
§ Dense Tactile Feedback for Manipulation
§ Tactile Normal-Direction Feedback 
§ Static spatial relation.
§ Applications: edge following, pose 

estimation, object reconstruction, etc.

§ Tactile Shear-Direction Feedback
§ Dynamic tangential motions.
§ Applications: stable grasp, precise 

insertion, slip detection, etc.

§ However, the training process usually 
requires time-consuming and labor-
intensive real hardware experiments.
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Motivation

§ Simulation Experiments

Experiments

§ Efficient Tactile Simulation
§ Built upon DiffRedMax (Xu et. al. 2021), implemented in C++.
§ Tactile Sensor Representation: each tactile sensing point ! is 

represented as a tuple B! , E! , %! (Fig. 1).

Our Approach

http://tactilesim.csail.mit.edu/

(Bauza et. al. 2019)

(Kim, Rodriguez 2022)

B

!

" #

tactile 
point !

E

Fig.1: Tactile sensor 
representation§ Penalty-Based Tactile Model:

§ First step: compute penalty-based tactile forces on tactile points.

!! = −$! + $"'̇ '(, !# = − *#
*#

min($# *# , / !! )
§ Second step: transform the forces into the tactile point frame.

1 $%,$',! = !! + !#
( 2, 3, 4

§ Features
§ Efficiency: 1050 FPS for a ball-rolling experiment (Fig. 3) with 40Hz 200×200 tactile 

force field computation on a single core of Intel Core i7-9700K CPU. 
§ Arbitrary tactile sensor geometry layout: specify any number of sensing points in 

arbitrary geometry layouts.
§ Differentiability: provide fast analytical first-order gradients for the entire dynamics chain 

(e.g. the gradients of the reward/loss w.r.t. policy parameters).
§ User-friendly simulation interface: C++ backend with Python frontend interfaces, simple 

configuration file format for simulation scene/robot descriptions.
§ Sim-to-Real via Normalized Tactile Flow Map

GOAL

Build an Efficient Tactile 
Simulation for Sim-to-Real 
Tactile-Based Robot Control

Fig.2: Sim-to-real pipeline
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Fig.5 Differentiability: Tactile-Based Box Pushing Task

§ Zero-Shot Sim-to-Real Experiments: Tactile RL 
Insertion
§ Hardware: 6-DoF ABB IRB 120 robot arm; WSG-50 

parallel jaw gripper; GelSlim 3.0 tactile sensor.
§ Domain randomization: parameters, tactile readings.

(a) contact at the left edge (b) contact at the right edge (c) contact at the back edge (d) contact at the front edge

Fig.6: Comparison of the normalized tactile flow maps.

Table 1: Zero-shot sim-to-real results

Rotation Only

Succ: 100%
Attempts: 1.53 

Translation Only

Succ: 100%
Attempts: 2.33 

Rotation+Translation

Succ: 83%
Attempts: 4.81

Dirty Laundry List

DOESN’T work for very soft tactile pad (e.g. TacTip).
§ limited capability of penalty-based rigid-body dynamics.
§ linear assumption between marker displacements and forces.

How to better leverage differentiability is challenging.
§ local minimal problem.
§ gradient explosion/vanishing.

Sim-to-Real is still NOT perfect.
§ lower success rate on Rotation+Translation task than 

Dong et. al. 2021 (89.6%).
§ generalizable policy for various object shapes?
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