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A Simulation engine

In this section we describe Evolution Gym’s simulator in detail. We describe the simulator’s
representation of objects, the dynamics of the underlying simulator, our implementation of contact
forces, and other techniques we use to improve the quality of Evolution Gym. Finally, we present
an analysis of how our simulation scales with the number of voxels, followed by some of the
hyperparamters in our implementation.

A.1 Representation
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Figure 1: Representation of Simulation Objects

The simulation represents objects and their environment as a 2D mass-spring system in a grid-like
layout, where objects are initialized as a set of non-overlapping, connected voxels.

More specifically, any objects loaded into the simulation, including the robot, can be represented as a
material matrix and a set of connections between adjacent cells as seen in the green panel of Figure 1.
The entries of the material matrix are integers corresponding to a voxel type from the set {Empty,
Rigid (black), Soft (gray), Horizontal Actuator (orange), Vertical Actuator (blue), Fixed (black)}. In
particular, actuator cells are specific to the robot object and fixed cells are only used in non-robot
objects. Each voxel can be connected to each of its adjacent voxels, which determines the identity of
objects in the simulation. In our work, we connect all pairs of adjacent voxels.

The simulation converts all objects into a set of point masses and springs by turning each voxel
into a cross-braced square as shown in the blue panel of Figure 1. Note that some voxels share
the same point masses and springs. All point masses in the simulation have the same mass and
the equilibrium lengths of axis-aligned and diagonal springs are constants for simplicity. However,
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the spring constants assigned vary based on voxel material-type – with ties broken in favor of the
more-rigid spring. Please see section A.6 for more details on simulation hyperparameters.

A.2 Simulation Dynamics

Let yn be the state of the simulation at time step n. We can view yn as a length 2× 2N vector of 2D
positions and velocities, where N is the number of point masses in the simulation. We use symplectic
RK-4 integration to compute yn+1 by taking into account gravitational, contact, viscous drag, and
spring forces.

In particular, spring forces are modelled by the following dynamics equations:

fint + fext = M ẍ

f iint =
∑
j

kj(lj − l̄j)eij , j ∈ springs associated with vertex i

where x is the positions of all vertices in the mass-spring system, M is the mass matrix of system,
fint is the internal spring forces exerted on vertices, fext is the external forces produced by gravity
and contacts, kj is the spring constant in Hooke’s law, lj and l̄j are the lengths of spring j in current
shape and in rest shape respectively, and eij is the unit direction of the spring j relative to vertex i.

For our simulator, we use 50Hz as the control frequency, while using 1500Hz as the simulation
sub-step frequency. This is achieved by running 30 sub-steps of the simulation for each control input.
We apply such sub-step scheme to improve the stability of the simulation.

A.3 Collision detection and contact forces

We use bounding box trees for collision detection, made up of the voxels on the surface of each
object [2]. Exploiting the grid-like nature of voxels, the tree for each object is only computed at
initialization. However, the bounding box at each node of the tree is recomputed at each time step.

To resolve collisions between cells, penalty-based contact forces and frictional forces are computed
proportionally to the depth of penetration of the corresponding cells in contact. These forces are
applied on voxel vertices in the normal and tangential directions of the contact respectively.

It is important to note that contact forces are pre-computed before each RK-4 step and are considered
constant by the time step integrator. We chose to do this because computing contact forces is often
computationally expensive.

A.4 Other techniques

We use several other techniques to improve the quality of the simulation engine and its interactions
with the control optimization.

Strain limiting
Strain limiting is implemented to prevent the self-folding of objects in the simulation. If any spring
grows or shrinks by more than 25%, the simulation will reposition the masses connected by the spring
to reduce the strain. The springs of rigid cells have a more aggressive threshold for strain limiting at
3% compression/expansion. Note that strain limiting does not impose a hard limit on springs and can
still be overcome by very strong actuations from the robot.

Self-folding
Even with strain limiting and collision detection, it is still possible that the robot in the simulation
can fold in on itself. In order to combat this, we have a reliable check for whether the robot object
is self-folding: we check whether the number of colliding, non-adjacent pairs of voxels on the
surface of the robot is more than the number of voxels on the surface of the robot. In the each of our
environments described in Section B, we penalize the robot with a one time reward of −3 and reset
the environment any time self-folding is detected.

Delayed actuations
Each time the environment steps, the robot’s controller provides a single actuation value for each of
the robot’s actuators. In order to move the actuators, the simulation changes the equilibrium lengths
of the actuator’s springs. However, rather than setting the goal equilibrium length right away, the
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simulation sets the equilibrium length to be the weighted average of the goal and the spring’s current
length by parameters α and 1− α, respectively, for α << 0.5. This has the benefit of requiring the
robot’s controller to favor longer smoother motions – which are more in line with how a real actuator
might behave – rather than short abrupt ones.

A.5 Scalability and speed analysis

0 200 400 600 800 1000

Number of Robot Voxels

100

200

300

400

500

A
ve

ra
ge

 S
im

ul
at

io
n 

St
ep

s P
er

 S
ec

on
d

0 200 400 600 800 1000

Number of Robot Voxels

10000

20000

30000

40000

50000

A
ve

ra
ge

 S
im

ul
at

io
n 

St
ep

s P
er

 
Se

co
nd

 *
 N

um
be

r o
f V

ox
el

s

Figure 2: Simulating robots with varying voxel counts on a single core of an Intel Xeon CPU @
2.80GHz. We graph the average number of simulation steps per second (left) and the average number
of simulation steps per second times the number of voxels (right).

As co-design algorithms become more advanced, we should expect them to search over larger design
spaces. Therefore, we believe that the ability of our simulation to scale well as the number of
voxels increases is important. In this sub-section we test the performance of our simulator at varying
numbers of voxels and present the result in Figure 2.

Specifically, our experiment is as follows: For each n ∈ [5, 35], we sample 10, (n× n) robots and
evaluate the performance of our simulator when simulating these robots for 10 seconds and with
random actions. Robots are simulated in a simple environment with flat terrain consisting of 100
voxels. Simulations are run on a single core of an Intel Xeon CPU @ 2.80GHz.

From these experiments, we compare the # of non-empty voxels against average number
of simulation steps per second (assps). We also compute assps × # of non-empty
voxels as another metric.

These results allow us to compare our simulator to others. For instance, our simulation speed is
slower than most rigid-body simulations, like MuJoCo [10]. This is because simulation speed is
very dependent on the type of simulation, and there are many more degrees of freedom in soft body
simulation like ours compared to a standard rigid body simulation.

Another insightful comparison might be with soft, 3D FEM-based simulations. For example, in Du et
al. [1], one simulation step consumes on the order of several seconds to minutes and the PPO training
for a single robot design takes on the order of hours to converge. By comparison, in our framework, a
single robot can be simulated with hundreds of steps per second and trained in parallel on a 4-core
machine in a matter of minutes. This highlights the advantage of our 2D mass-spring approach.

Finally, the best comparison of our work would be other 2D voxel-based simulations, of which
few exist. For example, our speed is comparable to Medvet et al. [5] as we both simulate objects
in 2D and adopt relatively standard implementations for mass-spring systems. However, the main
contribution of Medvet et al. is its simulation; our main advantages over Medvet et al 2020 are (1) a
comprehensive set of well-designed tasks with various difficulty levels to provide the first comparison
platform for evaluating co-design algorithms, (2) our implementation of state-of-the-art algorithms to
establish a baseline for co-design, and (3) our ability to interface with standard python ML libraries
through python bindings for our physics simulation.
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A.6 Hyperparameters

Table 1: Values of Simulation hyperparameters
parameter name value

point mass 1.0
viscous drag 0.1
gravity 110

contact stiffness coefficient 2.1 · 107

collision penetration depth additive 5 · 10−3

coefficient of friction 0.1
frictional penalty factor 0.5
friction multiplier 2.4 · 103

rigid main spring const 3·108
3.5

rigid structural spring const 3·108
7

soft main spring const 3·108
5

soft structural spring const 3·108
10

actuator main spring const 3·108
6

actuator structural spring const 3·108
24

In this section we describe the significance of all hyperparameters on the simulation.

We start with some general hyperparameters. The point mass constant describes the mass of all
points. The viscous drag constant is a multiplier used to adjust the strength of the viscous drag force.
Increasing this constant makes the particles move as though they are traveling through a more viscous
fluid. The gravity constant describes the magnitude of the force of gravity in the simulation.

We continue with hyperparameters important to contact forces. The contact stiffness coefficient is
a multiplier used to adjust the strength of the normal contact force between objects. The collision
penetration depth additive is a constant added to the penetration depth of collision when contact
forces are computed. Coefficient of friction and frictional penalty factor correspond to the coefficients
of static and dynamic friction, respectively, while friction multiplier is a constant used to adjust the
strength of the tangential contact force between objects.

Finally, we describe the hyperparameters which control spring rigidity. Increasing any of these
constants makes the corresponding springs more rigid, and decreasing them has the opposite effect.
Recall that in the simulation each voxel is a cross-braced square. Main spring constants describe the
rigidity of springs around the square edges of a voxel while structural spring constants describe the
rigidity of springs on the cross-brace. Rigid, soft, and actuator spring constants correspond to springs
on rigid, soft, and actuator cells, respectively.

B Full benchmark suite

We have implemented a total of 32 tasks for Evolution Gym. Below, we describe in detail the reward
and observation of each of the environments we have implemented.

For reference, the names of the 10 benchmark tasks are Walker-v0, BridgeWalker-v0,
UpStepper-v0, Traverser-v0, Climber-v0, Carrier-v0, Thrower-v0, Catcher-v0,
Lifter-v0, BeamSlider-v0.

B.1 Notation

We start by describing some notation that we will use in the following sections.

Position
Let po be a vector of length 2 that represents the position of the center of mass of an object o in the
simulation at time t. pox and poy denote the x and y components of this vector, respectively. po is
computed by averaging the positions of all the point-masses that make up object o at time t.
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Velocity
Similarly, let vo be a vector of length 2 that represents the velocity of the center of mass of an object
o in the simulation at time t. vox and voy denote the x and y components of this vector, respectively. vo
is computed by averaging the velocities of all the point-masses that make up object o at time t.

Orientation
Similarly, let θo be a vector of length 1 that represents the orientation of an object called o in the
simulation at time t. Let pi be the position of point mass i of object o. We compute θo by averaging
over all i the angle between the vector pi − po at time t and time 0. This average is a weighted
average weighted by ||pi − po|| at time 0.

Special observations
Let co be a vector of length 2n that describes the positions of all n point masses of object o relative
to po. We compute co by first obtaining the 2× n matrix of positions of all the point masses of object
o, subtracting po from each column, and reshaping as desired.

Let hob(d) be a vector of length (2d+ 1) that describes elevation information around the robot below
its center of mass. More specifically, for some integer x ≤ d, the corresponding entry in vector hob(d)
will be the highest point of the terrain which is less than poy between a range of [x, x+ 1] voxels from
pox in the x-direction.

Let hoa(d) be a vector of length (2d+ 1) that describes elevation information around the robot above
its center of mass. More specifically, for some integer x ≤ d, the corresponding entry in vector hoa(d)
will be the lowest point of the terrain which is greater than poy between a range of [x, x+ 1] voxels
from pox in the x-direction.

B.2 Walking tasks

B.2.1 Walker-v0

Figure 3: Walker-v0

In this task the robot walks as far as possible on flat terrain. This task is easy.

Let the robot object be r. The observation space has dimension S ∈ Rn+2, where n is the number of
point masses in object r, and is formed by concatenating vectors

vr, cr

with lengths 2 and n, respectively. The reward R is

R = ∆prx

which rewards the robot for moving in the positive x-direction.

This environment runs for 500 steps. The robot also receives a one-time reward of 1 for reaching the
end of the terrain.

B.2.2 BridgeWalker-0

Figure 4: BridgeWalker-v0
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In this task the robot walks as far as possible on a soft rope-bridge. This task is easy.

Let the robot object be r. The observation space has dimension S ∈ Rn+3, where n is the number of
point masses in object r, and is formed by concatenating vectors

vr, θr, cr

with lengths 2, 1, and n, respectively. The reward R is

R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 1 for reaching the end of the terrain.

This environment runs for 500 steps.

B.2.3 BidirectionalWalker-v0

Figure 5: BidirectionalWalker-v0

In this task the robot walks bidirectionally. This task is medium.

Let the robot object be r. Let gx be a goal x-position that is randomized and changes throughout the
task. There is also a counter c which counts how many times the goal has changed. The observation
space has dimension S ∈ Rn+5, where n is the number of point masses in object r, and is formed by
concatenating vectors

vr, cr, c, gx, gx − prx
with lengths 2, n, 1, 1, and 1, respectively. The reward R is

R = −∆|gx − prx|
which rewards the robot for moving towards the goal in the x-direction.

This environment runs for 1000 steps.

B.3 Object manipulation tasks

B.3.1 Carrier-v0

Figure 6: Carrier-v0

In this task the robot catches a box initialized above it and carries it as far as possible. This task is
easy.
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Let the robot object be r and the box object the robot is trying to carry be b. The observation space
has dimension S ∈ Rn+6, where n is the number of point masses in object r, and is formed by
concatenating vectors

vb, pb − pr, vr, cr

with lengths 2, n, 2, and 2, respectively. The reward R = R1 +R2 is the sum of several components.

R1 = 0.5 ·∆prx + 0.5 ·∆pbx
which rewards the robot and box for moving in the positive x-direction.

R2 =

{
0 if pby ≥ ty
10 ·∆pby otherwise

which penalizes the robot for dropping the box below a threshold height ty .

This environment runs for 500 steps. The robot also receives a one-time reward of 1 for reaching the
end of the terrain.

B.3.2 Carrier-v1

Figure 7: Carrier-v1

In this task the robot carries a box to a table and places the box on the table. This task is hard.

Let the robot object be r and the box object the robot is trying to carry be b. We achieve the described
behavior by setting a goal x-position - grx and gbx - for the robot and box, respectively. The observation
space has dimension S ∈ Rn+6, where n is the number of point masses in object r, and is formed by
concatenating vectors

vb, pb − pr, vr, cr

with lengths 2, n, 2, and 2, respectively. The reward R = R1 + R2 + R3 is the sum of several
components.

R1 = −2 ·∆|gbx − pbx|
which rewards the box for moving to its goal in the x-direction.

R2 = −∆|grx − prx|

which rewards the box for moving to its goal in the x-direction.

R3 =

{
0 if pby ≥ ty
10 ·∆pby otherwise

which penalizes the robot for dropping the box below a threshold height ty . Note that in this task ty
is not constant, and varies with the elevation of the terrain.

This environment runs for 1000 steps.

B.3.3 Pusher-v0

Figure 8: Pusher-v0
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In this task the robot pushes a box initialized in front of it. This task is easy.

Let the robot object be r and the box object the robot is trying to push be b. The observation space
has dimension S ∈ Rn+6, where n is the number of point masses in object r, and is formed by
concatenating vectors

vb, pb − pr, vr, cr

with lengths 2, n, 2, and 2, respectively. The reward R = R1 +R2 is the sum of several components.

R1 = 0.5 ·∆prx + 0.75 ·∆pbx
which rewards the robot and box for moving in the positive x-direction.

R2 = −∆|pbx − prx|
which penalizes the robot and box for separating in the x-direction.

This environment runs for 500 steps. The robot also receives a one-time reward of 1 for reaching the
end of the terrain.

B.3.4 Pusher-v1

Figure 9: Pusher-v1

In this task the robot pushes/drags a box initialized behind it in the forward direction. This task is
medium.

Let the robot object be r and the box object the robot is trying to push be b. The observation space
has dimension S ∈ Rn+6, where n is the number of point masses in object r, and is formed by
concatenating vectors

vb, pb − pr, vr, cr

with lengths 2, n, 2, and 2, respectively. The reward R = R1 +R2 is the sum of several components.

R1 = 0.5 ·∆prx + 0.75 ·∆pbx
which rewards the robot and box for moving in the positive x-direction.

R2 = −∆|pbx − prx|
which penalizes the robot and box for separating in the x-direction.

This environment runs for 600 steps. The robot also receives a one-time reward of 1 for reaching the
end of the terrain.

B.3.5 Thrower-v0

Figure 10: Thrower-v0
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In this task the robot throws a box initialized on top of it. This task is medium.

Let the robot object be r and the box object the robot is trying to throw be b. The observation space
has dimension S ∈ Rn+6, where n is the number of point masses in object r, and is formed by
concatenating vectors

vb, pb − pr, vr, cr

with lengths 2, n, 2, and 2, respectively. The reward R = R1 +R2 is the sum of several components.

R1 = ∆pbx

which rewards the box for moving in the positive x-direction.

R2 =

{
−∆prx if prx ≥ 0

∆prx otherwise

which penalizes the robot for moving too far from x = 0 when throwing the box.

This environment runs for 300 steps.

B.3.6 Catcher-v0

Figure 11: Catcher-v0

In this task the robot catches a fast-moving, rotating box. This task is hard.

Let the robot object be r and the box object the robot is trying to throw be b. The observation space
has dimension S ∈ Rn+7, where n is the number of point masses in object r, and is formed by
concatenating vectors

pb − pr, vr, vb, θb, cr

with lengths 2, 2, 2, 1, and n, respectively. The reward R = R1 + R2 is the sum of several
components.

R1 = −∆|pbx − prx|
which rewards the robot for moving to the box in the x-direction.

R2 =

{
0 if pby ≥ ty
10 ·∆pby otherwise

which penalizes the robot for dropping the box below a threshold height ty .

This environment runs for 400 steps.
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B.3.7 BeamToppler-v0

Figure 12: BeamToppler-v0

In this task the robot knocks over a beam sitting on two pegs from underneath. This task is easy.

Let the robot object be r and the beam object the robot is trying to topple be b. The observation
space has dimension S ∈ Rn+7, where n is the number of point masses in object r, and is formed by
concatenating vectors

pb − pr, vr, vb, θb, cr

with lengths 2, 2, 2, 1, and n, respectively. The reward R = R1 + R2 + R3 is the sum of several
components.

R1 = −∆|pbx − prx|

which rewards the robot for moving to the beam in the x-direction.

R2 = |∆pbx|+ 3 · |∆pby|

which rewards the robot for moving the beam.

R3 = −∆pby

which rewards the robot for making the beam fall.

This environment runs for 1000 steps. The robot also receives a one-time reward of 1 for completing
the task.

B.3.8 BeamSlider-v0

Figure 13: BeamSlider-v0

In this task the robot slides a beam across a line of pegs from underneath. This task is hard.

Let the robot object be r and the beam object the robot is trying to slide be b. The observation space
has dimension S ∈ Rn+7, where n is the number of point masses in object r, and is formed by
concatenating vectors

pb − pr, vr, vb, θb, cr

with lengths 2, 2, 2, 1, and n, respectively. The reward R = R1 + R2 is the sum of several
components.

R1 = −∆|pbx − prx|

which rewards the robot for moving to the beam in the x-direction.

R2 = ∆pbx

which rewards the robot for moving the beam in the positive x-direction.

This environment runs for 1000 steps.
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B.3.9 Lifter-v0

Figure 14: Lifter-v0

In this task the robot lifts a box from out of a hole. This task is hard.

Let the robot object be r and the box object the robot is trying to lift be b. The observation space
has dimension S ∈ Rn+7, where n is the number of point masses in object r, and is formed by
concatenating vectors

pb − pr, vr, vb, θb, cr

with lengths 2, 2, 2, 1, and n, respectively. The reward R = R1 + R2 + R3 is the sum of several
components.

R1 = 10 ·∆pby
which rewards the robot for moving the beam in the positive y-direction.

R2 = −10 ·∆|gx − pbx|

which penalizes the robot for moving the box away from a goal x-position, gx. This ensures that the
robot lifts the box straight up.

R3 =

{
0 if pry ≥ ty
20 ·∆pry otherwise

which penalizes the robot for falling below a threshold height ty (at which point the robot has fallen
into the hole).

This environment runs for 300 steps.

B.4 Climbing tasks

B.4.1 Climber-v0

Figure 15: Climber-v0
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In this task the robot climbs as high as possible through a flat, vertical channel. This task is medium.

Let the robot object be r. The observation space has dimension S ∈ Rn+2, where n is the number of
point masses in object r, and is formed by concatenating vectors

vr, cr

with lengths 2 and n, respectively. The reward R is
R = ∆pry

which rewards the robot for moving in the positive y-direction.

This environment runs for 400 steps. The robot also receives a one-time reward of 1 for reaching the
end of the terrain.

B.4.2 Climber-v1

Figure 16: Climber-v1

In this task the robot climbs as high as possible through a vertical channel made of mixed rigid and
soft materials. This task is medium.

Let the robot object be r. The observation space has dimension S ∈ Rn+2, where n is the number of
point masses in object r, and is formed by concatenating vectors

vr, cr

with lengths 2 and n, respectively. The reward R is
R = ∆pry

which rewards the robot for moving in the positive y-direction.

This environment runs for 600 steps. The robot also receives a one-time reward of 1 for reaching the
end of the terrain.
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B.4.3 Climber-v2

Figure 17: Climber-v2

In this task the robot climbs as high as possible through a narrow stepwise channel. This task is hard.

Let the robot object be r. The observation space has dimension S ∈ Rn+10, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hra(3)

with lengths 2, 1, n, and 7 respectively. The reward R is

R = ∆pry + 0.2 ·∆prx
which rewards the robot for moving in the positive y-direction and positive x-direction.

This environment runs for 1000 steps.

B.5 Forward locomotion tasks

B.5.1 UpStepper-v0

Figure 18: UpStepper-v0

In this task the robot climbs up stairs of varying lengths. This task is medium.

Let the robot object be r. The observation space has dimension S ∈ Rn+14, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hrb(5)

with lengths 2, 1, n, and 11 respectively. The reward R is

R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain, and a one-time penalty of −3 for rotating more than
75 degrees from its originally orientation in either direction (after which the environment resets).

This environment runs for 600 steps.
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B.5.2 DownStepper-v0

Figure 19: DownStepper-v0

In this task the robot climbs down stairs of varying lengths. This task is easy.

Let the robot object be r. The observation space has dimension S ∈ Rn+14, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hrb(5)

with lengths 2, 1, n, and 11 respectively. The reward R is
R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain, and a one-time penalty of −3 for rotating more than
90 degrees from its originally orientation in either direction (after which the environment resets).

This environment runs for 500 steps.

B.5.3 ObstacleTraverser-v0

Figure 20: ObstacleTraverser-v0

In this task the robot walks across terrain that gets increasingly more bumpy. This task is medium.

Let the robot object be r. The observation space has dimension S ∈ Rn+14, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hrb(5)

with lengths 2, 1, n, and 11 respectively. The reward R is
R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain, and a one-time penalty of −3 for rotating more than
90 degrees from its originally orientation in either direction (after which the environment resets).

This environment runs for 1000 steps.

B.5.4 ObstacleTraverser-v1

Figure 21: ObstacleTraverser-v1
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In this task the robot walks through very bumpy terrain. This task is hard.

Let the robot object be r. The observation space has dimension S ∈ Rn+14, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hrb(5)

with lengths 2, 1, n, and 11 respectively. The reward R is
R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain (after which the environment resets).

This environment runs for 1000 steps.

B.5.5 Hurdler-v0

Figure 22: Hurdler-v0

In this task the robot walks across terrain with tall obstacles. This task is hard.

Let the robot object be r. The observation space has dimension S ∈ Rn+14, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hrb(5)

with lengths 2, 1, n, and 11 respectively. The reward R is
R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
penalty of −3 for rotating more than 90 degrees from its originally orientation in either direction
(after which the environment resets).

This environment runs for 1000 steps.

B.5.6 PlatformJumper-v0

Figure 23: PlatformJumper-v0

In this task the robot traverses a series of floating platforms at different heights. This task is hard.

Let the robot object be r. The observation space has dimension S ∈ Rn+14, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hrb(5)

with lengths 2, 1, n, and 11 respectively. The reward R is
R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
penalty of −3 for rotating more than 90 degrees from its originally orientation in either direction or
for falling off the platforms (after which the environment resets).

This environment runs for 1000 steps.
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B.5.7 GapJumper-v0

Figure 24: GapJumper-v0

In this task the robot traverses a series of spaced-out floating platforms all at the same height. This
task is hard.

Let the robot object be r. The observation space has dimension S ∈ Rn+14, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hrb(5)

with lengths 2, 1, n, and 11 respectively. The reward R is
R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
penalty of −3 for falling off the platforms (after which the environment resets).

This environment runs for 1000 steps.

B.5.8 Traverser-v0

Figure 25: Traverser-v0

In this task the robot traverses a pit of rigid blocks to get to the other side without sinking into the pit.
This task is hard.

Let the robot object be r. The observation space has dimension S ∈ Rn+14, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, θr, cr, hrb(5)

with lengths 2, 1, n, and 11 respectively. The reward R is
R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward off 2 for reaching the end of the terrain (after which the environment resets).

This environment runs for 1000 steps.

B.5.9 CaveCrawler-v0

Figure 26: CaveCrawler-v0
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In this task the robot squeezes through caves and low-hanging obstacles. This task is medium.

Let the robot object be r. The observation space has dimension S ∈ Rn+24, where n is the number
of point masses in object r, and is formed by concatenating vectors

vr, cr, hrb(5), hra(5)

with lengths 2, n, 11, and 11 respectively. The reward R is

R = ∆prx

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward off 1 for reaching the end of the terrain (after which the environment resets).

This environment runs for 1000 steps.

B.6 Shape change tasks

B.6.1 AreaMaximizer-v0

Figure 27: AreaMaximizer-v0

In this task the robot grows to occupy the largest possible surface area. This task is easy.

Let the robot object be r. The observation space has dimension S ∈ Rn, where n is the number of
point masses in object r, and is simply the vector

cr

with length n. Let ar be the area of the convex hull formed by the point masses of r. The reward R is

R = ∆ar

which rewards the robot for growing.

This environment runs for 600 steps.

B.6.2 AreaMinimizer-v0

Figure 28: AreaMinimizer-v0

In this task the robot shrinks to occupy the smallest possible surface area. This task is medium.

Let the robot object be r. The observation space has dimension S ∈ Rn, where n is the number of
point masses in object r, and is simply the vector

cr

with length n. Let ar be the area of the convex hull formed by the point masses of r. The reward R is

R = −∆ar

which rewards the robot for shrinking.

This environment runs for 600 steps.
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B.6.3 WingspanMaximizer-v0

Figure 29: WingspanMaximizer-v0

In this task the robot grows to be as wide as possible. This task is easy.

Let the robot object be r. The observation space has dimension S ∈ Rn, where n is the number of
point masses in object r, and is simply the vector

cr

with length n. Let pi be the vector representing the position of point mass i in r. The reward R is

R = ∆
[
max

i
pix −min

i
pix

]
which rewards the robot for growing in the x-direction.

This environment runs for 600 steps.

B.6.4 HeightMaximizer-v0

Figure 30: HeightMaximizer-v0

In this task the robot grows to be as tall as possible. This task is medium.

Let the robot object be r. The observation space has dimension S ∈ Rn, where n is the number of
point masses in object r, and is simply the vector

cr

with length n. Let pi be the vector representing the position of point mass i in r. The reward R is

R = ∆
[
max

i
piy −min

i
piy

]
which rewards the robot for growing in the y-direction.

This environment runs for 500 steps.

B.7 Miscellaneous tasks

B.7.1 Flipper-v0

Figure 31: Flipper-v0
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In this task the robot flips counter-clockwise as many times as possible on flat terrain. This task is
easy.

Let the robot object be r. The observation space has dimension S ∈ Rn+1, where n is the number of
point masses in object r, and is formed by concatenating vectors

θr, cr

with lengths 1 and n respectively. The reward R is
R = ∆θr

which rewards the robot for rotating counter-clockwise.

This environment runs for 600 steps.

B.7.2 Jumper-v0

Figure 32: Jumper-v0

In this task the robot jumps as high as possible in place on flat terrain. This task is easy.

Let the robot object be r. The observation space has dimension S ∈ Rn+7, where n is the number of
point masses in object r, and is formed by concatenating vectors

vr, cr, hrb(2)

with lengths 2, n, and 5 respectively. The reward R is
R = 10 ·∆pry − 5 · |∆prx|

which rewards the robot for moving in the positive y-direction and penalizes the robot for any motion
in the x-direction.

This environment runs for 500 steps.

B.7.3 Balancer-v0

Figure 33: Balancer-v0

In this task the robot is initialized on top of a thin pole and balances on it. This task is easy.

Let the robot object be r. We achieve the described behavior by setting a goal position - gx and gy -
for the robot located on top of the pole. The observation space has dimension S ∈ Rn+2, where n is
the number of point masses in object r, and is formed by concatenating vectors

gx − prx, gy − pry, cr

with lengths 1, 1, and n respectively. The reward R is
R = −∆|gx − pbx| −∆|gy − pby|

which rewards the robot for moving towards the goal in the x and y directions

This environment runs for 600 steps.
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B.7.4 Balancer-v1

Figure 34: Balancer-v1

In this task the robot is initialized next to a thin pole. The robot jumps on the pole and balances on it.
This task is medium.

Let the robot object be r. We achieve the described behavior by setting a goal position - gx and gy -
for the robot located on top of the pole. The observation space has dimension S ∈ Rn+2, where n is
the number of point masses in object r, and is formed by concatenating vectors

gx − prx, gy − pry, cr

with lengths 1, 1, and n respectively. The reward R is

R = −∆|gx − pbx| −∆|gy − pby|

which rewards the robot for moving towards the goal in the x and y directions

This environment runs for 600 steps.

C Optimization methods

In this section, we extend the description of optimization methods that we describe in Section 4 of
the main paper and also provide detailed pseudocode.

C.1 Genetic algorithm (GA)

We implement a simple GA using elitism selection and a simple mutation strategy to evolve the
population of robot designs. The selection keeps the top x% of the robots from the current population
as survivors and discards the rest, and the mutation can randomly change each voxel of the robot with
certain probability. Crossover is not implemented for simplicity, but GA can potentially perform better
with carefully designed crossover operators. See Algorithm 1 for more details in each generation of
GA.

Algorithm 1 Genetic algorithm (per generation)

Inputs: History data S, population size p, current generation number Ncur, max generation
number Nmax.
Outputs: The proposed population of designs to evaluate D1, ..., Dp.
Retrieve the population from the last generation D

′

1, ..., D
′

p from S (sorted by reward).
Compute survival rate x← 0.6(1−Ncur/Nmax)
Compute number of survivors from the last generation psur ← max (2, dpxe)
for i← 1 to psur do
Di ← D

′

i
for i← psur + 1 to p do

Randomly sample a parent D
′

r from the survivors D
′

1, ..., D
′

psur

Mutate D
′

r to be Di with 10% probability of changing each voxel
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C.2 Bayesian optimization (BO)

BO tries to reduce the number of evaluations on expensive black-box functions by learning and
utilizing a surrogate model. The surrogate model is learned, i.e. fitted by the history data, trying to
map the inputs to their corresponding outputs, which mimics the real function evaluation. Instead
of directly optimizing on the learned surrogate model, an acquisition function is constructed as the
optimization objective in order to trade-off between exploitation and exploration of the surrogate
model’s prediction, which favors the uncertain region of the input space as well as the high-performing
region. Next, the optimizer is applied on top of the acquisition function to search for the most
promising input parameters to evaluate on the real function. Finally, the whole process repeats after
the real evaluations are done and the results are added to the history data.

In our BO implementation, we use a Gaussian process as the surrogate model with a Matern 5/2
kernel [7], Expected Improvement (EI) [6] as the acquisition function, batch Thompson sampling [8]
together with L-BFGS optimizer [3] to optimize the acquisition function in a batched manner. See
Algorithm 2 for more details in each generation of BO.

Algorithm 2 Bayesian optimization (per generation)

Inputs: History data S, population size p.
Outputs: The proposed population of designs to evaluate D1, ..., Dp.
Fit a Gaussian process model G that maps from designs D to reward r in dataset S
Build expected improvement acquisition function f based on prediction from G
Generate initial population D0

1, ..., D
0
p by random sampling

for i← 1 to p do
Optimize design D0

i to be Di on acquisition function f by L-BFGS

C.3 CPPN-NEAT

As described in Section 4.1, in this method, the robot design is parameterized by a Compositional Pat-
tern Producing Network (CPPN) and NeuroEvolution of Augmenting Topologies (NEAT) algorithm
is used to evolve the structure of CPPNs by working as a genetic algorithm with specific mutation,
crossover, and selection operators defined on network structures. We use a standard implementation
of both CPPN and NEAT components, so please refer to the original NEAT paper for the theoretical
illustrations of the optimization process, and the hyperparameters of NEAT are presented in Appendix
D.

D Hyperparameters

In this section we describe hyperparameters used for each algorithm in our work. We break down
this section by first describing general hyperparameters used in our co-design experiments. Next, we
specify the hyperparameters specific to each design optimization algorithm. Finally, we describe the
hyperparameters used in proximal policy optimization (PPO), our control optimization algorithm.

D.1 General hyperparameters

Table 2: Values of experiment hyperparameters
parameter name value

population size 25
robot shape (5× 5), (5× 7)
max evaluations 250, 500, 750
train iters 1000

In this section we describe some general hyperparameters used in all our co-design algorithms. Each
of the co-design algorithms operates on a population of individuals, the size of which is specified by
the parameter population size. These algorithms also work with a grid-like design space whose size
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is specified by robot shape. For most tasks the (5 × 5) grid size is sufficient for the algorithms to
find complex, interesting robots. The only exception is the Lifter task where we increase the size of
the design space to a (5 × 7) grid, to accommodate a near-optimal robot we hand-designed. Max
evaluations specifies how many unique robots are trained in each algorithm. We use this metric
to compare algorithms (instead of, for instance, a maximum number of generations) because the
Genetic algorithm trains a different number of unique robots per generation compared to the Bayesian
optimization and CPPN-NEAT algorithms. Max evaluations varies between tasks as we use less
evaluations to train algorithms whose performance converges faster. We do not train any algorithms
more than 750 evaluations. Finally, we train each robot for train iters iterations using reinforcement
learning (RL) in order to evaluate its performance on the task at hand. Note that the number of total
RL steps will be the product of train iters, num steps, and num processes (from Section D.3) for a
total of 512000 steps.

D.2 Design optimization hyperparameters

In this section we specify hyperparameters relevant to our design optimization algorithms.

D.2.1 Genetic algorithm (GA)

Table 3: Values of GA hyperparameters
parameter name value

mutation rate 10%
survivor rate range [0.0, 0.6]

The genetic algorithm only has two significant hyperparameters. The mutation rate is important for
constructing offspring robots of an existing survivor robot. The mutation rate specifies the probability
of mutating each voxel of the survivor robot’s structure and the resulting structure after mutation
becomes that of the offspring robot. The survivor rate range specifies how the percent of robots that
survive each generation of the algorithm changes over time. The survivor rate starts at the maximum
value in the range and decreases linearly to the minimum value.

D.2.2 Bayesian optimization (BO)

Table 4: Values of BO hyperparameters
parameter name value

kernel variance σ 1.0
kernel length scale l (1, ..., 1) ∈ Rd

optimizer max iterations 100
optimizer restarts 5

We use the default implementation from the GPyOpt package and we do not change any specific
hyperparameters. Values of the most important hyperparameters are listed in Table 4. σ and l are
the variance and the length scale of the Matern 5/2 kernel in the surrogate model, where d is the
dimension of the input (number of voxels). The optimizer max iterations is the max number of
iterations used to optimize the parameters of the surrogate model by the L-BFGS optimizer, and
optimizer restarts specifies the number of restarts in the optimization.

D.2.3 CPPN-NEAT

The hyperparameters of CPPN-NEAT are listed in Table 5, whose interpretations can be found in
the documentation of the neat-python package (https://neat-python.readthedocs.io/en/
latest/config_file.html).
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Table 5: Values of CPPN-NEAT hyperparameters
parameter name value

pop size 50
num inputs 3
num hidden 1
num outputs 5
initial connection partial direct 0.5
feed forward True
compatibility threshold 3.0
compatibility disjoint coefficient 1.0
compatibility weight coefficient 0.6
conn add prob 0.2
conn delete prob 0.2
node add prob 0.2
node delete prob 0.2
activation options sigmoid
activation mutate rate 0.0
aggregation options sum
aggregation mutate rate 0.0
bias init mean 0.0
bias init stdev 1.0
bias replace rate 0.1

parameter name value

bias mutate rate 0.7
bias mutate power 0.5
bias max value 30.0
bias min value -30.0
response init mean 1.0
response init stdev 0.0
response replace rate 0.0
response mutate rate 0.0
response mutate power 0.0
response max value 30.0
response min value -30.0
weight max value 30
weight min value -30
weight init mean 0.0
weight init stdev 1.0
weight mutate rate 0.8
weight replace rate 0.1
weight mutate power 0.5
enabled default True
enabled mutate rate 0.01

Table 6: Values of PPO hyperparameters
parameter name value

use gae True
learning rate 2.5 · 10−4

use linear learning rate decay True
clip parameter 0.1
value loss coefficient 0.5
entropy coefficient 0.01
num steps 128
num processes 4
evaluation interval 50

D.3 Control optimization hyperparameters

In this section we specify hyperparameters relevant to our control optimization algorithm (PPO),
which are listed in Table 6. The use gae indicates whether we apply Generalized Advantage Estimation
(GAE) [9] during PPO. The learning rate is for the Adam optimizer [4] optimizing the actor and
critic networks and we use linear learning rate decay throughout training. The clip parameter, value
loss coefficient, entropy coefficient are easily explained in any brief reference manual on PPO. The
num steps specifies the number of steps that each process samples in each iteration of PPO while
the num processes indicates the number of processes we use for parallel sampling. The evaluation
interval specifies the number of training iterations between evaluations. For all other parameters we
use their default values.

E Complete experiment results

In the main paper, we highlight ten tasks in our environment benchmark suite and compare their
performance using all three design optimization algorithms. Our full benchmark suite includes 32
tasks, described in detail in Section B. This sections details the evaluation results for all 32 tasks.

We evaluated the complete benchmark suite using the baseline co-design algorithm with the GA for
design optimization and PPO for the control optimization. Figure 35 shows the reward curves for the
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GA baseline algorithm on all 32 tasks. In our main benchmark suite of ten tasks (see Section 5 of
the main text), we found the GA baseline algorithm outperformed the other baselines algorithms the
majority of the time.

We highlight the design and control optimization results of a subset of six tasks in Figures 36 and
37: Balancer-v0, CaveCrawler-v0, PlatformJumper-v0, DownStepper-v0, BeamToppler-v0, and
Hurdler-v0. In Figure 36, for each of the six tasks, we visualize the top four robots from three
different generations. We also show the average reward these designs achieve.

Balancer-v0 requires the robot balance on top of a thin pole. Figure 36 reveals how the robot slowly
evolves arm-like features which it actuates to maintain balance atop the pole – much like how humans
stretch out their arms to balance.

CaveCrawler-v0 requires the robot slither under and between a number of low-hanging obstacles.
By the last generation, the robots have converged on a small snake-like form which is short enough
to clear rigid obstacles and is lined with horizontal actuators to allow slithering motion across the
ground.

PlatformJumper-v0 requires the robot jump between floating platforms at different heights. Conse-
quently, optimal designs contain many actuators oriented such that the robot can spring forward at
will.

DownStepper-v0 requires the robot traverse down an uneven staircase. Optimal robots evolve towards
a bipedal form – with a horizontal actuator on one foot and a vertical actuator on the other to promote
seamless movement.

BeamToppler-v0 requires the robot knock over a beam resting on two pegs. Interestingly, two optimal
designs survive the co-design optimization. Both designs evolve a hand-like mechanical arm to push
the beam from underneath. But one design (#4 in generation 40, Figure 36) also evolves a hook-like
gripper to push the beam off from above instead of from below.

In Figure 37 we show step-by-step sequences of the performance of six optimized designs.

A number of tasks perform very well. Optimal robots in Balancer-v0 actuate their arm-like counter-
weights to maintain their position atop the thin pole. Robots in DownStepper-v0 quickly run down
the unevenly spaced stairs using their bipedal legs. Optimal robots in BeamToppler-v0 repeatedly
actuate their hand-like mechanism to nudge the beam of its pegs.

Some environments have few successful robots. Most near-optimal designs produced in CaveCrawler-
v0 are unable to clear the last rigid low-hanging obstacle in the cave. Although some, like the robot
shown in Figure 37 are able to clear all sections.

Some tasks are more complicated than others and the baseline algorithms fails to evolve a fully
successful robot. For example, the optimal robot in the PlatformJumper-v0 environment successfully
lands on many platforms, but ultimately gets stuck in a gap between two platforms. In Hurdler-v0,
the robot is able to clear many tall thin vertical obstacle, but its hook-like jumping design ultimately
fails when it gets caught on a wider vertical barrier.

A visualization of all robots for the 32 benchmark tasks is included in the Supplementary Materials.
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Figure 35: Performance of GA baseline algorithm. We plot the best performance of robots that the
GA algorithm has evolved w.r.t. the number of evaluations on each task. All the curves are averaged
over 3 different random seeds, and the variance is shown as a shaded region.
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Figure 36: Evolution of robot designs. For each of the six selected tasks, we visualize the population
in three different generations. Each column corresponds to one generation for which we show the
four top performing robots along with their average reward.

Balancer-v0 (Easy)

CaveCrawler-v0 (Medium)

PlatformJumper-v0 (Hard)

DownStepper-v0 (Easy)

BeamToppler-v0 (Easy)

Hurdler-v0 (Hard)

Figure 37: Algorithm-optimized robots. For each of the six selected tasks, we visualize a step-by-
step sequence of a robot optimized by the algorithm.
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