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ABSTRACT: Access to structured chemical reaction data is of key
importance for chemists in performing bench experiments and in
modern applications like computer-aided drug design. Existing
reaction databases are generally populated by human curators
through manual abstraction from published literature (e.g., patents
and journals), which is time consuming and labor intensive,
especially with the exponential growth of chemical literature in
recent years. In this study, we focus on developing automated methods for extracting reactions from chemical literature. We consider
journal publications as the target source of information, which are more comprehensive and better represent the latest developments
in chemistry compared to patents; however, they are less formulaic in their descriptions of reactions. To implement the reaction
extraction system, we first devised a chemical reaction schema, primarily including a central product, and a set of associated reaction
roles such as reactants, catalyst, solvent, and so on. We formulate the task as a structure prediction problem and solve it with a two-
stage deep learning framework consisting of product extraction and reaction role labeling. Both models are built upon Transformer-
based encoders, which are adaptively pretrained using domain and task-relevant unlabeled data. Our models are shown to be both
effective and data efficient, achieving an F1 score of 76.2% in product extraction and 78.7% in role extraction, with only hundreds of
annotated reactions.

■ INTRODUCTION

Scientific literature (e.g., journal articles and patents) has long
been a critical information source to synthetic chemists for
finding ways to perform particular chemical reactions or
synthetic procedures of interest. To reduce the time and costs
entailed by information retrieval, as well as to facilitate access
to reaction data, commercial efforts have been invested in
constructing structured databases from unstructured literature,
such as Reaxys1 and SciFinder2 among others. These databases
are generally populated by human experts through manual
extraction from literature, which is costly, time consuming, and
expertise intensive, especially with the exponential growth of
scientific chemical publications in recent years.3 This challenge
motivates the development of automated methods for reaction
extraction from unstructured literature data.
Information extraction in the chemical domain has gained

increasing attention over the past decade. Existing work has
concentrated on named entity recognition (NER) and the
extraction of their associated properties, such as OSCAR
(Open Source Chemistry Analysis Routines),4 and Chem-
DataExtractor.5 Only very few works have targeted the
extraction of chemical reactions which, compared to chemical
compounds extracted by NER, are more structured,
informative, and also practically useful. NER helps in
associating compounds with documents, but chemists still
need to go to the original article to see the context for that
species, whereas reactions are often what the chemist wants to
know about. Two representative toolkits developed for this

purpose are ChemicalTagger6 and OPSIN.7 ChemicalTagger
went beyond entity extraction and used a grammar-based
phrase parser to identify action phrases and relationships
between entities. It has been specifically developed for
extracting information from patents, taking advantage of its
highly stylized and formulaic language. OPSIN took a mixture
of outputs from ChemicalTagger and employed a set of rules to
determine four essential chemical roles, including product,
reactant, solvent, and catalyst. These rule-based systems
represent good starting points for this endeavor, but they are
heavily dependent on manually designed rules and are sensitive
to the noise introduced by either language use or preprocessing
steps, which limits their scalability to nonpatent data such as
journal articles. Language used in academic journals is often of
higher complexity and less formulaic than patent literature. For
instance, one sentence can describe multiple reactions or one
reaction with different products/yields under different
conditions. This complexity requires the development of
more advanced natural language processing (NLP) models
with higher capacity. Another type of reaction data which is
growing in popularity is synthesis action sequences, which
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contain details required by a bench chemist or a robotic system
to conduct a reaction. Mehr et al. parsed synthetic procedures
in literature into machine-executable actions via pattern
matching with expert-defined heuristics.8 Vaucher et al. instead
presented a deep-learning sequence to sequence model to
convert unstructured experiment procedures into action
sequences, using a combination of expert annotation and a
rule-based system for training.9

In this study, we focus on developing a method for
automatically parsing journal articles and extracting reactions
into a schema that is consistent with prior databasing efforts
like Reaxys and SciFinder. We devised a schema that
represents chemical reactions in a unified structured semantic
frame, which contains a major product as the central element
and a set of essential chemical roles as its associated slots.
Consider the following passage drawn from the chemical
literature:10Reaction of diphenylacetylene with complex 19A led to
only cycloheptadienone 23A in 30% yield; with (phenyl-
cyclopropyl)-carbene complex 19B, cycloheptadienone 25 was
produced in 53% yield.
There are two reactions described in the passage with

products being 23A and 25 respectively (they are identifiers
pointing to specific structures in diagrams). For the reaction
that produces 23A, reactants include diphenylacetylene and 19A,
and yield is 30%. The same chemical (e.g., diphenylacetylene in
the example above) can participate in multiple reactions. Note
that this schema is not complete in terms of what is needed to
reproduce a reaction but can greatly benefit chemists in
multiple ways. Besides providing chemists with structured and
easily accessible reaction information, data in this format can
also be directly utilized in computer-aided chemistry for
training automated systems of reaction prediction,11−14

reaction condition recommendation,15,16 and synthesis plan-
ning.17−19

We proposed a two-stage cascading framework for reaction
extraction, which consists of two primary submodules: product
extraction and reaction role labeling. At the first stage, a
sequence tagging model is employed to recognize all the
possible products mentioned in the given (preprocessed) text.
For each of the products, a role labeling model is then used to
extract all possible reaction roles from their context and fill
corresponding slots as defined in the schema. Both models are
data driven and built with deep neural networks and thus
require annotated data for the training and evaluation in the
very first place. To this end, we have defined comprehensive
guidelines for annotating chemical literature texts to obtain
chemical reaction data, from which task-specific training data
can be further compiled for product extraction and reaction
role labeling, respectively.
Considering that reaction data sets are both labor intensive

and expertise demanding to annotate, we sought to reduce the
reliance on a huge amount of labeled data typically required for
supervised training of deep neural models. Inspired by the
recent dominant pretraining-and-f inetuning paradigm in NLP,20

we first pretrained a Transformer-based text encoder, named
ChemBERT, on vast amounts of unlabeled literature texts. This
encoder was then coupled with task-specific decoders and fine-
tuned using the limited amount of annotations of each end
task. In addition, input texts to reaction role labeling are
expected to be reaction relevant, i.e., describing at least one
chemical reaction and its major product, thus forming a much
confined subspace of the general chemical literature texts.
Given this fact, we introduced an adaptive pretraining

approach with reaction-relevant text retrieval to find a subspace
of the unlabeled data that is more distributionally similar to
our target task. Continual pretraining on this subspace
produced a task-adaptive encoder, ChemRxnBERT, which
brought further improvements to reaction role labeling.
Experiments show that our models are both effective and

data efficient. We achieved an F1 score of 76.2% for product
extraction and 78.7% for role labeling, using only hundreds of
training instances for each task. The code, annotated data, and
trained models for reaction extraction are publicly available to
the community.21

■ METHODS
Reaction Schema. A chemical reaction can be described as

a process of chemical transformation from one set of chemical
substances to another. A desired reaction schema is thus
supposed to be informative enough to reflect such a
transformation, primarily including the source chemicals, the
outcomes, and the reaction conditions. In addition to being
chemically informative, we expect the schema to be succinct
and friendly to data-driven models. Following this design
principle, we introduced a schema that represents reactions in
a unified semantic frame, which contains product as a central
factor and eight associated reaction roles (reactants, reaction
type, catalyst/reagents, workup reagents, solvent, temperature,
time, and yield) as slots to be filled. Table 1 contains detailed
explanations for each of the predefined roles in the schema.
Figure 1 shows the extracted reactions from an example text
using the schema.

Data and Annotations. In contrast to the majority of
published chemical information extraction tools that use patent
information, the target source of text we considered in this
work is journal articles. To this aim, we used a collection of
∼200,000 published articles in multiple chemistry journals
from 1906 to 2016. Details are shown in Table 2 regarding the
number of articles per journal and Figure 2 regarding the
number of articles by publication date.
For each reaction-relevant article, only a few passages of the

whole body text contain well-formed reaction descriptions, and
they are usually not explicitly sectioned. We first employed a
set of rules based on keywords matching (e.g., afford/s/ed,

Table 1. Reaction Schema Used in This Work, with Detailed
Explanations of Each Specific Role

Reaction Role Description

Product Chemical substance that is the final outcome (major
product) of the reaction

Reactants Chemical substances that contribute heavy atoms to the
product

Catalyst/Reagents Chemical substances that participate in the reaction but do
not contribute heavy atoms (e.g., acid, base, metal
complexes)

Workup reagents Chemical substances that are used after the reactions to
terminate the reactions or obtain the products (e.g.,
quenching reagents, extraction solvent, neutralizing acids/
bases)

Solvent Chemical substances that are used to dissolve/mix other
chemicals, typically quantified by volume and used in
superstoichiometric amounts (e.g., water, toluene, THF)

Temperature Temperature at which the reaction occurs

Time Duration of the reaction performed

Reaction type Descriptions about the type of chemical reaction

Yield Yield of the product
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yield/s/ed, produce/s/ed, etc.) and section filtering for the
selection of the passages most likely containing reaction
information. In particular, we discarded the experimental
sections, as reaction descriptions in these sections often
contain very detailed procedures about the synthesis, which are
not well aligned to our schema. The resulting passages are then
preprocessed (sentence splitting, tokenization) using the
ChemDataExtractor toolkit.5

Next, we fed all preprocessed passages into our annotation
tool23 built on Amazon Mechanical Turk (MTurk). We
equipped the tool with rich features that allow annotators to
(1) annotate and validate reaction roles, (2) reject and classify
a paragraph, and (3) consult the original article for greater
context.
We employed 13 graduate students and postdocs in

chemistry or chemical engineering laboratories and two
postdocs in computer science for the first-round annotation.
Then, we manually checked the annotation quality and
consistency and refined our annotation guideline by clarifying
some ambiguous terms, followed with an additional overall

validation process by the same annotators. The entire
annotation process took 280−240 h for the first-round
annotation with a passage-level accuracy of 89.3%, and 40 h
for the refining phase. The resulting corpora contains 329
passages, each annotated with one or more reactions. We
followed a 8:1:1 ratio to split our corpora into training,
development, and test sets. Table 3 summarizes the data
statistics. The scarcity of training data raises severe challenges
to learning a high-performance model.

Model. Task Formulation. We formulated the reaction
extraction task as a structure prediction problem which takes a
sequence of tokens as input,and outputs the reaction
structures, each containing a set of product−role relation
pairs. We proposed a two-stage pipeline framework, combining
a product extraction module and a reaction role labeling module
for the extraction of reactions. At the first stage, the product
extraction module aimed to identify all possible product entities
from the given text. For each of the products, the reaction role

Figure 1. Example of extracted reactions using the proposed schema. The passage was drawn from Chen et al.22

Table 2. Number of Articles per Journal in Our Corpus

Journal name Articles

Journal of the American Chemical Society 95,668
The Journal of Organic Chemistry 72,482
Organic Letters 23,631
Journal of Organic Chemistry 295
Organic Process Research & Development 2440

Figure 2. Number of journal articles by publication date in our corpus.

Table 3. Data Statistics of Annotated Reaction Corpus,
Including Number of Passages, Reactions, Passages with
Multiple Reactions, and Product−Role Relation Pairs

Passages Reactions
Passages

(multireactions)
Product−Roles
(relation pairs)

Train 251 599 159 2457
Development 41 96 22 482
Test 37 111 22 469
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labeling module was then used to extract the associated
elements corresponding to different reaction roles presented in
its context, which together form the final reaction structure.
The two pipelined modules were trained independently, and
we compiled task-specific training data for each of them from
our annotated corpora.
Product extraction can be formulated as a standard sequence

labeling task over individual words. Role labeling, however, is
essentially a relation extraction task aiming to identify the
reaction role entities and classify their relationship to a given
product into one of the predefined role categories. We
formulated it as a conditional sequence labeling task by adding
special markers to the input in order to inform the encoder
about the target product, so that predictions for the related role
tokens will be conditioned on both the input text and the given
product. Figure 3 illustrates how the role labeling task is
formulated.
In the rest of this section, we first introduce our architectural

design of each module and then describe an adaptive
pretraining strategy for effective learning in a low-resource
regime.
Product Extraction. The goal of product extraction is to

identify all entity spans that refer to certain items of chemical
reactions. We assumed there were no nested products in the
text and formulated this task as a sequence tagging problem
under the “BIO” tagging scheme.24 Specifically, given an input
sequence of tokens, our model aimed to assign to each token a
categorical label in the form of “[B|I]-Type” or “O”, where “B|
I” indicates the position of a word within an entity span“B”
denotes the beginning of an entity and “I” denotes inside an
entityand “O” indicates that a token belongs to no entity.
“Type” is a placeholder for any entity type to be extracted. In
the case of product extraction, the only entity type of interest is
Product.
Words of the input sequence were further tokenized into a

set of subword tokens, namely, wordpieces,25 before flowing
through a Transformer encoder.26 For instance, “K2CO3” was
divided into: [“K”, “##2”, “##CO”, “##3”], where all
wordpieces except the first one were prefixed with “##”.
Using wordpieces can effectively improve the generalizability
and robustness of machine learning models, especially for
languages whose vocabulary has rich internal structures like
chemical names. The Transformer encoder essentially consists
of a stack of multihead self-attention layers and feed-forward
layers, which computed a hidden representation for each of the
wordpieces. We took the first wordpiece of each word as input
to a conditional random field (CRF)27 decoder for sequence
labeling. At inference time, we used the Viterbi decoding
algorithm28 with a set of tag transition constraints coming with
the “BIO” scheme, for example, “I-Product” must be following
“B-Product”.

Figure 4 illustrates the architecture of our tagging model. In
this work, we considered the structure identifiers (e.g., “4a”) as

independent entities in order to facilitate future work on
bridging texts with chemical diagrams where the identifiers will
be used to locate the corresponding molecular structures.
The model was trained with maximum likelihood estimation

(MLE). We denote the input sequence as x = {x1, ..., xn},
where xi is the ith word, and a sequence of labels as y = {y1, ...,
yn}. Y(x) denotes the set of possible label sequences for x. The
conditional probability P(y|x; θ) is given by

θ| =
∑ ′′∈

P y x
x y

x y
( ; )

exp(s( , ))
exp(s( , ))Yy x( )

where s is a scoring function combining a transition score and
an emission score

∑ ∑= +
= =

+
T Ex ys( , )

i

n

y y
i

n

i y
0

,
1

,i i i1

where T is the transition scoring matrix to be estimated during
training, and Ei,yi corresponds to the score for the ith word
being tagged as yi. Ei is obtained through a fully connected
layer which projects the hidden representation of the ith word
(representation of its first wordpiece), denoted as hi to the
label space.

= +E W h bReLU( )i i
prod prod

where Wprod ∈ Rl×dh and bprod ∈ Rl×1 are the weight matrices
and biases of this linear projection, respectively. We have l = 3
labels for this task.

Reaction Role Labeling. For each of the products
recognized in the first stage, we proceeded to identify and
classify its associated reaction roles into predefined role types
in our reaction schema. Consider the example as shown in
Figure 5, where our aim is to extract reaction roles for the
product (E)-3-methyleneisoindolin-1-one. To make the encoder
aware of the target product, we enclosed the product entity
with two special markers “[P]” and “[/P]”, thus forming a span

Figure 3. Reaction role extraction, a relation extraction problem (top), here formulated as a sequence labeling task conditioned on a given product
(bottom). “Product.01” indicates the first product in the current text.

Figure 4. Model architecture of product extraction.
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xs, xs+1, ..., xe, where s indicates the index of “[P]” in the
tokenized sequence, and e is the index of “[/P]”. A product
representation was then obtained by pooling over all word
representations within this span.

=h hPooling( )s e
prod

:

Herein, we used Max-pooling since it gave superior perform-
ance than alternatives (e.g., taking the representation of
starting token “[P]”) in our experiments.
Conditioned on this product representation, we performed

sequence tagging over all the remaining tokens for the
recognition of associated reaction roles. As with the product
extraction task, we continued using the “BIO” tagging scheme.
In the example shown in Figure 5, K2CO3 and Bu3P are two
catalysts used in the reaction that leads to product (E)-3-
methyleneisoindolin-1-one, so they are tagged as “B-Cat”, while
the temperature phrases 60 °C are tagged as “B-Temp” and “I-
Temp” respectively. In addition, we found adding a sentence
representation (i.e., representation of the “[CLS]” token,
denoted as hcls) which captures global semantics of the input
text to be beneficial for the role labeling task. As a
consequence, the final representation at each position used
as input to the decoder was the concatenation of three vectors,
giving the following emission scoring function

= [ ⊕ ⊕ ] +E W h h h bReLU( )i i
role prod cls role

where Wrole ∈ Rl×3dh and brole ∈ Rl×1. The number of possible
labels per token is 17 (eight roles combined with “[B|I]-” and
an additional “O” indicating not-a-role).
Adaptive Pretraining. We leveraged the pretraining-and-

f inetuning paradigm to train the product extraction and role
labeling models. The key idea was to first pretrain the
Transformer encoder on large-scale unlabeled texts using
unsupervised objectives and then fine-tune it on task-specific
labeled training data, which is of limited size.
We started with the BERT model of Devlin et al.,20 which

has served as a general-purpose Transformer encoder
pretrained on texts from mixed sources collected mainly
from the BookCorpus29 and English Wikipedia. BERT was
trained using a joint objective of masked language modeling

(MLM) and next sentence prediction (NSP). By supervised fine-
tuning on end tasks, BERT-based models have established new
state-of-the-art performance over various NLP benchmarks
since its initial development. It is also becoming the
dominating language representation model among other
variants.
As one of the most successful transfer learning paradigms, it

is desirable that the unlabeled data used for pretraining has a
similar distribution to the labeled data for task-specific fine-
tuning. In our case, however, chemical texts appear to be highly
different from the general-domain texts on which BERT has
been trained. This distributional divergence raises difficulty for
knowledge transferring, making BERT a suboptimal choice for
chemical reaction extraction. In this work, we proposed to
tailor BERT to the chemical domain, particularly for our
reaction extraction task, through adaptive pretraining.
The expected input to the product extraction model can be

any text from a chemical article, as there is no explicit clues for
reliable predetermination of reaction-included texts except for
a limited set of keywords. On the contrary, inputs to the role
labeling model were guaranteed to contain at least one product
and thus are expected to be reaction relevant. This difference in
the expected input data distribution necessitates the develop-
ment of two separate pretraining encoders for the two tasks. In
fact, the inputs to the role labeling model should be a subset of
the input space of the product extraction model. Therefore, we
proposed a cascaded adaptive pretraining approach, which was
composed of two phases: the domain-adaptive pretraining
which produced a chemical domain-specific pretrained encoder
(ChemBERT) and the task-adaptive pretraining which
produced a task-specific pretrained encoder (ChemRxnBERT).
These two resulting encoders were used for product extraction
and reaction role labeling, respectively. The workflow is shown
in Figure 6.

ChemBERT. To adapt BERT to the chemical literature
domain (ChemBERT), we collected unlabeled texts from a set
of 200,000 chemical journal articles for continual pretraining.
After the same preprocessing and data filtering we used in the
preparation of data annotation, we ended up with 1,860,693
passages, which have 9,478,043 sentences with over 217 M
tokens. Note that we discarded the experiment sections which

Figure 5. Model architecture of chemical role extraction.
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usually contain detailed synthesis steps instead of high-level
reaction descriptions. During the pretraining of ChemBERT,
we retained the MLM objective with whole word masking but
dropped the NSP objective which has been shown in prior
studies to be hardly beneficial for most end tasks.30 The
pretrained ChemBERT was then used to initialize the
Transformer encoder of the product extraction model (Figure
4) and fine-tuned afterward.
ChemRxnBERT. Pretraining of ChemRxnBERT requires a

more constrained subset of chemical texts that is better aligned
to the target task. The labeled training data of reaction role
labeling, however, was insufficient to serve this goal. To
address this issue, we proposed to use the product extraction
model as a text retriever to automatically identify reaction-
relevant data from the full chemical text space. Specifically,
sentences that contain at least one product were selected,
which gave about 10% (944,733 sentences) of the full
unlabeled corpus.
To gain more insights into this process, we took a random

sampled set of sentences from the unlabeled chemical texts and
the small annotated data of role labeling, encoded them using
the representation component (encoder) of the trained
product extraction model, and computed their sentence
embeddings by averaging contextual embeddings from the
last layer. The resulting 768-dimensional sentence embeddings
were then reduced to 2-D via principal component analysis
(PCA)31 and visualized in Figure 7a. We can clearly see that

the annotated reaction data distributes compactly in a small
subspace of the whole chemical data. Data points in this
subspace should compose an desired set of data for pretraining
ChemRxnBERT. Figure 7b shows that our retrieved sentences
are well aligned with the target reaction data distribution. This
subset of data was then used for task-adaptive pretraining.

■ RESULTS AND DISCUSSION

Evaluation Setup and Baselines. We experimented with
a limited sequence length due to memory and optimization
constraints. For product extraction, we found that most of the
products can be inferred from context within the same
sentence, so we performed sentence-level labeling to find all
possible products of a given passage. Identification of roles,
however, may involve cross-sentence reasoning in some cases.
To determine a reasonable context size, we analyzed the
distribution of product−role distances in our corpus, which is
shown in Figure 8 (left, sentence-level distance; right, word-
level distance). We find that 93% of the reaction roles can be
found within a context size of three sentences to their
corresponding product and 72% within the same sentence. To
this end, we created two experiment settings for role labeling,
which used context sizes of three sentences and one sentence,
respectively.
We evaluated the performance of product extraction and

reaction role labeling models on separate test sets compiled
from the annotation data set. In this setting, the reaction role
labeling model used the ground-truth product as input. Since
both tasks were formulated as sequence tagging, we use the
standard metrics including Precision (P), Recall (R), and F1-
score (F1). These are defined as

=
+

Precision
TP

TP FP

Figure 6. Workflow of domain- and task-adaptive pretraining.

Figure 7. 2-D Visualization of chemical text embeddings. (a) Reaction data locate in a small subspace of the full chemical data. (b) Our retrieved
reaction data aligned well with the annotated reaction data.
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=
+

Recall
TP

TP FN

= · ·
+

F1 2
Precision Recall

Precision Recall
where TP indicates true positives that the system correctly
identified, FP indicates the false positives that the system
incorrectly identified, and FN is the false negatives that the
system failed to recognize.
We considered the BERT-based counterparts as our primary

baseline models for comparison, which use the same
architecture as ours except for the use of a general-domain
BERT encoder. Throughout our experiments, we referred
BERT as the pretrained bert-base-cased model officially
released. Additionally, we compared to BioBERT, a BERT
model pretrained on biomedical literature.32 For product
extraction, we also reported the performance of a pioneering
rule-based system, OPSIN,7 as well as a bidirectional LSTM
(BiLSTM), which has been a standard approach for a wide
range of tagging tasks in NLP.33 OPSIN identifies products by a
set of rules based on the tagging and parsing outputs of
ChemicalTagger.6 It was developed specifically for processing
patent literature, which is highly different from journal articles
in terms of language use. To implement the BiLSTM-based
models, we trained 300-dimensional static word vectors using
fastText34 from the same unlabeled corpus as used for training
ChemBERT.
Product Extraction. Table 4 presents the performance of

product extraction models. As expected, OPSIN gives poor

performance in our data, demonstrating the limit of rule-based
methods in the processing of freer language used in journal
articles. BERT confirms its strong representation capability and
shows substantial gains over the BiLSTM encoders. Chem-
BERT achieves 10.27% absolute improvements in F1 over
BERT, implying the need and effectiveness of domain-adaptive
pretraining.

Reaction Role Labeling. Performances of reaction role
labeling with context sizes of 1 (i.e., sentence-level) and 3 are
shown in Table 5. At a sentence-level, ChemBERT achieved

substantial gains over BERT, while the task-adaptive
ChemRxnBERT gives an additional 2% improvements in F1.
We found that ChemBERT outperforms ChemRxnBERT on
role labeling when using a larger context size. The reason
should be that ChemRxnBERT is adapted from ChemBERT
by sentence-level masked language modeling. Pretraining with
a greater context size should be more desirable, which we leave
as part of future work.
The breakdown performances by reaction role types are

shown in Table 6. Some of the reaction roles appear to be

more difficult to predict than others, such as Catalyst/Reagents.
We excluded the Workup reagents roles here as they appear
only very few times in the data set.
Figure 9 further illustrates, for the labels present in the

ground truth, the corresponding labels predicted by our role
labeling model. We can see two main types of prediction
errors. First, many of the roles mentioned that were unseen in
the training data were not successfully identified and thus
labeled as O. Other than that, the main errors made by the
model relate to the disambiguation between Catalyst/Reagents
and Reactants. This is mainly because these two types of roles
usually share similar contexts in a reaction description.

Figure 8. Distribution of product−role distances (negatives indicate roles to the left side of the target product).

Table 4. Performance of Product Extraction

P (%) R (%) F1 (%)

OPSIN 18.8 5.4 8.4
BiLSTM (w/o CRF) 52.4 46.7 49.4
BiLSTM 54.3 49.1 51.6
BERT 78.8 56.8 66.0
BioBERT 76.4 61.3 68.0
ChemBERT 84.6 69.4 76.2

Table 5. Performance of Reaction Role Labeling

context size = 1 context size = 3

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

BERT 69.2 69.2 69.2 65.8 65.9 65.9
BioBERT 73.3 75.5 74.3 66.2 69.5 67.8
ChemBERT 77.0 76.4 76.7 75.9 71.3 73.5
ChemRxnBERT 79.3 78.1 78.7 70.5 69.6 70.1

Table 6. Performance by Reaction Role Types

Reaction Role P (%) R (%) F1 (%)

Reactants 80 82 81
Catalyst/Reagents 62 54 58
Solvent 92 72 80
Reaction type 86 67 76
Time 100 100 100
Temperature 77 81 79
Yield 76 96 85
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Qualitative Analysis. Next, we presented a qualitative
analysis of the reactions extracted by our model to demonstrate
its capabilities and potential weaknesses.
Multireactions. Figure 10 presents a few examples of

extracted reactions from our data set. We first show a simple
case which contains a single reaction (Example (A)). These
cases are comparatively easy to solve, even with prior rule-
based approaches. Example (B) is a multistep reaction, in
which the product of the first reaction is a reactant for the

production of 29 in the second reaction. Traditional tagging-
based or rule-based reaction extraction methods, however,
have been unable to handle such cases. Example (C) describes
the reaction of a compound (CpFe(CO)2 SiMe3) when
coupling with different reactants gives different outcomes
(product and yield). It is worth noting that the Yield of a
reaction may not be an exact number but can also be a vaguely-
expressed natural language phrase indicating a yield range or
even failure of a reaction (e.g., “not give an isolable quantity” in
the example). The same applies to Temperature and Time, for
example, “room temperature”, “over 4 h” etc. The data-driven
nature of our approach enables us to extract these indicative
phrases as reaction roles.

Catalysts/Reagents vs Reactants. To better understand the
main errors our models make, we provide here a representative
example where the Catalysts/Reagents roles are mistakenly
predicted as Reactants (Figure 11). We find that Catalysts/
Reagents and Reactants share a similar set of context patterns,
such as “reaction with [ENTITY]”, “by treatment with
[ENTITY]”, and “in the presence of [ENTITY]”. In these
cases, contexts become less discriminative, while the only clue
for resolving the ambiguity between the two roles is the entity
itself. This poses additional challenges, as well as opportunities
to further improve our model by incorporating potential
external domain knowledge (e.g., dictionaries of catalysts/
reagents) or chemical constraints of a valid reaction (e.g., atom
mapping).

Comparison with Reaxys. To better understand the
strengths and limitations of our approach, we conducted
qualitative comparison between the reactions extracted by our
system to the manually constructed Reaxys database.1 We

Figure 9. Entity-type confusion matrix: rows represent ground truth
labels and columns represent predicted labels.

Figure 10. Examples of reactions extracted by our model. Passages were drawn respectively from Sharma et al.,35 Leete et al.,36 and Tobita et al.37
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selected the three example passages in Figure 10 to analyze the
differences. The corresponding reaction records in Reaxys were
retrieved using the digital object identifiers (DOI). Below we
summarize the major findings:
Mismatch in Reaction Role Categorization. Most com-

pounds can be categorized in several ways. This ambiguity
often results in different annotations produced by our system
and Reaxys. For instance, in Figure 12, “DMSO” was identified

as a solvent by our system, which conforms to the text
description (“DMSO as the solvent”). Reaxys instead
categorized DMSO as a reactant, as DMSO had indeed
participated in this reaction as a sulfur source.
Rounding vs Exact Reporting of Numerical Values. We

noticed that in some cases Reaxys reports rounded numerical
values. In contrast, our system is designed to report exact
values as stated in input articles. This is illustrated in the
reaction yield value (Figure 12), extracted by our system as
89% as stated in the text and rounded to 90% in Reaxys.
Ability to Extract from Global Contexts. Our extractions

are based on a limited context scope (i.e., passage) and thus
can fail to extract certain reaction roles whose inference
requires global context (e.g., full document). For instance, in
Figure 12, Reaxys includes the Time condition (“12h”) and
additional conditions such as the reaction procedure (“Sealed
tube”), which our system failed to extract. While in the original
article these are described in a separate section and apply to all

the experiments performed in the article, in this specific
passage they are not mentioned.

Chemical Entity Grounding. In reaction descriptions,
chemicals are often represented by identifiers linking to
specific structural depictions in diagrams (e.g., Figure 13).

Therefore, chemical entity grounding is a critical step before
populating the extracted reactions into databases. In Reaxys,
these chemicals are manually grounded by human experts. In
contrast, our automated system should be coupled with
additional optical chemical structural recognition (OCSR)
tools for chemical entity grounding. OCSR has been an
important and challenging step toward fully automated
chemical literature mining. Existing efforts include rule-based
methods39 and the recent deep learning-based models.40,41

However, the development of a sufficiently accurate, robust,
and open-source solution for OCSR remains a challenge.

Reaction Coverage. Negative reactions or failures (e.g.,
Reaction #2 in Figure 13) are mostly ignored in Reaxys. These
negative data can be of important scientific value, and this
work demonstrates the potential to systematically extract them
from chemical literature. Some reactions may also not be
included in Reaxys due to potential human preference. For
instance, the reactions in Example (B) of Figure 10 were not
recorded in Reaxys. This is a reaction to produce an
intermediate used in subsequent syntheses and thus is likely
to be considered “nonessential” compared to other reactions
described in the article and thus is neglected.

Figure 11. Incorrect prediction made by the model in distinguishing between Catalyst/Reagents and Reactants. The passage was drawn from
Nicolaou et al.38

Figure 12. Comparison between the extracted reaction of our system
(ChemRxnExtractor) with the manually abstracted reaction in Reaxys
for Example (A) (Figure 10). Chemical names are converted to
structural formulas for better demonstration.

Figure 13. Comparison between ChemRxnExtractor with the
manually abstracted reaction in Reaxys for Example (C) (Figure 10).
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■ CONCLUSION
This work implemented an automated system for reaction
extraction from chemical literature. We introduced a new
product-centric chemical reaction schema aligning with
existing manually curated commercial databases, and collected
a small amount of annotations following this schema. The task
was decomposed into two cascaded subtasks, namely product
extraction and reaction role labeling, and individual modules
were developed for each of them. Both modules were built on
an encoder-decoder framework, in which a Transformer is used
as the encoder, and conditional random fields as the decoder
for (conditional) sequence labeling. To cope with the data-
scarce challenge, we proposed domain- and task-adaptive
pretraining using large-scale unlabeled corpus extracted from
the literature. Our system was able to achieve an F1 score of
76.2% for product extraction and 78.7% for role extraction,
which significantly outperformed prior rule-based approaches,
as well as stronger BERT and BioBERT baseline models.
Qualitative analysis on multireactions extraction showed that
our system was indeed able to uncover complex product-role
relations in texts. Meanwhile, the current system still makes
mistakes in distinguishing Catalysts/Reagents and Reactants
due to their largely shared context patterns. Finally, we
compared our extractions to the reaction records in the
manually constructed Reaxys database and analyzed the
strengths and limitations of our approach, which sheds light
on future directions.
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