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THIS	TALK

General	Technique	for	Statistical	Query	Lower	Bounds:
Leads	to	Tight	Lower	Bounds	

for	a	range	of	High-dimensional	Estimation	Tasks

Concrete	Applications	of	our	Technique:

• Learning	Gaussian	Mixture	Models	(GMMs)

• Robustly	Learning	a	Gaussian

• Robustly	Testing	a	Gaussian

• Statistical-Computational	Tradeoffs



STATISTICAL	QUERIES	[KEARNS’	93]

𝑥", 𝑥$, … , 𝑥& ∼ 𝐷 over	𝑋



STATISTICAL	QUERIES	[KEARNS’	93]

𝑣" − 𝐄-∼. 𝜙" 𝑥 ≤ 𝜏
𝜏 is	tolerance	of	the	query;	𝜏 = 1/ 𝑚�
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𝜙": 𝑋 → −1,1

Problem	𝑃 ∈ SQCompl 𝑞,𝑚 :	
If	exists	a	SQ	algorithm	that	solves	𝑃 using	𝑞 queries	to	
STAT.(𝜏 = 1/ 𝑚� )



POWER	OF	SQ ALGORITHMS
Restricted	Model:	Hope	to	prove	unconditional	computational	lower	
bounds.

Powerful	Model:	Wide	range	of	algorithmic	techniques	in	ML	are	
implementable	using	SQs*:

• PAC	Learning:	AC0,	decision	trees,	linear	separators,	boosting.

• Unsupervised	Learning:	stochastic	convex	optimization,	moment-
based	methods,	k-means	clustering,	EM,	…
[Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM’17]

Only	known	exception:	Gaussian	elimination	over	finite	fields	(e.g.,	
learning	parities).

For	all	problems	in	this	talk,	strongest	known	algorithms	are	SQ.



METHODOLOGY	FOR	SQ LOWER	BOUNDS
Statistical	Query	Dimension:

• Fixed-distribution	PAC	Learning	
[Blum-Furst-Jackson-Kearns-Mansour-Rudich’95;	…]

• General	Statistical	Problems
[Feldman-Grigorescu-Reyzin-Vempala-Xiao’13,	…,	Feldman’16]

Pairwise	correlation	between	D1 and	D2 with	respect	to	D:

Fact:	Suffices	to	construct	a	large	set	of	distributions	that	are	nearly
uncorrelated.	
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GAUSSIAN	MIXTURE	MODEL	(GMM)

• GMM:	Distribution	on								with	probability	density	function

• Extensively	studied	in	statistics	and	TCS

Karl	Pearson	(1894)



LEARNING	GMMS	- PRIOR	WORK	(I)

Two	Related	Learning	Problems
Parameter	Estimation:	Recover	model	parameters.

• Separation	Assumptions:	Clustering-based	Techniques
[Dasgupta’99,	Dasgupta-Schulman’00,	Arora-Kanan’01,	
Vempala-Wang’02,	Achlioptas-McSherry’05,	
Brubaker-Vempala’08]

Sample	Complexity:
(Best	Known)	Runtime:		

• No	Separation:	Moment	Method
[Kalai-Moitra-Valiant’10,	Moitra-Valiant’10,	
Belkin-Sinha’10,	Hardt-Price’15]

Sample	Complexity:		
(Best	Known)	Runtime:



SEPARATION	ASSUMPTIONS

• Clustering	is	possible	only	when	the	components	have	very	
little	overlap.

• Formally,	we	want	the	total	variation	distance	
between	components	to	be	close	to	1.

• Algorithms	for	learning	spherical	GMMS
work	under	this	assumption.

• For	non-spherical	GMMs,	known	algorithms	require
stronger	assumptions.



LEARNING	GMMS	- PRIOR	WORK	(II)

Density	Estimation:	Recover	underlying	distribution
(within	statistical	distance			).

[Feldman-O’Donnell-Servedio’05,	Moitra-Valiant’10,	Suresh-Orlitsky-Acharya-
Jafarpour’14,	Hardt-Price’15,	Li-Schmidt’15]

Sample	Complexity:

(Best	Known)	Runtime:		

Fact:	For	separated	GMMs,	density	estimation	and	parameter	
estimation	are	equivalent.	



LEARNING	GMMS	– OPEN	QUESTION

Summary:	The	sample	complexity	of	density	estimation	for	
k-GMMs	is																				.	The	sample	complexity	of	parameter	
estimation	for	separated k-GMMs	is																					.

Question:	Is	there	a																						time learning	algorithm?	



STATISTICAL	QUERY	LOWER	BOUND	FOR	
LEARNING	GMMS

Theorem:	Suppose	that																								.	Any	SQ	algorithm	that	learns	
separated	k-GMMs	over							to	constant	error	requires	either:
• SQ	queries	of	accuracy

or
• At	least																												

many	SQ	queries.	

Take-away: Computational	complexity	of	learning	GMMs	is	
inherently	exponential	in	dimension	of	latent	space.



GENERAL	RECIPE	FOR	(SQ)	LOWER	BOUNDS

Our	generic	technique	for	proving	SQ	Lower	Bounds:	

� Step	#1:	Construct	distribution							that	is	standard	Gaussian	
in	all	directions	except			.			

� Step	#2:	Construct	the	univariate	projection	in	the				direction
so	that	it	matches	the	first	m moments	of	

� Step	#3:	Consider	the	family	of	instances	



HIDDEN	DIRECTION	DISTRIBUTION

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Example:



GENERIC	SQ	LOWER	BOUND

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown							within	error				
requires	either	queries	of	accuracy											or												many	queries.



WHY	IS	FINDING	A	HIDDEN	DIRECTION	HARD?

Observation:	Low-Degree	Moments	do	not	help.

• A matches	the	first	m moments	of
• The	first	m moments	of									are	identical	to	those	of
• Degree-(m+1) moment tensor has              entries. 

Claim:	Random	projections	do	not	help.

• To	distinguish	between							and																,	would	need	
exponentially	many	random	projections.		



ONE-DIMENSIONAL	PROJECTIONS	ARE	ALMOST	GAUSSIAN

Key	Lemma:	Let	Q be	the	distribution	of												,	where																.
Then,	we	have	that:



PROOF	OF	KEY	LEMMA	(I)



PROOF	OF	KEY	LEMMA	(I)



PROOF	OF	KEY	LEMMA	(II)

where is	the	operator	over																							

Gaussian	Noise	(Ornstein-Uhlenbeck)
Operator



EIGENFUNCTIONS OF	ORNSTEIN-UHLENBECK OPERATOR

Linear	Operator acting	on	functions

Fact	(Mehler’66):

• denotes	the	degree-i Hermite polynomial.
• Note	that																																													are	orthonormal	with	respect	

to	the	inner	product



GENERIC	SQ	LOWER	BOUND

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown							within	error				
requires	either	queries	of	accuracy										or												many	queries.



PROOF	OF	GENERIC	SQ LOWER	BOUND	
• Suffices	to	construct	a	large	set	of	distributions	that	are	

nearly uncorrelated.	
• Pairwise	correlation	between	D1 and	D2 with	respect	to	

D:

Two	Main	Ingredients:

Correlation	Lemma:	

Packing	Argument:	There	exists	a	set	S of																unit	
vectors	on								with	pairwise	inner	product	



Theorem:	Any	SQ	algorithm	that	learns	separated	k-GMMs	over							
to	constant	error	requires	either	SQ	queries	of	accuracy
or	at	least																																many	SQ	queries.	

APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (I)

Want	to	show:

by	using	our	generic	proposition:

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown							within	error				
requires	either	queries	of	accuracy										or												many	queries.



APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (II)
Lemma:	There	exists	a	univariate	distribution	A that	is	a	k-GMM	
with	components	Ai such that:
• A agrees	with															on	the	first	2k-1 moments.
• Each	pair	of	components	are	separated.
• Whenever	v and	v’ are	nearly	orthogonal	



APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (III)
High-Dimensional	Distributions							look	like	“parallel	pancakes”:		

Efficiently	learnable	for	k=2. [Brubaker-Vempala’08]



FURTHER	RESULTS

SQ	Lower	Bounds:
• Learning	GMMs
• Robustly	Learning	a	Gaussian

“Error	guarantee	of	[DKK+16]	are	optimal	for	all	poly	time	algorithms.”
• Robust	Covariance	Estimation	in	Spectral	Norm:	

“Any	efficient	SQ	algorithm	requires														samples.”
• Robust	k-Sparse	Mean	Estimation:

“Any	efficient	SQ	algorithm	requires																														samples.”

Sample	Complexity	Lower	Bounds
• Robust	Gaussian	Mean	Testing
• Testing	Spherical	2-GMMs:	
“Distinguishing	between																and																																																											
requires										samples.”
• Sparse	Mean	Testing

Unified	technique	yielding	a	range	of	applications.



SAMPLE	COMPLEXITY	OF	ROBUST	TESTING
High-Dimensional	Hypothesis	Testing

Gaussian	Mean	Testing
Distinguish	between:
• Completeness:		
• Soundness:																																with		

Simple	mean-based	algorithm	with																			samples.

Suppose	we	add	corruptions	to	soundness	case	at	rate											.

Theorem	
Sample	complexity	of	robust	Gaussian	mean	testing	is										.

Take-away: Robustness	can	dramatically	increase	the	sample	
complexity	of	an	estimation	task.



SUMMARY	AND	FUTURE	DIRECTIONS

• General	Technique	to	Prove	SQ	Lower	Bounds

• Implications	for	a	Range	of	Unsupervised	Estimation	Problems

Future	Directions:

• Further	Applications	of	our	Framework	
Discrete	Setting	[D-Kane-Stewart’18],	
Robust	Regression	[D-Kong-Stewart’18],	
Adversarial	Examples	[Bubeck-Price- Razenshteyn’18]
…

• Alternative	Evidence	of	Computational	Hardness?

Thanks!	Any	Questions?


