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Model: Massive Parallel Computation (MPC)
Introduced by Karloff, Suri, and Vassilvitskii (2010)

M machines S space per machine

Input: N items

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives N/M items
• Single round:

1. Each machine performs computation
2. Each machine sends and receives at most O(S) data
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Model: Massive Parallel Computation (MPC)
• Inspired by MapReduce [Dean, Ghemawat 2004]
• Sleak abstraction that hides details of MapReduce

• Total space considerations:
[Beame 2009: Problem 27 at sublinear.info]
[Beame, Koutris, Suciu 2013]
[Andoni, Nikolov, Onak, Yaroslavtsev 2014]
• Karloff et al. allow for N1−ε machines with N1−ε space

⇒ near quadratic total space N2−2ε

• A refined version asks for near-linear total space:
M × S = Õ(N).

• Goals:
• Small number of rounds
• Small space per machine
• Fast local computation
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This Talk: MPC for Graphs

Input: edges of an m-edge graph on n vertices

S space per machine M = O(m/S) machines

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine
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This Talk: Matching Algorithms

Why study graph matchings?

• Non-trivial appealing packing problem

• Great testbed for many new algorithmic ideas

• Helpful to understand the power of the model

• They have practical applications
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Graph Problems

Maximum Matching: find maximum set of vertex disjoint edges

Krzysztof Onak (IBM Research) Round Compression for Parallel Matching Algorithms 10 / 25



Large Matchings: Rounds vs. Space

• Space n1+Ω(1): (1 + ε)-approximation in O(1) rounds
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]
[Ahn, Guha 2015]

• Space nΩ(1): 2-approximation in O(log n) rounds
• Simulate classic MIS or Maximal Matching

PRAM/distributed algorithms:
• Luby (1986)
• Alon, Babai, Itai (1986)
• Israeli, Itai (1986)

• Tools for simulation:
• Karloff, Suri, and Vassilvitskii (2010)
• Goodrich, Sitchinava, and Zhang (2011)

• For O(n) space, round complexity becomes Θ(log n)
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Our Results

For O(n) space, improve O(1)-approximation
to poly(log log n) rounds

More detailed version:

For n/α space, O(1)-approximation
in O

(
(log log n)2 + logα

)
rounds

(Works well even if space slightly sublinear in n)

Interesting space regime:
• often just enough to fit a solution on a single machine
• gold standard for space in semi-streaming algorithms
• reasonable middle ground
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Highlights of Our Approach

Starting point: O(1)-approximation distributed algorithm
(in the LOCAL model)

• It uses Θ(log n) rounds
• So would direct simulation

Round compression:
Repeatedly compress a superconstant number of rounds
of the original algorithm into a constant number of MPC
rounds

Vertex sampling:
Previous algorithms used edge sampling
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Vertex Cover [Parnas, Ron 2007]

V1V1

V2

V1

V2

V3

. . .

V1

V2

V3

• Distributed O(log n)-approximation algorithm

• Algorithm:
• Remove vertices of degree at least n/2⇒ V1

• Remove vertices of degree at least n/4⇒ V2

• Remove vertices of degree at least n/8⇒ V3

• . . .

• Remove vertices of degree at least n/2i ⇒ Vi

• . . .

• Remove vertices of degree at least 1⇒ Vlog n

• C :=
⋃

Vi is a vertex cover
of size O(log n) ·OPT
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O(1) Approximation [Onak, Rubinfeld 2010]

ViVi

Mi

Vi

Mi

V ′
i

Vi

V ′
i

• Originally developed for dynamic graph algorithms

• Modified Parnas-Ron partition, in phase i :
• Select Vi as before
• Find a matching Mi of vertices Vi of size Ω(|Vi |)
• Let V ′i be the additionally matched vertices
• Remove from the graph both Vi and V ′i

• Output: vertex cover C =
⋃

i(Vi ∪ V ′i )
matchingM =

⋃
i Mi

• Analysis:
• |C| and |M| are within a constant factor
• minimum vertex cover size ≥ maximum matching size
• C andM are constant-factor approximations

• Goal: efficiently emulate this algorithm in MPC
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Emulating the Peeling Algorithm

• Needed to emulate a phase of the peeling algorithm:
1 (Approximate) vertex degrees
2 A random neighbor for each high degree vertex

• Then we can:
1 Find the set of high degree vertices
2 Find a matching for constant fraction of them

• Our plan:
• Partition vertices at random into a number of groups
• Ensure that graphs induced by each group fit

onto a single machine
• Ensure that enough neighbors on the machine to

satisfy the properties above
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Random Vertex Partitioning
• Phase 1:

• Partition vertices at random into
√

n groups
• Each group should have O((

√
n)2) = O(n) edges

• In each group, degrees scale down by factor of
√

n
• Can still find high degree vertices and their random

neighbors

• Phase 2:
• Now maximum degree roughly n/2
• Repeat the same by partitioning vertices into

√
n

groups
. . .

• Can do this for roughly log(
√

n) = 1
2 log n phases:

• Stuck when max degree gets roughly
√

n
• Why? Current high degree vertices see no neighbors
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Random Vertex Partitioning
• Phase 1:
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√
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√
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Ideal Algorithm

• Maybe do not repartition each time?
• No clear reason why this would not work
• However, vertices are no longer randomly partitioned
• Not clear how to analyze this

• Where would this take us?
• We would compress 1

2 log n phases into O(1) MPC
rounds

• In the end, max degree at most
√

n
• Can now partition into only n1/4 groups and graphs

induced by each group will fit onto a single machine
• Would be able to simulate the next 1

4 log n phases
• Then 1

8 log n phases, 1
16 log n phases, . . .

• After O(log log n) MPC rounds, we would be done
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Actual Solution

• We do not know how to analyze this approach directly

• We tweak the peeling algorithm

• Show independence and near-uniformity of surviving
vertices

• We get O
(
(log log n)2

)
rounds
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Recent Follow-Up Work

Assadi (arXiv 2017)
• Round compression for the Parnas-Ron algorithm
• O(log n)-approximation to vertex cover in O(log log n)

MPC round
• Bounding technique of Assadi and Khanna (2017)

Assadi, Bateni, Bernstein, Mirrokni, and Stein (arXiv 2017)

Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld (PODC 2018)
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Recent Follow-Up Work

Assadi (arXiv 2017)

Assadi, Bateni, Bernstein, Mirrokni, and Stein (arXiv 2017)
• Improve round complexity to O(log log n)

• Approximation improved to 1 + ε [McGregor 2005]
• (2 + ε)-approximation for vertex cover
• No round compression, but still vertex sampling
• Apply techniques developed for dynamic matching

[Bernstein, Stein 2015]

Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld (PODC 2018)
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Recent Follow-Up Work

Assadi (arXiv 2017)

Assadi, Bateni, Bernstein, Mirrokni, and Stein (arXiv 2017)

Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld (PODC 2018)
• Improve round complexity to O(log log n)

• Simulate a parallel fractional algorithm
• Explore connections to congested clique model
• Also O(log log n)-round algorithm for Maximal

Independent Set
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Follow-Up Questions

• Round compression for other problems?

• Any good reason why log log n seems to be a barrier?

• MPC hard to prove unconditional lower bounds
• Show reductions to/from other problems?
• Limitations of natural sampling techniques?

• Show that a simple very greedy algorithm just works?
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Questions?

Full version: https://arxiv.org/abs/1707.03478
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