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Problem Setup

Goal: Identify beneficial interventions from limited (observational) data

Dataset Dn :“
 `

xpiq, ypiq
˘(n

i“1

iid
„ PXY

X P Rd = covariates (features) of individual

Y P R = outcome of interest

Objective: Influence X to produce (expected) improvement in Y

(requires simplifying causal assumptions)

Among feasible transformations to X, which one is best?

Limited data ùñ inherent uncertainty regarding Y | X relationship
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Assumptions

(A1) Underlying graphical model: X Ñ rX Ñ Y

X „ PX “ pre-intervention covariate-values
rX “ values after performing a chosen intervention

(A2) Under no intervention: rX “ X (and in data Dn: rxi “ xi)

(A3) rX “ T pXq (Intervention can be precisely enacted)

T : Rd
Ñ Rd = desired transformation of covariate-values (to guide intervention)

(A4) Y “ fp rXq ` ε (with Erεs “ 0, ε KK rX,X)
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Assumptions

(A1) Underlying graphical model: X Ñ rX Ñ Y

X „ PX “ pre-intervention covariate-values
rX “ values after performing a chosen intervention

(A2) Under no intervention: rX “ X (and in data Dn: rxi “ xi)

(A3) rX “ T pXq (Intervention can be precisely enacted)

T : Rd
Ñ Rd = desired transformation of covariate-values (to guide intervention)

(A4) Y “ fp rXq ` ε (with Erεs “ 0, ε KK rX,X)

Invariant relationship1: Same f for rX produced by any (or no) intervention

1
Peters J, Bühlmann P, Meinshausen N. Causal inference using invariant prediction: Identification and confidence intervals.

Journal of the Royal Statistical Society: Series B (2016)
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Overview of Framework

Identifying intervention = find desired transformation policy T

rx “ T pxq P Cx : post-intervention covariate-measurements of individual with initial
measurements x P Rd, for intervention to enact T , fpT pxqq “ EεrY | rX “ T pxqs

Cx Ă Rd: constraints on possible transformations of x

Cx :“ tz P Rd : |xs´ zs| ď γsu ùñ sth feature cannot be altered by more than γs

Cx :“ tz P Rd : ||x´ z||0 ď ku ùñ at most k features can be intervened upon
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Personalized Intervention

Given new individual with covariate-values x P Rd, T pxq personally tailored
to best improve this individual’s expected post-intervention outcome

Expected individual gain: GxpT q :“ fpT pxqq ´ fpxq | Dn

Optimal personalized intervention

Given by optimization of T pxq P Rd: T ˚pxq “ argmax
T pxqPCx

F´1GxpT q
pαq

F´1Gp¨qpαq= αth quantile of posterior distribution for gain function

Posterior for GxpT q summarized by
mean = ErfpT pxq | Dns ´ Erfpxq | Dns

variance = VarpfpT pxqq | Dnq ` Varpfpxq | Dnq ´ 2CovpfpT pxqq, fpxq | Dnq
loooooooooooooooomoooooooooooooooon

ties uncertainty at x and T pxq
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Optimal Personalized Intervention

T ˚pxq improves expected outcome with probability ě 1´ α under our
posterior beliefs (conservatively choose α ă 0.5)

Will never consider T where ErfpT pxq | Dns ă Erfpxq | Dns

Feasible choice T pxq “ x produces objective value of 0

If α is small & uncertainty is high at x (outlier), then T ˚pxq “ x

Philosophy: Doing nothing is greatly preferred to causing harm.

Only propose interventions we are certain will lead to improvement
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Intervening on Populations
Single transformation-policy to improve outcomes for new (or all)
individuals sampled from same population as Dn

May no longer measure features of new individuals

Expected population gain: GXpT q :“ EXrGxpT qs

Empirical estimate: GnpT q :“
1

n

n
ÿ

i“1

“

fpT pxpiqqq ´ fpxpiqq
‰

| Dns

Optimal population intervention

T ˚ “ argmax
TPT

F´1GXpT q
pαq

T :“ tT : T pxq P Cx @xu (set of feasible policies)

Posterior for GnpT q has: mean “
1

n

n
ÿ

i“1

ErfpT pxpiqqq | Dns ´ Erfpxpiqq | Dns

variance “
1

n2

n
ÿ

i“1

n
ÿ

j“1

«

Cov
´

fpx
piq
q, fpx

pjq
q | Dn

¯

´ Cov
´

fpT px
piq
qq, fpx

pjq
q | Dn

¯

´ Cov
´

fpx
piq
q, fpT px

pjq
qq | Dn

¯

` Cov
´

fpT px
piq
qq, fpT px

pjq
qq | Dn

¯

ff
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Types of Global Policy

Form of T cannot depend on x

Sparse intervention: Assume only covariates in chosen
intervention-subset I Ă t1, . . . , du are changed
(all other covariates remain fixed at their pre-intervention values)

Shift intervention: T pxq “ x`∆
∆ P Rd = shift that the policy applies to each individuals’ features
(eg. T pxq “ rx1, x2 ` 3, . . . , xds)

Uniform intervention: T pxq “ rz1, . . . , zds where zj “ xj @j R I
Sets certain covariates to the same constant value for all individuals
(eg. T pxq “ rx1, 0, x3, . . . , xds)
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Example: Different Types of Intervention

Contours of outcomes Y expected across feature space rX1, X2s if fpXq “ X1 ¨X2

X1

X 2
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−2 0 2 4

−4
−2

0
2

4

Under sparsity constraint, we must carefully model the underlying
population in order to identify best uniform intervention
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Algorithms

Standard GP prior for f ùñ F´1GpT qpαq has closed form

Smooth kernel ùñ our objectives differentiable w.r.t. T

If altering xs (sth covariate) costs γs per unit, penalize

shift-intervention objective using:
d
ÿ

s“1

γs|∆s|

(Use unweighted `1 penalty find sparse shift interventions, γs “ 1)

Employ proximal gradient method for optimization of T

To avoid poor local maxima, use continuation technique

(optimize variants of objective with tapering levels of exaggerated smoothness)
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Summary of Results

Theoretical Guarantee: As nÑ8: maximizer of our
personalized/empirical-population intervention-objectives converges to
optimal transformation w.r.t. true f (under reasonable prior)

Theoretical Guarantee: @ n: True f P RKHS of GP prior ùñ
chosen intervention unlikely to be harmful (probability in terms of α)

GP-based sparse population intervention outperforms standard
frequentist regression methods in gene knockdown application

Beneficial personalized interventions for writing improvement

α “ 0.05 produces far fewer harmful interventions than α “ 0.5

Methods work well in misspecified setting (theory + empirical results)

where sparse-intervention actually affects descendant-covariates in causal DAG
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Population Intervention for Gene Perturbation

X = expression of 10 TF genes2, Y = expression of small molecule
metabolism gene (n “ 161, try 16 different Y )

Propose single TF knockdown (uniform intervention) which will lead
to largest down-regulation of metabolism gene

(verification: single gene deletion applied to each TF in subsequent experiments)
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2
Kemmeren P et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific

repressors. Cell (2014).
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Personalized Intervention for Writing Improvement

X = Various text-features3 extracted from articles (eg. word-count,
polarity, subjectivity), Y = # of shares on social media (n “ 5000)

Uncertainty-averse method with α “ 0.05 outperforms alternative
which ignores uncertainty (α “ 0.5), producing half as many harmful
interventions without reduction in overall average improvement
(evaluated in held-out set of new articles)

Proposes different sparse interventions for articles in Business
category vs. Entertainment category: Sparse transformations for
business articles uniquely advocate decreasing polarity, whereas
interventions to decrease title subjectivity are uniquely prevalent for
entertainment articles.

3
K Fernandes Vinagre P, Cortez P. A proactive intelligent decision support system for predicting the popularity of online

news. EPIA Portuguese Conference on Artificial Intelligence (2015).
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Misspecified Setting

In practice, sparse interventions may inadvertently affect covariates
downstream (in causal DAG) of those chosen for intervention
(our framework incorrectly assumes T is perfectly enacted)

Find best uniform intervention-policy where T allowed to determine
single covariate s P t1, . . . , du (T pxq “ rx1, . . . , xs´1, zs, xs`1, . . . , xds)

Intervention actually realized by applying do-operation dopxs “ zsq in
underlying SEM (used to evaluate results)
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Misspecified Setting

X “ [x1, . . . , x6] , Y “x7
SHIMIZU, HOYER, HYVÄRINEN AND KERMINEN
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Figure 4: Left: example original network. Right: estimated network. The sample size was 10000.
This shows what kind of mistakes the LiNGAM algorithm might make. The estimated
network had one added edge (x1 → x7) and one missing edge (x1 → x6). However, both the
added and missing edges had quite low strengths (x1 → x7, -0.019 and x1 → x6, 0.0088).
Note that the other edges were correctly identified, and the connection strengths were
approximately correct as well.

LiNGAM model. These time windows are then treated as samples of multivariate data. This intro-
duces confounding variables to the model, against the assumptions of the LiNGAM analysis. To
see this, consider an example of an AR(2) process, and a time window of three variables (Figure 5).
Here, variables Xt and Xt+1 are confounded by a variable outside the time window. In a general
case, an AR(p) process introduces confounding variables to p first variables in a time window. The
LiNGAM model holds strictly only for first order processes.

For the tests, a total of 22 data sets were selected from time series data repositories on the
Internet (Hyndman, 2005; Statistical Software Information; National Statistics). We did not seek
data sets that would fit the LiNGAM model, but a diverse set of data to see how well the LiNGAM
analysis will perform with real-world data, when the assumptions of the model are violated at least
to some extent. The data sets can be roughly categorized as economic time series and environmental
time series. Economic time series included data sets like currency exchange rates and stock rates.
Environmental time series included a more diverse set of data, ranging from monthly river-flows to
daily temperatures. Before the tests, the sample autocorrelation and partial autocorrelation functions
for the series were analyzed to gain insight into how well the series actually fit the AR(p) model.

2018

0.
0

0.
2

0.
4

0.
6

0.
8

Sample Size

Ex
pe

ct
ed

 O
ut

co
m

e 
Im

pr
ov

em
en

t

20 50 100 200 500

−0
.5

0.
0

0.
5

1.
0

Sample Size

Ex
pe

ct
ed

 O
ut

co
m

e 
Im

pr
ov

em
en

t

20 50 100 200 500

Red = uniform intervention selected with GP regression

Blue = best intervention in LinGAM-inferred SEM
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