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Chapter 1

Combinatorial Arguments

1.1 Classical Models

Topic: Elementary Principles

Remark. Sum Principle: If a finite set A is partitioned into sets B1, . . . , Bk, then �A� ��k
i�1 �Bi�. Product Principle: If the elements of set A are built via successive choices, where

the number of options for the ith choice is independent of the outcomes of the earlier choices,
then �A� is the product of the number of options for the successive choices.

Remark. Principle of Counting in Two Ways: When two formulas count the same set,
their values are equal.

Remark. Bijection Principle: If there is a bijection from one set to another, then the two
sets have the same size.

Remark. Pigeonhole Principle: The maximum in a set of numbers is at least as large
as the average (and the minimum is at least as small). In particular, placing more than kn
objects into n boxes puts more than k objects into some box.

Remark. Polynomial Principle : If two polynomials in x are equal for infinitely many
values of x, then they are the same polynomial (and equal for all real x). The analogous
statement holds with more variables by induction on the number of variables.

Topic: Words, Sets and Multisets

Definition 1.1.1 A k-word or word of length k is a list of k elements from a given set (the
alphabet); we may call the elements “letters”. A simple word is a word whose letters are
distinct. A k-set is a set with k elements; a k-set in a set S is a subset of S with k elements.
We use

�
n
k

�
, read “n choose k”, to denote the number of k-sets in an n-set. A multiset from

a set S is a selection from S with repetition allowed.
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Proposition 1.1.2 There are nk words of length k from an alphabet S of size n. Equivalently,
there are nk functions from �k� to S.

Definition 1.1.3 For n � �0, we define the following products:

n factorial : n! �
n�1�
i�0

�n� i�.

falling factorial : n�k� �
k�1�
i�0

�n � i�.

rising factorial : n�k� �
k�1�
i�0

�n	 i�.

Proposition 1.1.4 The number of simple k-words from an alphabet of size n is n�k�.

Proposition 1.1.5 The number of k-element multisets from �n�, or equivalently the number
of solutions to

�n
i�1 xi � k in nonnegative integers is

�
n�k�1

n�1

� � �n�k�1
k

�
.

Definition 1.1.6 A composition of the positive integer k is a list of positive integers sum-
ming to k. The entries in the list are the parts of the compositions.

Corollary 1.1.7 There are
�
k�1
n�1

�
compositions of k with n parts.

Exercise 1.1.2. For each dice the probability of getting even/odd is 1
2. Then for first two
dices, the probability of getting a total of even is again 1
4 	 1
4 � 1
2. By induction, the
probability is 1
2.
Exercise 1.1.3. For n, we need to count the possible distinct consecutive segments of length
from 1 to n. There are n 	 �n � 1� 	 �n � 2� 	 . . . 	 1 of these. We do the same for m and
multiply them to get the number.

Exercise 1.1.5. First problem is to pick four separators from 33 objects:
�
30�4�1

4�1

�
. For second

one, we may assume that one candidate gets more than 15 votes. Then the rest splits 1 to
14 votes; there are

�14
i�0

�
i�3�1
3�1

�
of outcomes. Subtracting these for each candidate from the

total, we get the possible outcomes as
�
30�4�1

4�1

�� 4
�14

i�0

�
i�3�1
3�1

�
.

Exercise 1.1.7. a) All the subsets, minus the ones with only even numbers... b) The k choices
need at least 2k � 1 elements. When n � 2k� 1, there is only a single choice. The choices are
then

�
n�k�1

k

�
. c) The first one is just the product rule: one choice for An � �n�, then n choices

for An�1 etc. the answer is then n!. For the second question, we may first pick k elements
from �n� and assume An is these k elements. We then permute these elements and insert n
bars to get An�1 to A0. Summing up these should give us the answer.

Exercise 1.1.10. We first pick 1 number from 1 � 9 for the first digit. We then have two
cases: 1. The chosen number is used again 2. The chosen number is not used again. We have
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9 numbers left, and there are either 94 or 95 ways of constructing the rest. We exclude from
these the cases where some number is used 3 or 4 times.

Exercise 1.1.14. This is simply counting all possible compositions for k
2.
Exercise 1.1.16.

Exercise 1.1.18. May treat the two disjointly; the runs separate m into k � 1 pieces; it also
puts k bars in n, with no two bars are consecutive.

Exercise 1.1.21. Every four points gives a pair of crossing chords,
�
n
4

�
.

1.2 Identities

Topic: Lattice Paths and Pascal’s Triangle

Definition 1.2.1 A lattice path is a lattice walk in which each step increases one coordinate.

Remark. For lattice path of length n with height k, there are
�
n
k

�
of these. We also obtain

Pascal’s Formula by noticing that there are two ways in the last step, one horizontal and
one vertical. Therefore,

�
n
k

� � �n�1
k

�	 �n�1
k�1

�
.

Theorem 1.2.2 (1.2.3 Elementary Identities) a

1�
�

n

k

�
�
�

n

n� k

�

2�
�

n

k

�
�
�

n� 1
k

�
	
�

n� 1
k � 1

�

3� k

�
n

k

�
� n

�
n� 1
k � 1

� �
k

l

��
n

k

�
�
�

n

l

��
n� l

k � l

�

4�
�
k

�
n

k

�
� 2n

�
k

rk

�
n

k

�
� �r 	 1�n

5�
n�

k�0

�
k

r

�
�
�

n	 1
r 	 1

� n�
k��m

�
m	 k

r

��
n� k

s

�
�
�

m	 n	 1
r 	 s	 1

�

6�
�
k

�
n

k

�2

�
�

2n
n

� �
k

�
m

k

��
n

r � k

�
�
�

m	 n

r

�

Remark. Extended binomial coefficient
��u

k

� � ��1�k�u�k�1
k

�
.

Theorem 1.2.3 (1.2.6 Extended Binomial Theorem) For u, x � � with �x� � 1, �1 	
x�u � �k�0

�
u
k

�
xk.

Topic: Delannoy Numbers
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Definition 1.2.4 The Delannoy number dm,n is the number of paths from �0, 0� to �m,n�
such that each move is by one of ��1, 0�, �0, 1�, �1, 1�
. The number of the form dn,n are the
central Delannoy numbers.

Proposition 1.2.5 (1.2.10) The Delannoy number dm,n �
�

k

�
m
k

��
n�k
m

�
.

Definition 1.2.6 The Hamming ball of radius m in n dimensions is the set consisting of
the lattice points in �n that are within m unit coordinate steps from one point (such as the
origin).

Proposition 1.2.7 The size of the Hamming ball of radius m in �n is
�

k

�
n
k

��
m
k

�
2k.

Proof. k denotes the number of non-zero coordinates (
�
n
k

�
); their absolute value sum to at

most m, this is equivalent to k	 1 positive integers summing to m	 1 (
�
m
k

�
). The coordinates

can be positive or negative (2k). �

Theorem 1.2.8 (1.2.13) For m,n � �0,
�

k

�
m
k

��
n�k
m

� � �k

�
n
k

��
m
k

�
2k.

Exercise 1.2.2. Both are just choosing k from m	 n.

Exercise 1.2.4.
�
m�k�1

k

� � �
m�k�1

m�1

�
; then applying Pascal’s formula to get the sum. The

other side is the same.

Exercise 1.2.6. Follow the formula...

Exercise 1.2.7. ��1�k.
Exercise 1.2.8. Counting ik by counting in two ways: one is the k-words from �i�, the other
is number of repeated elements used. For example for i2, if we use all different items, there
are

�
i
2

�
different ways of picking two elements; the ordering matters so 2

�
i
2

�
total. Then there

are
�

i
1

�
different ways of picking one element and use it twice (no order here). Therefore,

i2 � 2
�

i
2

�	 �i
1

�
.

Exercise 1.2.10. If two marbles are put in the same jar, it corresponds to a diagonal step;
so it is easy to establish a bijection.

1.3 Applications

Topic: Graphs and Trees

Corollary 1.3.1 There are 2�n2� trees with vertex set �n�.

Definition 1.3.2 The functional digraph of a function f : S � S is the directed graph
having vertex set S and an edge from x to f�x� for each x � S. There are �S� edges, and each
vertex is the tail exactly once.
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Theorem 1.3.3 There are nn�2 trees with vertex set �n�.

Topic: Multinomial Coefficients

Proposition 1.3.4 (1.3.5) There are m!
�n
i�1 ki! words of length n having exactly ki letters

of type i, where
�n

i�1 ki � m.

Corollary 1.3.5 (1.3.6) The number of trees with vertex set �n� in which vertices 1, . . . , n
have degrees d1, . . . , dn, respectively, is �n�2�!��di�1�! .

Proposition 1.3.6 (1.3.8 Multinomial Theorem) For n � �0,
	 n�

i�1

xi


k
�
��

k

k1, . . . , kn

� n�
i�1

xki
i .

Topic: The Ballot Problem

Theorem 1.3.7 (1.3.12 Bertrand) Among the lists formed from a copies of A and b copies
of B, there are

�
a�b
a

�� �a�b
a�1

�
such that every initial segment has at least as many As as Bs.

Lemma 1.3.8 (1.3.13) The central binomial coefficient
�
2n
n

�
counts the following types of

lattice paths of length 2n that start at �0, 0�

A) Those ending at �n, n�.
B) Those never rising above the line y � x.

C) Those never returning to the line y � x.

Theorem 1.3.9 (1.3.14) For n � �0,
�

k�0 n
�
2k
k

��
2n�2k
n�k

� � 4n.

Topic: Catalan Numbers

Definition 1.3.10 The Catalan sequence is defined by Cn � 1
n�1

�
2n
n

�
for n � 0. The

number Cn is called the nth Catalan number .

Theorem 1.3.11 (1.3.16) If p, q are relatively prime positive integers, then the number of
lattice paths from �0, 0� to �p, q� that do not rise above the line py � qx is 1

p�q

�
p�q

p

�
.

Theorem 1.3.12 (1.3.21) The number of binary trees with n	 1 leaves is the nth Catalan
number, 1

n�1

�
2n
n

�
.

Example 1.3.13 (1.3.22) There are 1
n�1

�
2n
n

�
triangulations of a convex �n	 2�-gon.
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Exercise 1.3.2. n � � iki. We may then first count the number of ways to partition n into
m blocks of size iki (simply multinomial formula). Then for each iki, it is further partitioned
into ki blocks of size i (multinomial formula again). Multiplying gives us the result.

Exercise 1.3.3. The first row decides the second row; therefore we only need to work with
the first row. We establish a bijection this way: suppose the numbers of the first row are
a1, . . . , an. Let k � ai�1 � ai � 1, we construct the lattice path by add one horizontal step
followed by k vertical ones. This gives us a bijection (needs to add extra stuff).

Exercise 1.3.4.Catalan number over n factorial.

Exercise 1.3.5. Probability that the lattice path never goes above y � x	 1 after first step.
Total paths this way is

�
a�b�1
a�1

�� �a�b�1
a

�
. The denominator is again

�
a�b
a

�
.

Exercise 1.3.6. 4n � 2 1
n

�
2n
n

�
: the total possible paths minus these that one never trails.
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Chapter 2

Recurrence Relations

2.1 Obtaining Recurrences

Topic: Classical Examples

Example 2.1.1 Regions in the plane by n lines such that no three lines have a common point:
an � an�1 	 n.

Example 2.1.2 Fibonacci numbers

Example 2.1.3 Derangements of n objects.

Dn � n!��n
k�1

�
n
k

�
Dn�k for n � 1, with D0 � 1.

Dn � �n� 1��Dn�1 	Dn�2� for n � 2, with D0 � 1 and D1 � 0.

Example 2.1.4 Catalan number Cn �
�n

k�1 Ck�1cn�k, with C0 � 1.

Topic: Variations

Example 2.1.5 Arrangements with n distinct available objects.

C(n, k) = C(n-1, k) + C(n-1, k-1) #k-subsets of �n�.
P(n, k) = P(n-1,k) + kP(n-1, k-1) # simple k-words from �n�.
S(n, k) = kS(n-1,k) + S(n-1, k-1) # partitions of �n� with k blocks.

c(n, k) = (n-1)c(n-1, k) + c(n-1, k-1) # permutations of �n� with k cycles.
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Proposition 2.1.6 (2.1.10) The number of lattice points within m lattice steps of the origin
in n-dimensional space satisfies the recurrence am,n � am,n�1	am�1,n�1	am�1,n for m,n � 0.

Exercise 2.1.2. an�1 gives us n�1 pairs. Adding p2n�1, p2n as a pair gives a pairing (an�1 of
these). Then we may pick a pair from the n� 1 pairs and pair them with the last two persons
(2�n � 1�an�1 of these). Total is then �2n� 1�an�1.

Exercise 2.1.5. an,k �
�
2n
2k

�
�nk� � �
n
k

� � �
2n
2k

�
an,k, so
�

n
k�1

� � �
2n

2k�2

�
an,k�1,
�
n�1
k�1

� ��
2n�2
2k�2

�
an�1,k�1. Therefore
�
2n
2k

�
an,k �
�

2n
2k�2

�
an,k�1 	
�
2n�2
2k�2

�
an�1,k�1.

Exercise 2.1.6. Fn�1.

Exercise 2.1.7. an � 2an�1 � an�3. It would be 2an�1 but we need to remove the of an�1

that ends with 01. These are just an�3 plus 01 at the end.

2.2 Elementary Solution Methods

Topic: The Characteristic Equation Method

Example 2.2.1 Fn � Fn�1 	 Fn�2 � x2 � x � 1 � 0. Solving this gives two roots a1, a2.
Then Fn � c1a

n
1 	 c2a

n
2 . Plugging in the initial condition gives us the constants.

Proposition 2.2.2 Consider a recurrence an � �
�k

i�1 cian�i�	f�n� such that f�n� � F �n�cn,
where F is a polynomial of degree d. If c has multiplicity r as a characteristic root of the
homogeneous part (r may be 0), then the recurrence has a solution of the form P �n�nrcn,
where P is a polynomial of degree at most d.

Topic: The Generating Function Method

Algorithm. The generating function method uses the following steps to solve a recurrence
for �a�.

1) Sum the recurrence over its “region of validity” (the values of the parameter where the
recurrence holds) to introduce the generating function A�x� and obtain an equation that
A�x� satisfies.

2) Solve this equation to express A�x� in terms of x.

3) Find the formal power series expansion and set an � �xn�A�x�.

Lemma 2.2.3 (2.2.17) For k � �, the power series expansion of �1� cx��k is

1
�1� cx�k �

��
n�0

�
n	 k � 1

k � 1

�
cnxn.
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Theorem 2.2.4 If a0 � 1, and an �
�n

k�1 ak�1an�k for n � 1, then an � 1
n�1

�
2n
n

�
.

Proof. Use the fact that the right side, when summed up, becomes x�A�x��2. The solve
quadratic function of A�x� to get the generating function. �

Exercise 2.2.4. 1, 2 are roots of characteristic equation. f�n� � 1n, so P �n�n11n is a special
solution with P �n� having degree 0. So special solution has form cn. Plugging in to recurrence
to get c � �1.

Exercise 2.2.7. Cycle n has 2n � 2 intersections with other cycles; each two consecutive
points split the previous region into 2. So we have an � an�1 	 2n� 2 � �n�1

i�1 2i � 2
�
n
2

�
.

Exercise 2.2.8. bn � an 	 an�1 � λn. Then do bn � bn�1 	 bn�2 . . . to get an as a function
of a1 and λ.

Exercise 2.2.9. Proof via induction. Suppose a0, . . . , an�1 are integers, then an � a0 ��k
i�1 λi�αn � 1�. It is easy to factorize the right and obtain that it is an integer.

Exercise 2.2.10. Straightforward verification.

2.3 Further Topics

Topic: The Substitution Method

Remark. Substitution Method basically substitute parts of recurrence to get a new re-
currence that may be easier to handle. For example, nan � �n 	 1�an�1 can be simplified by
letting an � �n	 1�bn; we then have bn � bn�1.

Exercise 2.3.1. a) Let bn � �n	 1�an. b) Let bn � �3n 	 1�an.

Exercise 2.3.2. a) Note that a2k�1 to a2k�1 are all the same. b) Note that a2k to a2k�1�1 are
all the same.
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Chapter 3

Generating Functions

3.1 Ordinary Generating Functions

Topic: Modeling Counting Problems

Lemma 3.1.1 (3.1.7) ak �
�k

j�0 bjck�j � A�x� � B�x�C�x�.

Topic: Permutation Statistics

Definition 3.1.2 For σ � Sn, an inversion is a pair �σi, σj� such that i � j and σi � σj.

Proposition 3.1.3 The enumerator of Sn by number of inversions is

�1	 x��1	 x	 x2� . . . �1	 x	 x2 	 . . .	 xn�1�.

Proof. Adding 1 yields 0 inversion, so we have 1 for this. There are two ways to add 2 to
1, 12 does not create inversion, so it is 1; the other is 21 with one inversion, so we have x. 2
then contributes �1	 x� and is not affected by later additions; we then have the formula, with
xr indicates the number of inversions. �

Definition 3.1.4 Canonical cycle representation lists cycles such that the first element
of each cycle is the smallest of that cycle; then the cycles are listed in reverse order by the first
elements. E.g. �4731�, �62�, �89�, �5� are listed as �89��5��26��1473�. The representation can
be written without the parentheses.

Lemma 3.1.5 (3.1.18) Canonical cycle representation is in bijection with permutations.
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Theorem 3.1.6 (3.1.19) Let c�n, k� be the number of elements of Sn with k cycles. The
enumerator of Sn by number of cycles, Cn�x�, is given by

Cn�x� �
n�

k�1

c�n, k�xk � x�n� �
n�

i�1

�x	 i� 1�.

Proof. Again do the insertion one by one. The x denotes the new cycle i will create, and
the i� 1 denotes the existing cycles it will keep. �

Remark. Skipped Eulerian numbers.

Exercise 3.1.2. This is basically the same as 3.1.1, for each ei, we have si � ri 	 1 of these,
therefore the factor 1�xsi�ri�2

1�x . Hence A�x� � �n
i�1

1�xsi�ri�2

1�x .

Exercise 3.1.4. A�x� � �1	 x2 	 x4 	 . . .�2�1	 x	 x2 	 . . .��1	 x5 	 x10	 . . .�.
Exercise 3.1.5. A�x� � �1	 x2 	 x4 	 . . .�2�1	 x	 x2 	 . . .��1	 x4 	 x8 	 . . .�.
Exercise 3.1.6. an,k � an�1,k 	 an,k�1.

3.2 Coefficients and Applications

Remark. We may differentiate A�x� � . . . and the two sides are still equal. We can also do
A�B�x��� � A��B�x��B��x�.
Topic: Operations and Summations

Remark.
�

k�0
1

k�1

�
2k
k

�
xk � �1��1� 4x�
�2x�.

Example 3.2.1 �1� x��k � �n

�
n�k�1

k�1

�
xn can be obtained by differentiate 1

1�x �
�

n xn.

Proposition 3.2.2 (3.2.7) If A,B,C are the ordinary generating function for �a�, �b�, �c�,
respectively, then

1�cn � an 	 bn�n � C�x� � A�x� 	B�x�.
2�cn �

�n
i�0 aibn�i�n � C�x� � A�x�B�x�.

3�bn �
�

an�k, n � k
0, n � k

� B�x� � xkA�x�
4�bn � nan � B�x� � xA��x�
5�cn �

�n
i�0 ai � C�x� � A�x�

1�x �special case of 2)�
6�bn �

�
an, n even
0, otherwise

� B�x� � 1
2 �A�x� 	A��x��

7�bn �
�

an, n odd
0, otherwise

� B�x� � 1
2 �A�x� �A��x��

8�bn �
�

ak, n � mk
0, k � n

� B�x� � A�xm�
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Topic: Snake Oil

Remark. Snake Oil is used to evaluate sumes where the summand has several factors. Instead
of evaluating the sum literally, we obtain a generating function of the sum and exchange the
order of summation. Hopefully something nice will happen and we can get a generating function
that is easy to handle.

Example 3.2.3
�

k�0

�
k

n�k

�
. Let an �

�
k�0

�
k

n�k

�
, then A�x� � �n an �

�
k�0 xk

�
n

�
k

n�k

�
xn�k ��

k�0 xk�1	 x�k � 1
1�x�x2 .

Exercise 3.2.2. For even k, 1
2 ��1 	 x2�n 	 �1 � x2�n� gives what we need. for odd k, x

2 ��1 	
x2�n 	 �1� x2�n� will do. So the answer is 1�x

2 ��1	 x2�n 	 �1� x2�n�.
Exercise 3.2.3. C�x� � �

k�0
1

k�1

�
2k
k

�
xk � �1 � �1� 4x�
�2x�. So A�x� � C�x�2 � �1 �

2
�

1� 4x	 1� 4x�
�4x2� � �1��1� 4x� 2x�
�2x2�. Only ��1� 4x
�2x2� actually counts;
an � 1

n�2

�
2n�2
n�1

�
.

3.3 Exponential Generating Functions

Definition 3.3.1 The exponential generating function (EFG) for a sequnce �a� is
�

anxn
n!.

Topic: Modeling Labeled Products

Lemma 3.3.2 EFG C�x� � A�x�B�x� if and only if cn �
�n

j�0

�
n
j

�
ajbn�j.

Topic: The Exponential Formula

Remark. General and component structures. If the component structure can be expressed
as an EFG C�x� with C�0� � 0 then the general structure has G�x� � eC�x�. For example,
let an be the number of permutations of �n� such that every cycle has odd length. This is the
general structure. The component structure is then the case when �n� itself is an odd cycle.
This is only possible when n is odd and the number is �n� 1�!. C�x� � 1	 2!x

3

3! 	 4!x
5

5! 	 . . ..
G�x� � eC�x�.

Definition 3.3.3 The Sterling number S�n, k� (of the ”‘second kind”’) is the number of
partitions of �n� into k (nonempty) blocks. The Sterling number of first kind, s�n, k�, is
��1�n�kc�n, k�, in which c�n, k� is the number of permutations of �n� with k cycles.

Exercise 3.3.2. Fix n � 2p and we have bm �
�

k

�
m
k

�
ckdm�k, where C�x� is the EFG of the

sublists with odd numbers and D�x� that of the even numbers. ck counts the number of words
of length k with alphabets from p, with each alphabet used and odd number of times. The
EFG is C�x� � �x2 �ex � e�x��p. Similarly we can get D�x� then B�x�.
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Exercise 3.3.5. For a single box, there is a single way of putting the objects in. The generating
function is then xmex. The general case is simply �xmex�k.
Exercise 3.3.6. Multiply both sides of a) with S�m,n� and sum over n, we get

�
n S�m,n�an ��

n

�
k S�m,n�s�n, k�bk �

�
k bk

�
n S�m,n�s�n, k� � �k bkδm,k by 3.3.15. δm,k � 1 only when

k � m so
�

k bkδm,k � bm; bm �
�

n S�m,n�an. Let n � m,n � k, we get 2).

Exercise 3.3.8. For a single team, we have cn � n since that is the number of ways to get
the leaders for a single team of n members. Then the EFG of cn, C�x� � x�ex�� � xex and
G�x� � eC�x� � exex

.

3.4 Partition of Integers

Topic: Generating Function Methods

Theorem 3.4.1 The OGFs for partitions using parts in �1, . . . , k
, paritions with largest part
k, and all partitions are, respectively,

k�
i�1

1
1� xi

xk
k�

i�1

1
1� xi

��
i�1

1
1� xi

Topic: Ferrers Digrams

Proposition 3.4.2 The number of partitions of n with largest part k equals the number of
partitions of n into k parts.

Exercise 3.4.1. The OFG is A�x� � 1
1�x

x3

1�x6 � x3�1�x�x2�x3�x4�x5�
�1�x6�2 . Then �x30�A�x� �

�x24� 1
�1�x6�2 . Since an �

�
n�1

1

�
, we need a4, which is 5.
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Chapter 4

Further Topics

4.1 Principle of Inclusion-Exclusion

Topic: PIE

Principle of Inclusion-Exclusion is the most common “Sieve Methods”, which are
counting methods that within a universe allow only a smaller desired set to survive a process
of overcounting and undercounting.

Definition 4.1.1 :
U : The universe of all elements �x
.
�n� : �1, 2, . . . , n
.
Ai : Subset of U with 1 � i � n.
S, T : Subsets of �n�
R�x� : The usage set of x defined as: �i � �n� : x � Ai
. Note: this implies that x is not in
the rest of Ai’s. So R�x� � �1, 3
 with �n� � �1, 2, 3
 means x � �A1 �A3��A2

f�S� : � �x � U : R�x� � S
 �.
g�S� : � �i	SAi �

For S as a subset of �n�, f�S� counts the elements x whose usage set is fixed to S; g�S� counts
the elements whose usage set is a superset of S. We have g�S� � �

T
S f�T �; this can be
visualized by looking at the Venn diagram . f�S� � g�S�.

Theorem 4.1.2 Inclusion-Exclusion Principle, PIE. Let A1, A2, . . . , An, be subsets of a
universe U . With f and g as in above definition, the formula for f in terms of g is

f�T � �
�

S
T

��1��S���T �g�S� �
�

S
T

��1��S���T � � �i	SAi �
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To prove it, we note that the elements counted by f�T � are counted only once in the formula
by g�S� when S � T (can visualize through Venn diagram). For all the rest that are counted
in the formula, they are counted the equal number of times in these g�S� where �S� � �T � is
even and odd. Therefore, the terms all cancel out.

Application. Obtaining f�T �.
Topic: restricted permutations, rook polynomial rk�B�

Application. Derangements. The formula for Dn, the number of derangements of �n�, is

Dn � n!
n�

k�0

��1�k
k!

We count this as permutations with no fixed points, which is

f��� �
n�

k�0

��1�n
�

n

k

�
�n� k�! � n!

n�
k�0

��1�k
k!

here T � �, g�S� � �nk��n� k�!.

Theorem 4.1.3 If fp is the number of items having exactly p of n properties defined on a
universe u, then

n�
p�0

fpx
p �

n�
k�0

�x� 1�k
�
�S��k

g�S�

The left side counts each such element a with p properties exactly once in xp. On the left
side, xp � �x � 1 	 1�p � �n

k�0�x � 1�k�pk�. a, with exactly p properties, satisfying
�
p
k

�
k-sets

of properties and therefore are counted that many times in
�
�S��k g�S�. For any fixed k, all

these
�
p
k

�
adds up to

�
�S��k g�S�.

Remark. For permutations with restricted positions, with
�
�S��k g�S� � rk�B��n � k�!,�n

p�0 fpx
p � �n

k�0�x� 1�krk�n� k�!. If we are to count the permutations with 0 properties (0
forbidden positions), then we let x � 0.

Application. The theorem can be used to calculate the number of elements satisfying exactly
p properties. For example, if we have three subsets A1, A2, and A3, and want to calculate the
number of elements with two properties. PIE can only effectively gives us part of that sum.
The textbook gives several examples (4.1.20, 4.1.21), one of which involves forbidden positions
and rook polynomial.

Topic: singed involutions

Definition 4.1.4 An involution is a permutation whose square is the identity; the cycles
have length 1 or 2. With respect of partition the universe X into a positive part X� and a
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negative part X�, a signed involution on X (n � �X�) is an involution τ such that every
2-cycle pairs a positive element with a negative elements. Let Fτ and Gτ denote the sets of
fixed points within X� and X� under a signed involution τ .

A simple proposition says that if we let w�x� � �1 for x � X�, then �Fτ � � �Gτ � �
�

x	X w�x�
Application. To use signed involution, usually we need to embed the desired set in a larger
set X. For elements in X, we define a “switch” operation that keeps the desired set unchanged
while switching the rest.

Topic: path systems

Application. To calculate a matrix determinant, we construct an acyclic digraph in which
the sum of weights of all paths from xi to yj corresponds to the �i, j� entry in the matrix. The
determinant is then equal to the sum of signed weights of disjoint paths systems.

Theorem 4.1.5 (4.1.31) Let X and Y be n-sets of vertices in a finite acyclic digraph G. If
A is the X,Y -path matrix, and P is the set of disjoint X,Y -path systems, then

detA �
�
p	P
�sign�σp��w�p�

Exercise 4.1.1. Third questions, let Ai be the set with no i in the n-tuple, then 10n��i�1,2,3Ai

is what we want. This is given by (using PIE) 10n � 39n 	 38n � 7n.

Exercise 4.1.2. The total number of outcome is 36n. Let Ai be the set with no ii as a tossing
outcome, then we can get the count of all ”‘ii”’ happening by PIE.

Exercise 4.1.4. 252 � 22337. Numbers containing no such factors are coprime with 252. Let
f � 2, 3, 7 and Ai be the set of positive integers less than 252 having fi as a factor (252
fi � 1
of these), applying PIE will give us the result.

Exercise 4.1.6. Total of 5 types of coin; let Ai be set that coin type i is used 5 or more times.

4.2 Polya-Redfield Counting

Topic: Burnsides’ Lemma, the Pattern Inventory

Remark. The result from Burnside’s Lemma is essentially that, for coloring of a set X
with k colors, we look at the possible permutations of X based on X’s structure. For ex-
ample, for a 4-bead necklace, we may treat it as a square in the plane, with 8 symmetries:
��1��2��3��4�, �1234�, �13��24�, �1432�, �14��23�, �12��34�, �1��3��24�, �2��4��13�
. For each i cy-
cle we replace it with xi, so we have 1

8�x4
1 	 x4 	 x2

2 	 x4 	 x2
2 	 x2

2 	 x2
1x2 	 x2

1x2� �
1
8�x4

1 	 2x4 	 3x2
2 	 2x2

1x2�. If we want to get the possible colorings, we may simply replace
all xi with k. If we want to get more, for example, to color with two colors, r and b, we can
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replace each xi with ri 	 bi and gather desired terms. Say, if we want the number of colorings
with two r and two b, then we colloect all coefficients of terms with r2b2.

Remark. For a rotating triangle, there are three possible outcome, ��1��2��3�, �123�, �132�
.
So f�x� � 1

3 �x3
1 	 2x3�.

Exercise 4.2.1. 1
3�x15

1 	 x5
3�? Since we still have the three rotations with one being identity,

and each non indentity rotation has five 3-cycles.

Exercise 4.2.2. Similar as 4.2.1. The reason why the result is not a squre of putting flowers
on the corner is that the rotations are related, not orthogonal.

Exercise 4.2.4. Same as 4.2.1.

Exercise 4.2.5. The key is that n is odd, so it has n�1 rotations, 1 identity, and n reflections.
f�x� � 1

2n�xn
1 	 �n� 1�xn 	 nx1x

�n�1�
2
2 �. Replace with k gives us the answer.

Exercise 4.2.6. Similar.
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Chapter 5

5, 6, 7 Graph Intro

��S, S�� � δ�G� � �S� � δ�G�.
diag�G� � 2 � κ��G� � δ�G�.

Definition 5.0.1 A bond of a graph is a minimal nonempty edge cut.

Definition 5.0.2 A block of a graph G is a maximal connected subgraphp of G that has no
cut-vertex.

Definition 5.0.3 κ�x, y�: Minimum size of an x, y-separating set.

κ��x, y�: Minimum size of an x, y-edge separating set.

λ�x, y�: Maximum size of a set of independent x, y-paths.

λ��x, y�: Maximum size of a set of edge disjoint x, y-paths.

Theorem 5.0.4 (7.2.5) Mininum X,Y -barrier has same size as maximum X,Y -link.

Theorem 5.0.5 (7.2.7) κ�x, y� � λ�x, y� when xy � G, κ��x, y� � λ��x, y� always.

Theorem 5.0.6 (7.2.9) G is k-connected if and only if λ�x, y� � k for all x, y � V �G�, and
G is k-edge-connected if and only if λ��x, y� � k for all x, y � V �G�.

Corollary 5.0.7 (7.2.10) κ�G� � κ��G� when Δ�G� � 3.

Proof. κ�G� � κ��G� and there cannot be two paths that are not disjoint when Δ�G� � 3. �
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Chapter 9

Planar Graphs

10/27/2008

9.1 Embeddings and Euler’s Formula

Topic: Drawings and Duals

Proposition 9.1.1 K5,K3,3 are not planar.

Proposition 9.1.2 If l�Fi� denotes the length of face Fi in a plane multigraph G with m
edges, then 2m � � l�Fi�.

Remark. For a planar graph G and its dual G�, the dual of G� is G if and only if G has a
single component.

Theorem 9.1.3 Edges in a plane multigraph G form a cycle in G if and only if the corre-
sponding dual edges form a bond in G�.

Theorem 9.1.4 TFAE for a plane multigraph G:

• G is bipartite.

• Every face of G has event length.

• The dual G� is Eulerian.

Definition 9.1.5 Outerplanar graph is a planar graph for which an embedding has all the
vertices on the unbounded face.
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Proposition 9.1.6 The boundary of the outer face of a 2-connected outerplanar multigraph
is a spanning cycle.

Proposition 9.1.7 Every simple outerplanar graph has a pair of vertices of degree at most 2.

Topic: Euler’s Formula

Theorem 9.1.8 (Euler’s Formula) If a connected plane multi graph G has n vertices, m
edges, and f faces, then n�m	 f � 2.

Remark. Since every face in a plane graph must have at least 3 edges (l�F � � 3), 3f � 2m.
combining this with Euler’s formula, we further have the following.

Theorem 9.1.9 Let G be a planar n-vertex graph with m edges. If n � 3, then m � 3n� 6.
If G is triangle free, then m � 2n� 4.

Proposition 9.1.10 For an n-vertex plan graph G, the following are equivalent.

• G has 3n� 6 edges.

• G is a triangluation.

• G is a maximal plane graph.

10/29/2008

9.2 Structure of planar Graphs

Topic: Kuratowski’s Theorem

Definition 9.2.1 A Kuratowski subgraph is a subdivision of K5 or K3,3.

K5 and K3,3 are not planar. Any graph that contains a Kuratowski subgraph cannot be planar
as well; since it is impossible to embed these subgraphs on a plane. On the other hand, Any
graph without Kuratowski subgraph is a planar graph. Proving this involves the following
lemmas and theorems.

Lemma 9.2.2 For a planar graph, any face can be made the outer face of some planar em-
bedding.

The proof is straightforward using embedding on a ball.
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Lemma 9.2.3 Every minimal nonplanar graph is 2-connected.

Proof Suppose there is a 1-cut, then some lobes must be planar, therefore making the graph
not minimal. �

Lemma 9.2.4 Let �x, y
 be a separating 2-set of G, let G1, . . . , Gk be the �x, y
-lobes of G,
and let Hi � Gi � xy, if G is nonplanar, then some Hi is nonplanar.

Proof If all Hi are planar, then G 	 xy will have a planar embedding; G then also have a
planar embedding. �

Lemma 9.2.5 If G is a graph with fewest edges among all nonplanar graphs without Kura-
towski subgraphs, then G is 3-connected.

Proof Suppose not then G is 2-connected by the second lemma above. Then by previous
lemma, some Hi � Gi 	 xy is nonplanar. Hi has fewer edges than G, then Hi contains a
Kuratowski subgraph. But then using some x, y-path in other x, y-lobes, G must also have a
Kuratowski subgraph, contradiction. �

Lemma 9.2.6 If G � xy has a Kuratowski subgraph, then G has a Kuratowski subgraph.

Proof Show by analyzing cases that recovering x, y in G from G � xy cannot avoid a Kura-
towski subgraph. �

Theorem 9.2.7 If G is a 3-connected graph containing no subdivison of K5 or K3,3, then G
has a convex embedding in the plane with no three vertices on a line.

Proof Prove via induction (from K4). For induction step, if G is 3-connected with more than
5 vertices, then there exists a 3-contractible edge xy in G by Lemma 7.2.19 in the text. By
previous lemma, G has no Kuratowski subgraph, hence G � xy has no Kuratowski subgraph.
Induction hypothesis then gives a convex embedding of G � xy. From this we can try to re-
construct G. The only possible case allows a new convex embedding; other cases will create
Kuratowski subgraphs. �

9.3 Coloring of Planar Graphs

Topic: 5-colorable and 5-choosable
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Theorem 9.3.1 (Five Color Theorem) Every planar graph is 5-colorable.

Proof It is equivalent to prove that a no 6-critical planar graph exists. 6-critical graph G
must have δ�G� � 5 and planar graph must have δ�G� � 5. We can then assume G has a
degree 5 vertex with neighbors using all 5 colors in consecutive order. Denoting these neighbors
v1, v2, v3, v4, v5. Then we may switch color 1 to 3 on v1 and make any necessary corrections. If
v3 needs correction, then there must be a 1, 3 path connecting them; but then we can change
color 2 to 4 on v2 and never gets to v4. Therefore, G cannot be 6-critical. �

Theorem 9.3.2 (Thomassen [1995])Every planar graph is 5-choosable.

Topic: Discharging

Proposition 9.3.3 (Wernicke [1904]) Ever planar triangulation with minimum degree 5 con-
tains an edge with degree 5, 5 vertices or degree 5, 6 vertices.

Proposition 9.3.4 (Discharging rules) Let V �G� and F �G� be the sets of vertices and
faces in a plane graph G, and let l�α� be the length of face α. The following equalities hold
for G. �

v	V �G��d�v� � 6� 	�α	F �G��2l�α� � 6� � �12 vertex charging�
v	V �G��2d�v� � 6� 	�α	F �G��l�α� � 6� � �12 face charging�
v	V �G��d�v� � 4� 	�α	F �G��l�α� � 4� � �12 balanced charging

Remark. In the first formula, the second sum will be zero if we assume that we have a
triangulation; even the unbounded face must be a triangle. For other face sizes, we need to
change the formula accordingly. In the second formula, 3-regular planar graph is assumed. In
the third, both vertices and faces are being considered.

Theorem 9.3.5 (Cranston [2008]) For k � 7, if G is a plane graph G with Δ�G� � k in which
no two 3-faces share an edge, then G has an edge with weight at most k 	 2.

Remark. See book for proof, which uses balanced charging.
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Chapter 10

Ramsey Theory

11/03/2008

10.1 The Pigeonhole Principle

Topic: Classical Applications

Example 10.1.1 (10.1.5) Covering a complete graph with bipartite graphs. The answer is
�log2 n�. Suppose that Kn is covered by bipartite subgraphs G1, . . . , Gk. Let Xi, Yi be the
bipartition of Gi. We may assume that each Gi contains all the vertices, since adding isolated
vertices doesn’t introduce odd cycles.

For each vertex v, define a binary k-tuple α by setting αi � 0 if v � Xi and αi � 1 if
v � Yi. There is an uv edge if and only if the two k-tuples of u, v differ. Since there are 2k

different two tuples, K2k�1 cannot be covered by k bipartite graphs. On the other hand, we
may always arrange the bipartite graphs such that the vertices have different k-tuples, as long
as we have no more than 2k vertices.

Example 10.1.2 (10.1.7) Forcing divisible pairs. If S is a set of n	 1 numbers in �2n�, then
S contains two numbers such that one divides the other.

To apply the Pigeonhole Principle, we partition �2n� into n classes such that for every two num-
bers in the same class, one divides the other. The classes are �1, 2, 4, 8, . . .�, �3, 6, 12, 24, . . .�, �5, 10, 20, . . .�, . . ..

Example 10.1.3 (10.1.8) A domino tiling problem. A 6-by-6 checkerboard can be parti-
tioned into 18 dominoes consisting of two squares each; this is a tiling of dominoes. We prove

27



that every such tiling can be cut between two adjacent rows or adjacent columns without
cutting any dominoes. That is, for any tiling, the board can be cut into two rectangular parts
without cutting any dominoes.

To use the Pigeonhole Principle, we observe that there are 18 dominoes and 10 lines with
which the board can be cut into two rectangular pieces. We further observe that any domino
crossing a line must have another domino cross the same line, otherwise neither piece can be
finished.

Theorem 10.1.4 (10.1.9) If T is spanning tree of the k-dimensional hypercube Qk, then
there is an edge of Qk outside T that forms a cycle of at least length 2k.

Use antipodal vertices of vertices of T and mark the first edge from a vertex of T . There
are 2k vertices but only 2k � 1 edges, therefore, some edge is marked twice. . . .

Topic: Monotone Sublists

Example 10.1.5 (10.1.14) Every list of more than n2 real numbers has a monotone sublist
with length more than n.

Construct a list of �xi, yi� pairs for ai such that one count the number of increasing lists
ai is in and the other counts the decreasing lists ai is in. Every �xi, yi� then must be different.

Theorem 10.1.6 (10.1.17) If the
�
n
2

�
edges of a complete graph on n vertices have the dis-

tinct labels 1, . . . ,
�
n
2

�
, then some trail of length at least n� 1 has an increasing list of labels.

Let the weight of a vertex be the length of the longest increasing trail ending there; if the
total of weights is at least n�n � 1�, the Pigeonhole Principle guarantees a increasing trail of
length at least n� 1.

To count the weight, we add edges according to their labels in increasing order. For first
edge added, both end vertices get weight 1. For any edge added at some point, its two end
vertices have weights either the same or different. If the weights are the same i, since the edge
is increasing order, both vertices now have weight i	 1. If the weights are different, say i � j,
then the i becomes j 	 1 and the j stays the same. In either case, the total weights go up by
2. Since we have

�
n
2

�
edges, we have total weight at least n�n� 1�.

Example 10.1.7 (10.1.25) Graphs with girth 6 and high chromatic number.

The construction is inductive. It takes a G with girth at least 6, chromatic number k � 1,
and �V �G�� � r. Let N � �r � 1��k � 1� 	 1, take a set S of N isolated vertices and for each�
N
r

�
vertices in the set, connecting these r vertices to the vertices of a copy of G through r
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edges (there are
�
N
r

�
copies of G). The construction keeps the girth to be 6 at the least and by

the Pigeonhole Principle, there are r vertices in S colored with same color. Then the matching
G of these r vertices in S cannot be colored using k � 1 colors.

11/05/2008

10.2 Ramsey’s Theorem

Topic: The Main Theorem

Example 10.2.1 Among any 6 people, there are three mutual acquaintances or three mutual
strangers. This problem can be modeled as coloring of edges with red and blue of a K6 and
show that there exists a red K3 or a blue K3.

Definition 10.2.2 (10.2.2) A k-coloring is a function that labels each domain element with
one of k colors (typically �k�). We use

�
S
r

�
to denote the family of r-subsets of a set S. Under

a coloring of
�
S
r

�
, a set T  S is homogeneous if its r-subsets all have the same color.

Remark. In the previous example, S � 6, k � 2, r � 2 and we color all the edges (
�
S
r

� � �62�
of these). We are trying to find a set T with �T � � 3 for either color. If we allow different T
for different colors, then we may have a set S with k, r, p1, p2, . . . , pk s.t. we want to guarantee
that we have at least one set T in which every pi subset is colored with color i.

Definition 10.2.3 (10.2.3) In a k-coloring of
�
S
r

�
, a homogeneous set in which all r-sets have

color i is i-homogeneous. Given quotas p1, . . . , pk � �, if there exists N � N such that in
every k-coloring of

�
N
r

�
there is an i-homogeneous set of size pi for some i, then the smallest

such integer is the Ramsey number R�p1, . . . , pk; r�.

Example 10.2.4 Extending the previous example, let’s say we want a red Kp and a blue Kq.
We want to show that for any p, q, there exists a smallest number R�p, q; 2�. We claim that

R�p, q; 2� � R�p� 1, q; 2�	 � R�p, q � 1; 2�.

This is true because by the Pigeonhole Principle, in a complete graph with R�p � 1, q; 2�	 �
R�p, q � 1; 2� vertices, any vertex u have either at least R�p � 1, q; 2� red edges or at least
R�p, q; 2� blue edges. Suppose that u has R�p � 1, q; 2� red edges, then we have in the set
R�p�1, q; 2� either a blue Kq (we are done) or a red Kp�1. With a red Kp�1, adding red edges
from u gives the red Kp. The other case is the same.

29



Theorem 10.2.5 (10.2.5 Ramsey) Given k, r, p1, . . . , pk � �, the Ramsey number R�p1, . . . , pk; r�
exists.

Proof. The proof use same reasoning as in the previous example. For two colors p1 � p, p2 �
q, we pick a vertex u, we have to consider all the r subsets it is in. We want to guarantee that
there is a subset T of S � u such that all r � 1 subsets in T plus u are colored the same (say
red). If T is large enough to guarantee either a p� 1 set with r� 1 subsets red or a q set with
r subsets blue, then we are good. So the final number is

N � 1	R�p�, q�; r � 1�, p� � R�p� 1, q; r�, q� � R�p, q � 1; r�,

that is, we pick u and we are guaranteed to have either set of size p� with all r � 1 subsets
colored red, or a set q� with all r � 1 subsets colored blue. Rest is clear. �
Remark. Ramsey Theory is a generalized version of the Pigeonhole Principle; when r � 1, it
becomes the Pigeonhole Principle.

Theorem 10.2.6 (10.2.6) For m � �, there is a (least) integer N�m� such that every set of
at least N�m� points in the plane (no three collinear) contains an m-subset forming a convex
m-gon.

Proof. There are two facts: 1. Any 5 points contains a convex 4-gon. 2. m points in the
plane form a convex m-gon if any

�
m
4

�
points form a convex 4-gon.

Now if we let N � R�m, 5; 4� points in the plane be colored such the 4 subsets are red if
they are convex and blue if not. Then there either exists a m-set in which all 4 subsets are red
(convex), or there is a 5-set with all 4 subsets blue (non-convex). But since we know that the
second case is not possible, N guarantees a convex m-gon. �

Definition 10.2.7 A storage strategy T assigns each n-set A of keys a storage permutation:
if T �A� � σ, then the jth smallest element of A goes in location σ�j�, for 1 � j � n. A query
asks whether a key x is present in the table. A search strategy S probes successive locations
based on x, T , and the outcome of earlier probes. The answer to a probe is the key stored
there.

Lemma 10.2.8 (�10.2.8 Yao) Let T be a storage strategy for n-sets from a universe M with
�M � � 2. A set P  M is stored consistently if each n-set in P is stored according to the
same permutation. If some set of size 2n � 1 in M is stored consistently under T , then the
cost of T is at least �lg�n 	 1�� from every search strategy.

Theorem 10.2.9 (�10.2.9 Yao) Let f�m,n� be the complexity of membership testing when
n-sets from a space of m keys are stored in a table of size n. If m is sufficiently large, then
f�m,n� � �lg�n	 1��.

30



11/07/2008

Topic: Ramsey Numbers

Theorem 10.2.10 (10.2.11) R�p, q� � R�p � 1, q� 	 R�p, q � 1�. If both summands on the
right are even, then the inequality is strict.

Proof. The inequality obviously holds since in any R�p � 1, q� 	 R�p, q � 1� � 1 vertices,
if we don’t have Kp,Kq, then there are either a Kp�1 or Kq�1. Adding the last vertex then
gives us the result. Equality requires any R�p � 1, q� 	 R�p, q � 1� � 1 vertices to have no
Kp and no Kq. This in turn requires that every set of R�p � 1, q� 	 R�p, q � 1� � 1 ver-
tices to all have degree R�p � 1, q� � 1. But the total degree of R�p � 1, q� 	 R�p, q � 1� � 1
vertices is then D � �R�p � 1, q� 	 R�p, q � 1� � 1��R�p � 1, q� � 1�. If both summands are
even as in the assumption then D is odd, which is not possible as a total degree of any graph. �

Corollary 10.2.11 (10.2.11) R�p, q� � �p�q�2
p�1

�
.

Proof. Obviously, R�p, 2� � p. Applying previous theorem we can inductively prove the
claim. �

Theorem 10.2.12 (10.2.14, Erdos) R�p, p� � 1
e
�

2
p2p
2�1	 0�1��.

Proof. Counting argument is used in the proof. For each set of p vertices, if they form a
clique, there are at most 2�n2���p2� subgraphs containing the clique. Similarly, if they form an
independent set, there are at most 2�n2���p2� subgraphs containing the independent set. Since
there are

�
n
p

�
choices of p vertices in n vertices, there can be at most 2

�
n
p

�
2�n2���p2� subgraphs

containing p-cliques or independent sets of size p. If 2
�
n
p

�
2�n2���p2� � 2�n2� for some n, then

R�p, p� � n since there are some subgraphs left without either p-clique or independent set of
size p. Using an inequality

�
n
p

� � �ne
p�p then gives the result. �

Definition 10.2.13 For graphs G1, . . . , Gk, the (graph) Ramsey number R�G1, . . . , Gk� is
the smallest integer n such that every k-coloring of E�Kn� contains a copy of Gi in color i for
some i. When Gi � G for all i, we write R�G1, . . . , Gk� as Rk�G�.

Remark. Exercise 5.4.15 says that every graph G with minimum degree at least m�1 contains
every tree of m vertices.

Theorem 10.2.14 (10.2.17) If T is an m-vertex tree, then R�T,Kn� � �m� 1��n � 1� 	 1.
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Proof. For lower bound, color n � 1 copies of Km�1 red, and the rest edges between the
Km�1’s blue. No Km�1 can have red m vertex tree and the blue edges form a n � 1-partite
graph and does not contain a blue Kn.
For the upper bound, the proof is inductive on n, invoking a property of trees proved by in-
duction on m. Base case K1 is obvious. For n � 1, if 2-coloring of K�m�1��n�1��1 has any
vertex x with at least �m� 1��n� 2� 	 1 blue edges, then induction hypothesis gives us a red
T or a blue Kn�2. Adding x and we are done.
Otherwise, every vertex has at most �m � 1��n � 2� blue edges. This leaves m � 1 edges for
every vertex. By the remark, we can find any tree T of m vertices. �

10.3 Further Topics

Topic: Ven der Waerden’s Theorem

Theorem 10.3.1 (10.3.10, Schur) Given k � 0, there exists an integer sk such that every
k-coloring of the integers 1, . . . , sk yields monochromatic (but not necessarily distinct) x, y, z
solving x	 y � z.

Proof. From k-coloring f of the integers, define f �, the coloring of edges with vertices the
integers from the k-coloring, as f ��ei,j� � f��i � j��. We have that Rk�3; 2� will guarantee a
3-set with every 2-set colored the same; that is, a triangle of same color. Suppose the vertices
of the triangle are integers i � j � k, then x � j � i, y � k � j, z � k� i satisfy x	 y � z and
they are colored the same in the original k-coloring. �

Remark. A constructive lower bound of the minimum Schur number is �3k 	 1�
2; this is
obtained as a recurrence by leaving enough space so that x	y � z cannot have monochromatic
solution.

Theorem 10.3.2 (10.3.14, Van der Waerden, 1927) Given positive integers l, k, there
exists an integer w�l, k� such that every k-coloring of �w�l, k�� contains a monochromatic l-
term arithemetic progression.

Remark. This theorem is not proved in class. Only the following example is proved.

Example 10.3.3 w�3, 2� � 325. Partition the coloring into 65 blocks of 5 consecutive num-
bers; no matter how the first 5-block is colored, we can find 5-block colored the same way
within 33 blocks since there are 32 ways to 2-color a 5-block. Say that block is block 1 	 k,
then block 1, 1 	 k, 1 	 2k are all within the 65 blocks. If the first elements are the same in
the blocks, then we are done. Otherwise, we may assume the first element of first block is R
and there are two cases: if the first three elements of first/second block are RRB (it cannot be
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RRR), that will force third block to be BBR, then we have R̄RB, . . . , RR̄B, . . . , BBR̄ as what
we want. The other case is RBX, suppose X � B, then we have RBB̄, . . . , RB̄B, . . . , B̄BR;
if X � R, then last element of the block cannot be R (otherwise we have R̄BR̄XR̄), we then
have R̄BRXB, . . . , RBR̄XB, . . . , BRBXR̄.
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Chapter 12

Partially Ordered Sets

11/10/2008

12.1 Structure of Posets

Definition 12.1.1 An partial order relation is an R that is

reflexive: xRx,�x,

antisymmetric: xRy, yRx� x � y, and

transitive : xRy, yRz � xRz.

Definition 12.1.2 The comparability digraph of a poset P is the digraph that has an edge
x � y,�x � y. comparability graph is the digraph with orientation removed. We say y
covers x if x � y and no z exists such that x � z � y. The cover digraph and cover graph
are the digraph and graph of vertices of P under cover relation.

Definition 12.1.3 A chain in a poset is a subset such that every two elements are compara-
ble; hence a total order. A antichain is a subset such that no two elements are comparable.
An element is maximal if no elements is greater than it and minimal if no element is smaller
than it.

Definition 12.1.4 Let P be a poset, its width w�P � is the size of the largest antichain in P .
Its height h�P � is the size of the largest chain in P . Its length is one less than its height.

Definition 12.1.5 A family in a poset P is a subset of P . An (order) ideal or down-set
is a family I of P such that x � I, y � x � y � I. The dual ideal or up-set is the an I such
that x � I, x � y � y � I.
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Theorem 12.1.6 (12.1.17, Dilworth) If P is a finite poset, then the maximum size of an
antichain in P equals the minimum number of chains needed to cover the elements of P .

Proof. First we see that w�P �, the maximum size of an antichain, is at most the minimum
number of chains that is needed for a cover of P since if there are more, then some two elements
must be in some chain and cannot be in an anitchain. Therefore, all we need to prove is to
find one antichain from a set of minimum number of chains that cover P . See book for rest of
proof. �

11/12/2008

Remark. It is worth noting that chains may skip elements in between. Suppose that we have
a total order a � b � c � d � e � f , then ace and bdf are both chains.

Theorem 12.1.7 (12.1.18, Fuklerson) Dilworth’s Theorem is equivalent to the Konig-Egervary
Theorem on matching in bipartite graphs: the maximum size of a matching equals the mini-
mum size of a vertex cover.

Proof. (�) View a bipartite graph as a poset with one partite set as maximal elements and
the other minimal. The maximum chain has length 2 (a single edge). Every chain cover of
the poset of size n� k then uses k chains of length 2 and the rest are simply vertices (n� 2k
of these). These k chains is then a matching. Each antichain is an independent set in the
graph since there cannot be edges between any two elements in an antichain. That is, an
independent set of size n� k then leaves k vertices in the bipartite graph that forms a vertex
cover. Applying Dilworth’s Theorem then gives us that maximum size of antichain (minimum
vertex cover) equals the minimum number of chains (maximum matching).

(!) Turn a poset into a bipartite graph: make two copies of each element in the poset; a
	 copy and a � copy and put them into a 	 partite set and a � partite set. There is an edge
between x�, y� if x � y in the poset. The rest is then basically the reverse of the (�) part.
�

12.2 Symmetric Chains and LYM

Topic: Ranked and Graded posets

Definition 12.2.1 A function r : P � � is a rank function on P if r�y� � r�x�	1 whenever
y covers x. A poset with a ranked function is a ranked poset . A poset P is graded if all its
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maximal chains have the same length, and its rank r�P � is that length. The height h�x� of
an element x is the maximum length of a chain in P having x as its top element.

Definition 12.2.2 If P is graded, then the elements with rank k are the kth rank or kth
level Pk, and we write Nk�P � for the rank size �Pk�. A graded poset is rank symmetric if
Nk � Nr�P ��k for all k. It is rank unimodal if there is a rank k such that Ni � Nj whenever
i � j � k or i � j � k. The rank generating function is the formal power series

�
k�0 Nkx

k.

Example 12.2.3 2n is the poset formed with elements of subsets of �n� and inclusion order
relation. It is graded since every longest chain contains every size subset from 0� n. For any
element a, r�a� � �a�, the size of the set. r�2n� � n. The kth rank is

��n�
k

�
; and Nk �

�
n
k

�
. The

rank generating function is �1	 x�n. The poset is rank-symmetric and rank-unimodal.

Example 12.2.4 Divisors of an integer, or multisets. The divisor of a positive integer N form
a poset D�N� under divisibility. It is graded and rank-symmetric.

Topic: Symmetric Chain Decomposition

Definition 12.2.5 A chain in a graded poset P is symmetric if it has an element of rank
r�P � � k whenever it has an element of rank k. A chain is consecutive or skipless if its
elements lie in consecutive ranks. A symmetric chain decomposition of P is a partition
of P into symmetric skipless chains. A poset with a symmetric chain decomposition is a
symmetric chain order .

Example 12.2.6 Since every chain in a symmetric chain decomposition intersects the an-
tichain formed by the middle rank, every symmetric chain decomposition is a Dilworth decom-
position (a decomposition into the minimum number of chains). Since every chain is symmetric
and skipless, a symmetric chain order must be rank-symmetric and rank-unimodal.

Theorem 12.2.7 (12.2.9) 2n is a symmetric chain order.

Proof. Via inductive construction over n. �

Theorem 12.2.8 (12.2.10) Products of symmetric chain orders are symmetric chain orders.

Example 12.2.9 Bracketing decomposition of 2n. For a subset A " �n�, complete a n digit
binary number by writing a 1 at ith position if i � A and 0 otherwise. Then turn each 0 into a
left bracket and each 1 into a right bracket. After we get the brackets, we mark the “matched”
brackets and may call these fixed brackets. Any two bracketing structures with the same fixed
brackets belong to the same chain. See page 675 for an example.

Theorem 12.2.10 (12.2.12) The inductive and bracketing decomposition of 2n are the same.
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Theorem 12.2.11 (12.2.15) The number of monotone Boolean functions is at most 3�
n

�n�2��.

11/14/2008

Topic: LYM and Sperner Properties

Definition 12.2.12 A k-family in a poset P is a family with no chains of size k 	 1. A
graded poset has the Sperner property if its largest-sized rank is a maximum antichain. It
has the strong Sperner Property if for all k its k largest ranks form a maximum k-family.

Theorem 12.2.13 (12.2.16) In 2n, the elements of rank �n
2� form a maximum antichain.

Proof. The middle rank elements obviously form an antichain (since these sets are all of
the same size, and are pairwise different); we only need to show that this is the best possible.
For any antichain F and x � F , the maximal chains passing through x cannot pass through
any other element of F . Therefore, if we sum up for each element x � F the maximal chains
passing through it, it cannot be more than total number of maximal chains. For 2n, we then
have

�
x	F �x�!�n� �x��! � n!. Dividing both sides by n! we get (for 2n only)

�
x	F N�1

r�x� � 1.
Hence �F � � maxx Nr�x�. �

Definition 12.2.14 The inequality
�

x	F N�1
r�x� � 1 is the LYM inequality . A graded poset

satisfies the LYM property if its antichains all satisfy the LYM inequality. Such a poset is
an LYM order .

Remark. By 12.2.6, LYM property implies Sperner property. In fact, LYM property implies
strong Sperner property.

Definition 12.2.15 (12.2.18) A nonempty list of maximal chains (not necessarily disjoint)
in a graded poset P is a regular covering of P if, for each rank Pk, each element of Pk lies
in the same fraction of these chains.

Definition 12.2.16 (12.2.20) A graded poset P has the normalized matching property
if �A��
Nk�1 � �A�
Nk for all k and all A  Pk, where A� � U �A� � Pk�1 (U �A� is the up-set
of A).

Theorem 12.2.17 (12.2.22) For a graded poset P , the following statements are equivalent:

• P has a regular covering.

• P has the LYM property.
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• P has the normalized matching property.

Theorem 12.2.18 (12.2.24) Every rank-unimodal rank-symmetric LYM poset is a symmet-
ric chain order.

Remark. Chain product � symmetric chain order � strong Sperner property � for all k, k
largest ranks form a maximum k-family.
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Chapter 14

The probabilistic Method

11/17/2008

Remark. This chapter and anything following it focus on methods. It seems that these
methods are complex but not too hard to understand. The important thing to grasp is then
to see how methods are being used.

14.1 Existence and Expectation

Topic: Probability Spaces and Inequalities

Proposition 14.1.1 (14.1.5) For x � �, 1 	 x � ex, with equality only for x � 0. Also,
�1	 x

n�n � ex for n � �.

Proposition 14.1.2 (14.1.6) if k � �, then
�
n
k

� � �ne
k�k.

Topic: Existence Arguments

Theorem 14.1.3 (14.1.7) R�k, k� � �e�2��1k2k
2.

Proof. The idea is to treat the edges as having 1
2 probability of being in a graph. There are�

n
2

�
edges, so each graph has probability of 2��n2� to show up. For any k vertices, the probability

that it is a clique or independent set is 2 � 2��k2� � 21��k2�. There are
�
n
k

�
ways of choosing k

vertices, therefore the probability that at least one of them is a k-clique or independent set of
size k is at most

�
n
k

�
21��k2�. If some n makes value is less than 1 then R�k, k� � n. �
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Topic: Random Variables

Theorem 14.1.4 (14.1.16) For a graph G, α�G� � �v	V �G�
1

d�v��1 .

Proof. Use an ordering σ of vertices of G, if a vertex v appears in the ordering earlier than
all its neighbors, we may include it in our independent set. When ordering is uniformly chosen
at random, the probability that v appears before all its neighbors is 1

d�v��1 . Rest follows. �

Theorem 14.1.5 (�14.1.17) Let G be an n-vertex graph with no �r	1�-clique. The number
of edges of G is maximized (uniquely) when G is the complete r-partite graph Tn,r whose
part-sizes differ by at most 1.

Theorem 14.1.6 (14.1.20) The optimal pebbling number of the k-dimensional hypercube is
at least �4
3�k.

11/19/2008

14.2 Refinements of Basic Methods

Topic: Deletions and Alterations

Theorem 14.2.1 (14.2.1) R�k, k� � n � �nk�21��k2�, where n � �. In particular, R�k, k� �
�1� o�1��e�1k2k
2.

Theorem 14.2.2 (14.2.2) For k � 1, every n-vertex graph with minimum degree k has a
dominating set of size at most n1�ln�k�1�

k�1 .

Theorem 14.2.3 (14.2.3) Given k � 3, g � 3, there exists a graph with girth at least g and
chromatic number at least k.

11/21/2008

Topic: The Symmetric Local Lemma
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Definition 14.2.4 Let A1, . . . , An be events. A compound event specifies the occurrence of
Ai for i � S and the non-occurrence of Aj for j � T , where S and T are disjoint subsets of �n�.
An event B is mutually independent of A1, . . . , An if B is independent of each compound
event specified by disjoint subsets of �n�.

Corollary 14.2.5 (Symmetric Local Lemma) Let A1, . . . , An be events such that each is
mutually independent of some set of all but d � 1 of the other events, and suppose that
P �Ai� � p for all i. If epd � 1, then P ��Āi� � 0.

Remark. This part seems to be quite complicated; due to time constraints, it will not be
pursued further, at least for now.
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