
On Design and Analysis of Chemical 
Reaction Network Algorithms

Anne Condon 

with Ben Chugg, Monir Hajiaghayi, David Kirkpatrick, Jan Manuch 
The University of British Columbia 



My Motivation: Computing in a Test Tube

• Computing need not be limited to silicon! 
• Computing with digital biomolecules such as DNA 

can facilitate sensing and mediation in wet 
environments, and can help us understand what 
goes on in such environments 



My Motivation: Computing in a Test Tube

X + Y → B + B 
X + B → X + X 
Y + B → Y + Y

Chemical Reaction 
Network (CRN)

Chen et al., 2013Soloveichik et al., 2013

1
1
1

compile to 
DNA

experimental 
measurements



This Talk

• What is the CRN computation model?  
• Simple analysis of Approximate Majority CRNs 
• On composing function-computing CRNs 



Chemical Reaction Network (CRNs)



Chemical Reaction Network (CRNs)



Chemical Reaction Network (CRNs)

Interactions 
• Initially a well-mixed test tube contains n 

molecules, drawn from m species types  
• Interactions of a fixed order o happen 

when o molecules collide 
• An interaction is equally likely to involve 

any o of the constituent molecules  
• This is a stochastic (as opposed to mass 

action), asynchronous model 
• If the volume is proportional to n, the 

expected time for n interactions is ϴ(1)



Chemical Reaction Network (CRNs)

Reactions 
• Some interactions may trigger productive 

reactions that change species counts, 
while preserving the total molecular count 

• If species counts are x1 … xm and reaction 
r = (s1 … sm) → (p1 … pm) is applicable, 
i.e., si ≤ xi, then the probability that an 
interaction results in reaction r is

X + X + Y → X + X + X 
X + Y + Y → Y + Y + Y 



Chemical Reaction Network (CRNs)

Computations 
• Starting from given initial configuration 

(vector of species counts), a random 
sequence of interactions triggers a 
sequence of (not necessarily productive) 
reaction events 

• The resulting random sequence of 
configurations is a computation 

• The expected time for the computation 
is the number of interactions divided by 
n, the total molecule count

X + X + Y → X + X + X 
X + Y + Y → Y + Y + Y 



Approximate Majority



Approximate Majority

• Given an initial mixture with n molecules, some of 
species X and the rest of species Y, the goal is to 
reach consensus on the majority species, assuming 
the initial gap is large: Ω(√n lg n) 



Approximate Majority Background

• Widely studied in distributed systems, epidemiology, 
social networks, and voting theory [Becchetti et al. 
2014, 2015; Cruise & Ganesh 2013; Doerr et al., 
2011; Mossel et al., 2014; Perron et al., 2009; 
Mertzios et al., 2017; …] 

• Comparing counts is a basic building block in 
simulating counter machines by population protocols 
[Angluin et al., 2004] 

• Chemical reaction networks that solve approximate 
majority can be found in the cell cycle switch in 
eukaryotes that induces mitosis [Cardelli & Csikász-
Nagy 2012]



Approximate Majority Background

• Most closely related to our work is a population 
protocol of Angluin, Aspnes, and Eisenstat 2006, the 
Single-B CRN: 

X + Y → X + B 
X + Y → Y + B 
X + B → X + X 
Y + B → Y + Y 

• “Unfortunately, while the protocol itself is simple, 
proving that it converges quickly appears to be very 
difficult” [Angluin et al.]

1/2
1/2



Approximate Majority: Our Work

• We provide a simple proof of correctness and 
efficiency of Single-B 

• We first analyze a tri-molecular CRN, TRI: 

X + X + Y → X + X + X 
X + Y + Y → Y + Y + Y 

• We then show how Double-B and Single-B CRN 
emulate TRI 

• We use the same general approach to analyze 
many variants: multi-valued consensus, consensus 
with uncertain reaction rates, Byzantine agents, …



Approximate Majority: TRI Analysis

X + X + Y → X + X + X 
X + Y + Y → Y + Y + Y



Approximate Majority: TRI Analysis

Theorem: For any γ ≥ 1, a computation of TRI reaches 
consensus on X, with probability 1 − exp(−Ω(γ lg n)), in 
O(γ n lg n) interaction events, provided initially the 
count of X exceeds that of Y by at least √γ n lg n

X + X + Y → X + X + X 
X + Y + Y → Y + Y + Y



Approximate Majority: TRI Analysis

Analysis Tools: 

Biased one-dimensional random walk: In a 
sequence of independent trials, each with success 
probability at least p > 1/2, the probability that the 
number of failures ever exceeds the number of 
successes by b is at most ((1−p)/p)b 

Chernoff bounds: In a sequence of independent trials, 
the probability that the number of successes differs 
from the expected value µ by more than δµ is at most 
exp(−δ2µ/2)



Approximate Majority: TRI Analysis

Random variables x and y denote the number of copies 
of X and Y during a computation of TRI

x-y 
y

106

100

Time:       0         10       20        30        40       50

x-y= √γ n lg n
.



Approximate Majority: TRI Analysis

x-y doubling:  O(lg n) stages with O(n) interactions each  
y halving:       O(lg n) stages with O(n) interactions each 
                      One stage with O(n lg n) interactions

x-y 
y

106

100

Time:       0         10       20        30        40       50

x-y doubling

y halving

x-y doubling
y halving:

consensus

consensus:

. . . . … . . . …

y=n/8

y= ϴ(lg n)
.



Approximate Majority: TRI Analysis

Analysis of a single stage of x-y doubling:  
(a) low prob of significant backsliding 
(b) assuming (a), high prob of doubling in O(n) productive reactions 
(c) high probability that (b) occurs in O(n) interactions

x-y 
y

106

100

Time:       0         10       20        30        40       50

. . . . …

x-y doubling

.y=n/8



Approximate Majority: Double-B Analysis
X + Y → B + B   (0) 
X + B → X + X   (1) 
Y + B → Y + Y   (2)



Approximate Majority: Double-B Analysis

Correctness:  
• Let b be the count of B’s 
• Let ẋ = x + b/2 and ẏ = y + b/2 
• Reaction (0) leaves ẋ and ẏ unchanged,  
• Reactions (1) and (2) change ẋ and ẏ by 1/2 exactly 

as the two TRI reactions change x and y by 1 

X + Y → B + B   (0) 
X + B → X + X   (1) 
Y + B → Y + Y   (2)



Approximate Majority: Other Analyses

Using same “emulation” approach, we can analyze 
several other CRNs: 

• Multi-valued consensus 
• Uncertain reaction rates 
• Byzantine agents 
• Initation by infection



Approximate Majority: Summary

Simplicity achieved by 
• Starting with the tri-molecular CRN 
• Analyzing short stages where quantities don't 

change by more than a constant factor 
• Separating analysis of productive reactions vs 

interactions



Approximate Majority: Open Problems

• Simple argument that consensus is reached quickly 
with a small gap (even if high error)? 

• Algorithmic Chernoff bound? 
• Analysis of the biological variants described by 

Cardelli et al?



This Talk

• What is the CRN computation model?  
• Simple analysis of Approximate Majority CRNs 
• On composing function-computing CRNs 



What else can be computed by CRNs?

• Inputs n1,…, nk are represented by (unary) 
counts of species X1,…, Xk 

• Total count of input molecules is n

Prob[correct]<1 all computable 
functions

unbounded 
volume

Angluin et al., 
Cook et al.

Prob[correct]=1 
(Stable 
computation)

semilinear 
functions

ϴ(n) volume Angluin et al., 
Doty et al.



What Are Semilinear Functions?

Semilinear functions ℕk ⇾ ℕ are expressible as a 
finite number of affine linear pieces over linear 
domains (whose union is ℕk) 

Examples: mod, min, sum, difference, or 
compositions of these 



Stable CRNs for Semilinear Functions

Example: mod 
f(n) = 2n-1, n = 0 mod 2      // linear set { 2i | i ∈ ℕ } 
          2n,    n = 1 mod 2 



Stable CRNs for Semilinear Functions

Example: mod 
f(n) = 2n-1, n = 0 mod 2      // linear set { 2i | i ∈ ℕ } 
          2n,    n = 1 mod 2 

Stable CRN, with n copies of X as input, plus a leader L: 

 L + X →  L1+ 2Y 
   L1+ X →  L0 + Y 
   L0+ X →  L1 + 3Y



Stable CRNs for Semilinear Functions

Example: sum  
f(n1, n2) = n1 + n2  

    
Stable CRN, with n1, n2 copies of X1, X2 as input: 

X1 →  Y 
X2 →  Y 

  



Stable CRNs for Semilinear Functions

Example: max 
f(n1, n2) = max( n1, n2) [= n1 + n2 - min(n1, n2) ] 

f(n1, n2) = n2, n1 < n2    // linear set { (0,1) + i1(0,1) +i2(1,1) | i ∈ ℕ } 
                n1, n1 ≥ n2      
    



Stable CRNs for Semilinear Functions

Example: max 
f(n1, n2) = max( n1, n2) [= n1 + n2 - min(n1, n2) ] 

    



Stable CRNs for Semilinear Functions

Example: max 
f(n1, n2) = max( n1, n2) [= n1 + n2 - min(n1, n2) ] 
    
Stable CRN, with n1, n2 copies of X1, X2 as input: 

X1         →  Y + Z1 
X2         →  Y + Z2 

 

// count of Y will be n1 + n2



Stable CRNs for Semilinear Functions

Example: max 
f(n1, n2) = max( n1, n2) [= n1 + n2 - min(n1, n2) ] 
    
Stable CRN, with n1, n2 copies of X1, X2 as input: 

X1         →  Y + Z1 
X2         →  Y + Z2 

  Z1 + Z2  →  Z           // count of Z will be min(n1, n2) 
  Y + Z     →               // subtract min(n1, n2) from n1 + n2

// count of Y will be n1 + n2



Stable CRNs for Semilinear Functions

Example: What about min { 2max( n1, n2),  n1 + 2n2 }?

CRN for 2max (with o/p Y1) 
X1          →  2Y1 + Z1 
X2          →  2Y1 + Z2 
Z1 + Z2   →  2Z 
Y1 + Z    →  

CRN for n1 + 2n2 (with o/p Y2) 
X1          →  Y2 
X2          →  2Y2

Y1

Y2
CRN for min 

Y1 + Y2 →  Y 



Stable CRNs for Semilinear Functions

Example: What about min { 2max( n1, n2),  n1 + 2n2 }?

CRN for 2max (with o/p Y1) 
X1          →  2Y1 + Z1 
X2          →  2Y1 + Z2 
Z1 + Z2   →  2Z 
Y1 + Z     → 

CRN for n1 + 2n2 (with o/p Y2) 
X1          →  Y2 
X2          →  2Y2

Y1

Y2
CRN for min 

Y1 + Y2 →  Y 

Problem: the min CRN may 
consume Y1’s before the 
“2max” CRN has stabilized



Stable Function Composition

Composition in this way is correct if the CRN for f is 
• non-decreasing 
• output oblivious: its output is not a reactant of any 

of its reactions

CRN for f CRN for g
Yf Yg o f

CRN for g o f



What Functions Are Output Oblivious?

Example: mod if the linear coefficients match 
f(n) = 2n-1, n = 0 mod 2      
          2n,    n = 1 mod 2 

Stable CRN, with n copies of X as input, plus a leader L: 

 L + X →  L1+ 2Y 
   L1+ X →  L0 + Y 
   L0+ X →  L1 + 3Y



What Functions Are Output Oblivious?

Example: min( n1, n2) 

Stable CRN, with n1 and n2 copies of X1, and X2 as input: 

 X1 + X2 →  Y



What Functions Are Output Oblivious?

Example: max( n1, n2) is not output oblivious



What Functions Are Output Oblivious?

Example: max( n1, n2) is not output oblivious

…(p1,0) (pi,0) (pi+1,0)
S1   ≤                  Si      ≤               Si+1 

Choose p1 < p2 < … pi such that if Si is a stable 
configuration reached by C on (pi,0), then Si ≤ Si+1

(stable configuration reached by C) 
…



What Functions Are Output Oblivious?

Example: max( n1, n2) is not output oblivious

…(p1,0) (pi,0) (pi+1,0)
S1   ≤                  Si      ≤               Si+1 (stable configuration reached by C) 

…



What Functions Are Output Oblivious?

Example: max( n1, n2) is not output oblivious

…(p1,0) (pi,0) (pi+1,0)
S1   ≤                  Si      ≤               Si+1 

Choose qi such that pi< qi< pi+1 ; then max(pi, qi ) = qi

(stable configuration reached by C) 
…

(pi,qi)



What Functions Are Output Oblivious?

Example: max( n1, n2) is not output oblivious

…(p1,0) (pi,0) (pi+1,0)
S1   ≤                  Si      ≤               Si+1 (stable configuration reached by C) 

…

(pi,qi)



What Functions Are Output Oblivious?

Example: max( n1, n2) is not output oblivious

…(p1,0) (pi,0) (pi+1,0)
S1   ≤                  Si      ≤               Si+1 

There is computation of C on input (pi, qi ) that first reaches Si, 
producing pi, and then goes on to produce qi - pi additional outputs

(stable configuration reached by C) 
…

(pi,qi)



What Functions Are Output Oblivious?

Example: max( n1, n2) is not output oblivious

…(p1,0) (pi,0) (pi+1,0)
S1   ≤                  Si      ≤               Si+1 (stable configuration reached by C) 

…

(pi,qi) (pi+1,qi)



What Functions Are Output Oblivious?

Example: max( n1, n2) is not output oblivious

…(p1,0) (pi,0) (pi+1,0)
S1   ≤                  Si      ≤               Si+1 

But then on input (pi+1,qi ) C can produce pi+1 + (qi - pi ) outputs, 
a contradiction

(stable configuration reached by C) 
…

(pi,qi) (pi+1,qi)



What Functions Are Output Oblivious?

One final output oblivious example…

A simple (non-decreasing) fissure function: 

f(n1, n2) = 3n1+1,              n1 < n2     
                3n1 (= 3n2),      n1 = n2  
                3n2 + 2,            n1 ≥ n2    



Stable Function Composition: Summary

A function can be stably computed by an output oblivious 
CRN with a leader if and only if it is the min of sums of 
non-decreasing mod and simple fissure functions 

While semi linear functions can be stably computed by 
CRNs with or without a leader, the class of functions that 
can be stably computed by output oblivious CRNs without 
a leader is a subclass of those computable with a leader



Stable Function Composition: Open Problems

When is composition possible when functions are not 
output-oblivious (with the help of an intermediate 
CRN)?



In Closing

This talk focused on CRNs for approximate majority 
and output oblivious CRNs for stable function 
computation 

There are many more fascinating problems on this 
topic! 

… And the field of molecular programming 
encompasses many models other than CRNs


