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal of the American Chemical Society</td>
<td>95,668</td>
</tr>
<tr>
<td>The Journal of Organic Chemistry</td>
<td>72,482</td>
</tr>
<tr>
<td>Organic Letters</td>
<td>23,631</td>
</tr>
<tr>
<td>Journal of Organic Chemistry</td>
<td>295</td>
</tr>
<tr>
<td>Organic Process Research & Development</td>
<td>2440</td>
</tr>
</tbody>
</table>

Figure 2. Number of journal articles by publication date in our corpus.
The tagging module was then used to extract the associated elements corresponding to different reaction roles presented in its context, which together form the final reaction structure. The two pipelined modules were trained independently, and we compiled task-specific training data for each of them from our annotated corpora.

Product extraction can be formulated as a standard sequence labeling task over individual words. Role labeling, however, is essentially a relation extraction task aiming to identify the reaction role entities and classify their relationship to a given product into one of the predefined role categories. We formulated it as a conditional sequence labeling task by adding special markers to the input in order to inform the encoder about the target product, so that predictions for the related role tokens will be conditioned on both the input text and the given product. Figure 3 illustrates how the role labeling task is formulated.

In the rest of this section, we first introduce our architectural design of each module and then describe an adaptive pretraining strategy for effective learning in a low-resource regime.

Product Extraction. The goal of product extraction is to identify all entity spans that refer to certain items of chemical reactions. We assumed there were no nested products in the text and formulated this task as a sequence tagging problem under the "BIO" tagging scheme. Specifically, given an input sequence of tokens, our model aimed to assign to each token a categorical label in the form of "[BIL]-Type" or "O", where "Bl" indicates the position of a word within an entity span—"B" denotes the beginning of an entity and "I" denotes inside an entity—and "O" indicates that a token belongs to no entity. "Type" is a placeholder for any entity type to be extracted. In the case of product extraction, the only entity type of interest is Product.

Words of the input sequence were further tokenized into a set of subword tokens, namely, wordpieces, before flowing through a Transformer encoder. For instance, "K₂CO₃" was divided into: ["K", "##2", "##CO", "##3"], where all wordpieces except the first one were prefixed with "##". Using wordpieces can effectively generalize and robustness of machine learning models, especially for languages whose vocabulary has rich internal structures like chemical names. The Transformer encoder essentially consists of a stack of multihead self-attention layers and feed-forward layers, which computed a hidden representation for each of the wordpieces. We took the first wordpiece of each word as input to a conditional random field (CRF) decoder for sequence labeling. At inference time, we used the Viterbi decoding algorithm with a set of tag transition constraints coming with the “BIO” scheme, for example, “I-Product” must be following “B-Product”.

Figure 3. Reaction role extraction, a relation extraction problem (top), here formulated as a sequence labeling task conditioned on a given product (bottom). “Product.01” indicates the first product in the current text.

Figure 4 illustrates the architecture of our tagging model. In this work, we considered the structure identifiers (e.g., “4a”) as independent entities in order to facilitate future work on bridging texts with chemical diagrams where the identifiers will be used to locate the corresponding molecular structures.

The model was trained with maximum likelihood estimation (MLE). We denote the input sequence as \(x = (x_1, ..., x_n) \), where \(x_i \) is the \(i \)-th word, and a sequence of labels as \(y = (y_1, ..., y_n) \). \(Y(x) \) denotes the set of possible label sequences for \(x \). The conditional probability \(P(y|x; \theta) \) is given by

\[
P(y|x; \theta) = \frac{\exp(s(x, y))}{\sum_y \exp(s(x, y))}
\]

where \(s \) is a scoring function combining a transition score and an emission score

\[
s(x, y) = \sum_{i=0}^{n} T_{y_{i+1}, y_i} + \sum_{i=1}^{n} E_{y_i}
\]

where \(T \) is the transition scoring matrix to be estimated during training, and \(E_{y_i} \) corresponds to the score for the \(i \)-th word being tagged as \(y \). \(E_{y_i} \) is obtained through a fully connected layer which projects the hidden representation of the \(i \)-th word (representation of its first wordpiece), denoted as \(h_i \) to the label space.

\[
E_y = \text{ReLU}(W_{\text{prod}} h + b_{\text{prod}})
\]

where \(W_{\text{prod}} \in \mathbb{R}^{l \times d} \) and \(b_{\text{prod}} \in \mathbb{R}^{l} \) are the weight matrices and biases of this linear projection, respectively. We have \(l = 3 \) labels for this task.

Reaction Role Labeling. For each of the products recognized in the first stage, we proceeded to identify and classify its associated reaction roles into predefined role types in our reaction schema. Consider the example as shown in Figure 5, where our aim is to extract reaction roles for the product \((E)-3\text{-methyleneisoindolin-1\text{-one}}\). To make the encoder aware of the target product, we enclosed the product entity with two special markers “[P]” and “[/P]”, thus forming a span.
\[h^{\text{prod}} = \text{Pooling}(h_{\text{cls}}) \]

Herein, we used Max-pooling since it gave superior performance than alternatives (e.g., taking the representation of starting token “[P]”) in our experiments.

Conditioned on this product representation, we performed sequence tagging over all the remaining tokens for the recognition of associated reaction roles. As with the product extraction task, we continued using the “BIO” tagging scheme. In the example shown in Figure 5, \(K_2 CO_3 \) and \(Bu_3 P \) are two catalysts used in the reaction that leads to product \((E)-3-\)

\[... \]

\[\text{Conditional Random Fields} \]

\[\ldots B-\text{Cat} \quad O \quad B-\text{Cat} \quad O \quad B-\text{Temp} \quad I-\text{Temp} \ldots \]

Figure 5. Model architecture of chemical role extraction.

...
usually contain detailed synthesis steps instead of high-level reaction descriptions. During the pretraining of ChemBERT, we retained the MLM objective with whole word masking but dropped the NSP objective which has been shown in prior studies to be hardly beneficial for most end tasks.30 The pretrained ChemBERT was then used to initialize the Transformer encoder of the product extraction model (Figure 4) and fine-tuned afterward.

ChemRxnBERT. Pretraining of ChemRxnBERT requires a more constrained subset of chemical texts that is better aligned to the target task. The labeled training data of reaction role labeling, however, was insufficient to serve this goal. To address this issue, we proposed to use the product extraction model as a text retriever to automatically identify reaction-relevant data from the full chemical text space. Specifically, sentences that contain at least one product were selected, which gave about 10% (944,733 sentences) of the full unlabeled corpus.

To gain more insights into this process, we took a random sampled set of sentences from the unlabeled chemical texts and the small annotated data of role labeling, encoded them using the representation component (encoder) of the trained product extraction model, and computed their sentence embeddings by averaging contextual embeddings from the last layer. The resulting 768-dimensional sentence embeddings were then reduced to 2-D via principal component analysis (PCA)31 and visualized in Figure 7a. We can clearly see that the annotated reaction data distributes compactly in a small subspace of the whole chemical data. Data points in this subspace should compose an desired set of data for pretraining ChemRxnBERT. Figure 7b shows that our retrieved sentences are well aligned with the target reaction data distribution. This subset of data was then used for task-adaptive pretraining.

RESULTS AND DISCUSSION

Evaluation Setup and Baselines. We experimented with a limited sequence length due to memory and optimization constraints. For product extraction, we found that most of the products can be inferred from context within the same sentence, so we performed sentence-level labeling to find all possible products of a given passage. Identification of roles, however, may involve cross-sentence reasoning in some cases. To determine a reasonable context size, we analyzed the distribution of product−role distances in our corpus, which is shown in Figure 8 (left, sentence-level distance; right, word-level distance). We find that 93% of the reaction roles can be found within a context size of three sentences to their corresponding product and 72% within the same sentence. To this end, we created two experiment settings for role labeling, which used context sizes of three sentences and one sentence, respectively.

We evaluated the performance of product extraction and reaction role labeling models on separate test sets compiled from the annotation data set. In this setting, the reaction role labeling model used the ground-truth product as input. Since both tasks were formulated as sequence tagging, we use the standard metrics including Precision (P), Recall (R), and F1-score (F1). These are defined as

\[
\text{Precision} = \frac{TP}{TP + FP}
\]

(a) General chemical texts vs. annotated reaction texts.
(b) General chemical texts vs. annotated reaction texts vs. retrieved reaction texts.

Figure 7. 2-D Visualization of chemical text embeddings. (a) Reaction data locate in a small subspace of the full chemical data. (b) Our retrieved reaction data aligned well with the annotated reaction data.
Recall = \frac{TP}{TP + FN}

F1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}

where TP indicates true positives that the system correctly identified, FP indicates the false positives that the system incorrectly identified, and FN is the false negatives that the system failed to recognize.

We considered the BERT-based counterparts as our primary baseline models for comparison, which use the same architecture as ours except for the use of a general-domain BERT encoder. Throughout our experiments, we referred BERT as the pretrained bert-base-cased model officially released. Additionally, we compared to BioBERT, a BERT model pretrained on biomedical literature.\(^3\) For product extraction, we also reported the performance of a pioneering rule-based system, OPSIN,\(^7\) as well as a bidirectional LSTM (BiLSTM), which has been a standard approach for a wide range of tagging tasks in NLP.\(^3\) OPSIN identifies products by a set of rules based on the tagging and parsing outputs of ChemicalTagger.\(^6\) It was developed specifically for processing patent literature, which is highly different from journal articles in terms of language use. To implement the BiLSTM-based models, we trained 300-dimensional static word vectors using fastText\(^3\) from the same unlabeled corpus as used for training ChemBERT.

Product Extraction. Table 4 presents the performance of product extraction models. As expected, OPSIN gives poor performance in our data, demonstrating the limit of rule-based methods in the processing of freer language used in journal articles. BERT confirms its strong representation capability and shows substantial gains over the BiLSTM encoders. ChemBERT achieves 10.27% absolute improvements in F1 over BERT, implying the need and effectiveness of domain-adaptive pretraining.

<table>
<thead>
<tr>
<th>Table 4. Performance of Product Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>OPSIN</td>
</tr>
<tr>
<td>BiLSTM (w/o CRF)</td>
</tr>
<tr>
<td>BiLSTM</td>
</tr>
<tr>
<td>BERT</td>
</tr>
<tr>
<td>BioBERT</td>
</tr>
<tr>
<td>ChemBERT</td>
</tr>
</tbody>
</table>

Reaction Role Labeling. Performances of reaction role labeling with context sizes of 1 (i.e., sentence-level) and 3 are shown in Table 5. At a sentence-level, ChemBERT achieved substantial gains over BERT, while the task-adaptive ChemRxnBERT gives an additional 2% improvements in F1. We found that ChemBERT outperforms ChemRxnBERT on role labeling when using a larger context size. The reason should be that ChemRxnBERT is adapted from ChemBERT by sentence-level masked language modeling. Pretraining with a greater context size should be more desirable, which we leave as part of future work.

The breakdown performances by reaction role types are shown in Table 6. Some of the reaction roles appear to be more difficult to predict than others, such as Catalyst/Reagents. We excluded the Workup reagents roles here as they appear only very few times in the data set.

Figure 8. Distribution of product–role distances (negatives indicate roles to the left side of the target product).

Figure 9. Further illustrates, for the labels present in the ground truth, the corresponding labels predicted by our role labeling model. We can see two main types of prediction errors. First, many of the roles mentioned that were unseen in the training data were not successfully identified and thus labeled as O. Other than that, the main errors made by the model relate to the disambiguation between Catalyst/Reagents and Reactants. This is mainly because these two types of roles usually share similar contexts in a reaction description.
Qualitative Analysis. Next, we presented a qualitative analysis of the reactions extracted by our model to demonstrate its capabilities and potential weaknesses. **Multireactions.** Figure 10 presents a few examples of extracted reactions from our data set. We first show a simple case which contains a single reaction (Example (A)). These cases are comparatively easy to solve, even with prior rule-based approaches. Example (B) is a multistep reaction, in which the product of the first reaction is a reactant for the production of 29 in the second reaction. Traditional tagging-based or rule-based reaction extraction methods, however, have been unable to handle such cases. Example (C) describes the reaction of a compound (CpFe(CO)₂SiMe₃) when coupling with different reactants gives different outcomes (product and yield). It is worth noting that the Yield of a reaction may not be an exact number but can also be a vaguely-expressed natural language phrase indicating a yield range or even failure of a reaction (e.g., “not give an isolable quantity” in the example). The same applies to Temperature and Time, for example, “room temperature”, “over 4 h” etc. The data-driven nature of our approach enables us to extract these indicative phrases as reaction roles. **Catalysts/Reagents vs Reactants.** To better understand the main errors our models make, we provide here a representative example where the Catalysts/Reagents roles are mistakenly predicted as Reactants (Figure 11). We find that Catalysts/Reagents and Reactants share a similar set of context patterns, such as “reaction with [ENTITY]”, “by treatment with [ENTITY]”, and “in the presence of [ENTITY]”. In these cases, contexts become less discriminative, while the only clue for resolving the ambiguity between the two roles is the entity itself. This poses additional challenges, as well as opportunities to further improve our model by incorporating potential external domain knowledge (e.g., dictionaries of catalysts/reagents) or chemical constraints of a valid reaction (e.g., atom mapping). **Comparison with Reaxys.** To better understand the strengths and limitations of our approach, we conducted qualitative comparison between the reactions extracted by our system to the manually constructed Reaxys database. We

Figure 9. Entity-type confusion matrix: rows represent ground truth labels and columns represent predicted labels.

Figure 10. Examples of reactions extracted by our model. Passages were drawn respectively from Sharma et al., Leete et al., and Tobita et al.
selected the three example passages in Figure 10 to analyze the differences. The corresponding reaction records in Reaxys were retrieved using the digital object identifiers (DOI). Below we summarize the major findings:

Mismatch in Reaction Role Categorization. Most compounds can be categorized in several ways. This ambiguity often results in different annotations produced by our system and Reaxys. For instance, in Figure 12, “DMSO” was identified as a solvent by our system, which conforms to the text description (“DMSO as the solvent”). Reaxys instead categorized DMSO as a reactant, as DMSO had indeed participated in this reaction as a sulfur source.

Rounding vs Exact Reporting of Numerical Values. We noticed that in some cases Reaxys reports rounded numerical values. In contrast, our system is designed to report exact values as stated in input articles. This is illustrated in the reaction yield value (Figure 12), extracted by our system as 89% as stated in the text and rounded to 90% in Reaxys.

Ability to Extract from Global Contexts. Our extractions are based on a limited context scope (i.e., passage) and thus can fail to extract certain reaction roles whose inference requires global context (e.g., full document). For instance, in Figure 12, Reaxys includes the Time condition (“12h”) and additional conditions such as the reaction procedure (“Sealed tube; regioselective reaction”), which our system failed to extract. While in the original article these are described in a separate section and apply to all the experiments performed in the article, in this specific passage they are not mentioned.

Chemical Entity Grounding. In reaction descriptions, chemicals are often represented by identifiers linking to specific structural depictions in diagrams (e.g., Figure 13).

Figure 11. Incorrect prediction made by the model in distinguishing between Catalyst/Reagents and Reactants. The passage was drawn from Nicolaou et al. 38

Figure 12. Comparison between the extracted reaction of our system (ChemRxnExtractor) with the manually abstracted reaction in Reaxys for Example (A) (Figure 10). Chemical names are converted to structural formulas for better demonstration.

Figure 13. Comparison between ChemRxnExtractor with the manually abstracted reaction in Reaxys for Example (C) (Figure 10).

Therefore, chemical entity grounding is a critical step before populating the extracted reactions into databases. In Reaxys, these chemicals are manually grounded by human experts. In contrast, our automated system should be coupled with additional optical chemical structural recognition (OCSR) tools for chemical entity grounding. OCSR has been an important and challenging step toward fully automated chemical literature mining. Existing efforts include rule-based methods 39 and the recent deep learning-based models. 40,41 However, the development of a sufficiently accurate, robust, and open-source solution for OCSR remains a challenge.

Reaction Coverage. Negative reactions or failures (e.g., Reaction #2 in Figure 13) are mostly ignored in Reaxys. These negative data can be of important scientific value, and this work demonstrates the potential to systematically extract them from chemical literature. Some reactions may also not be included in Reaxys due to potential human preference. For instance, the reactions in Example (B) of Figure 10 were not recorded in Reaxys. This is a reaction to produce an intermediate used in subsequent syntheses and thus is likely to be considered “nonessential” compared to other reactions described in the article and thus is neglected.
CONCLUSION
This work implemented an automated system for reaction extraction from chemical literature. We introduced a new product-centric chemical reaction schema aligning with existing manually curated commercial databases, and collected a small amount of annotations following this schema. The task was decomposed into two cascaded subtasks, namely product extraction and reaction role labeling, and individual modules were developed for each of them. Both modules were built on an encoder-decoder framework, in which a Transformer is used as the encoder, and conditional random fields as the decoder for (conditional) sequence labeling. To cope with the data-scarce challenge, we proposed domain- and task-adaptive pretraining using large-scale unlabeled corpus extracted from the literature. Our system was able to achieve an F1 score of 76.2% for product extraction and 78.7% for role extraction, which significantly outperformed prior rule-based approaches, as well as stronger BERT and BioBERT baseline models. Qualitative analysis on multireactions extraction showed that our system was indeed able to uncover complex product-role relations in texts. Meanwhile, the current system still makes mistakes in distinguishing Catalysts/Reagents and Reactants due to their largely shared context patterns. Finally, we compared our extractions to the reaction records in the manually constructed Reaxys database and analyzed the strengths and limitations of our approach, which sheds light on future directions.

DATA AND SOFTWARE AVAILABILITY
The 200,000 journal articles used in this work were shared between the American Chemical Society and MIT under a private access agreement. Our annotated corpus, code, and pretrained models are publicly available under the MIT license on GitHub.21

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.1c00284.

Author Contributions
§J. Guo and A. S. Ibanez-Lopez contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by the DARPA Accelerated Molecular Discovery (AMD) program under contract HR0011192002S, the Machine Learning for Pharmaceutical Discovery and Synthesis Consortium (MLPDS), and the Defence Threat Reduction Agency under contract HDTRA12110013. We specially thank the American Chemical Society for sharing the journal articles, and Elsevier for the access to Reaxys. We also thank all the students and postdocs who helped with the data annotation. In addition, we thank Juan Ortiz for his work on our Web-based user interface.42

REFERENCES
(3) Larsen, P.; Von Ins, M. The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics 2010, 84, 575–603.

