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Problem Setup

Goal: Identify beneficial interventions from limited (observational) data

iid

o Dataset D,, := {(x(i)yy(i))}?zl ~ Pxy

X € R? = covariates (features) of individual

Y € R = outcome of interest

@ Objective: Influence X to produce (expected) improvement in Y

(requires simplifying causal assumptions)

@ Among feasible transformations to X, which one is best?

Limited data == inherent uncertainty regarding Y | X relationship
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Assumptions

(A1) Underlying graphical model: X — XY

X ~ Px = pre-intervention covariate-values

X = values after performing a chosen intervention

~

(A2) Under no intervention: X = X  (and in data D,.: & = ;)

(A3) X = T(X) (Intervention can be precisely enacted)

T : RY — R% = desired transformation of covariate-values (to guide intervention)

(A4) Y = f(X)+e (withE[] =0,e L X,X)

Invariant relationship: Same f for X produced by any (or no) intervention

1Peters J, Biihlmann P, Meinshausen N. Causal inference using invariant prediction: Identification and confidence intervals.
Journal of the Royal Statistical Society: Series B (2016)
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Overview of Framework

Identifying intervention = find desired transformation policy T

® I =T(z) € Cy : post-intervention covariate-measurements of individual with initial
measurements x € R?, for intervention to enact T, f(T(z)) = E.[Y | X = T(z)]

@ C, c R%: constraints on possible transformations of

@ C.:={zeR?:|z; — 2| <7s} = s™ feature cannot be altered by more than ~,

@ C,:={zeR%: ||z —z|lo <k} = at most k features can be intervened upon
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Overview of Framework

Identifying intervention = find desired transformation policy T

(Step 1) Bayesian inference of posterior f | D, (eg. Gaussian Process)
Summarized by mean, covariance functions: E[f(z) | Dxn], Cov([f(z) f(z')] | Dn)

(Step 2) Optimize of T' w.r.t. posterior f | D,, (subject to T'(x) € Cy)
to identify feasible covariate-transformation likely to improve expected outcomes
(f(T(x)) > f(z)) according to our current beliefs given limited data

@ T =T(z) € C, : post-intervention covariate-measurements of individual with initial
measurements = € RY, for intervention to enact T, f(T(x)) = E.[Y | X = T(z)]

@ C. c R%: constraints on possible transformations of z

@ C,:={2eR%:|z; — 2| <ys} = s™ feature cannot be altered by more than ~,

@ C,:={zeR%: ||z — z||o <k} = at most k features can be intervened upon
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Personalized Intervention

Given new individual with covariate-values = € R?, T'(x) personally tailored
to best improve this individual’s expected post-intervention outcome
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Personalized Intervention

Given new individual with covariate-values = € R?, T'(x) personally tailored
to best improve this individual’s expected post-intervention outcome

Expected individual gain: G (T) := f(T(z)) — f(z) | D,

Optimal personalized intervention

Given by optimization of T(z) € R?: T*(z) = argmax Fél(T) ()
T(z)eCy B

° F(;(l.)(a): ath quantile of posterior distribution for gain function

@ Posterior for G (T') summarized by
mean = E[f(T'(x) | Dn] — E[f(2) | Dn]

variance = Var(f(T'(z)) | Dn) + Var(f(z) | Dn) — 2Cov(f(T(z)), f(x) | Dn)

ties uncertainty at = and T'(x)
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Optimal Personalized Intervention

e T*(x) improves expected outcome with probability > 1 — o under our
posterior beliefs (conservatively choose o < 0.5)
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Optimal Personalized Intervention

e T*(x) improves expected outcome with probability > 1 — o under our
posterior beliefs (conservatively choose a < 0.5)

e Will never consider T' where E[f(T'(z) | D,] < E[f(x) | Dy]

Feasible choice T'(x) = z produces objective value of 0
o If v is small & uncertainty is high at = (outlier), then T*(z) = z

Philosophy: Doing nothing is greatly preferred to causing harm.

Only propose interventions we are certain will lead to improvement
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Intervening on Populations

@ Single transformation-policy to improve outcomes for new (or all)
individuals sampled from same population as D,,

J. Mueller Dec 10, 2016 7/15



Intervening on Populations

@ Single transformation-policy to improve outcomes for new (or all)
individuals sampled from same population as D,,

@ May no longer measure features of new individuals

J. Mueller 7/15



Intervening on Populations

@ Single transformation-policy to improve outcomes for new (or all)
individuals sampled from same population as D,,

@ May no longer measure features of new individuals
Expected population gain: Gx(T) := Ex[G.(T)]

i ) = f(=)] | D]

Empirical estimate: Gy (

J. Mueller 7/15
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@ Single transformation-policy to improve outcomes for new (or all)
individuals sampled from same population as D,,

@ May no longer measure features of new individuals
Expected population gain: Gx(T) := Ex[G.(T)]

_1x ;
- (l) (%)
Empirical estimate: G ( - =E — f@=")] | Dn)

Optimal population intervention

k —1
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Intervening on Populations

@ Single transformation-policy to improve outcomes for new (or all)
individuals sampled from same population as D,,

@ May no longer measure features of new individuals
Expected population gain: Gx(T) := Ex[G.(T)]
[F(T@) = f(=)] | Dl

1
Empirical estimate: G,(T) := ﬁ

lngh

Optimal population intervention

k —1
T = ar%g_a,x FGX(T)(a)

@ 7T :={T: T(z)€e Cy Yz} (set of feasible policies)

Posterior for G (T) has:  mean = L i F(T@ D)) | Du] - ELf (D) | Dn]

3

variance = % i Z [COV (f(x(”) FDy | ‘Dn> — Cov (f(T(ac( M, fz9)y | D )
i=1j=1
= Cov (#(= ), F(T @) | Do) + Cov (£(T(2)), 5(T(=)) | D) ]
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Types of Global Policy

Form of T cannot depend on z

@ Sparse intervention: Assume only covariates in chosen
intervention-subset Z < {1,...,d} are changed

(all other covariates remain fixed at their pre-intervention values)

e Shift intervention: T'(z) =z + A
A € R? = shift that the policy applies to each individuals’ features
(eg. T'(z) = [x1, 22+ 3,...,24])

@ Uniform intervention: T'(z) = [21,...,2q] where z; = 2; Vj ¢ T

Sets certain covariates to the same constant value for all individuals
(eg' T(.I) = [$1,07$3, o axd])
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Example: Different Types of Intervention

Contours of outcomes Y expected across feature space [X1, Xo] if f(X) = X1 - Xo
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@ Under sparsity constraint, we must carefully model the underlying
population in order to identify best uniform intervention
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Algorithms

e Standard GP prior for f = Fa(lT) () has closed form

@ Smooth kernel = our objectives differentiable w.r.t. T’
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@ Smooth kernel = our objectives differentiable w.r.t. T’

o If altering 2, (st covariate) costs v, per unit, penalize
d

shift-intervention objective using: 2 Vs As]

s=1

(Use unweighted ¢; penalty find sparse shift interventions, vs = 1)
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Algorithms

e Standard GP prior for f = Fa(lT)(oz) has closed form

Smooth kernel = our objectives differentiable w.r.t. T

If altering 5 (st covariate) costs v, per unit, penalize
d

shift-intervention objective using: Z Vs As]

s=1

(Use unweighted ¢; penalty find sparse shift interventions, vs = 1)

Employ proximal gradient method for optimization of T'

To avoid poor local maxima, use continuation technique

(optimize variants of objective with tapering levels of exaggerated smoothness)
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Summary of Results

@ Theoretical Guarantee: As n — 00: maximizer of our
personalized /empirical-population intervention-objectives converges to
optimal transformation w.r.t. true f (under reasonable prior)

o Theoretical Guarantee: V n: True f € RKHS of GP prior =
chosen intervention unlikely to be harmful (probability in terms of «)
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Summary of Results

@ Theoretical Guarantee: As n — 00: maximizer of our
personalized /empirical-population intervention-objectives converges to
optimal transformation w.r.t. true f (under reasonable prior)

@ Theoretical Guarantee: V n: True f € RKHS of GP prior —
chosen intervention unlikely to be harmful (probability in terms of «)

@ GP-based sparse population intervention outperforms standard
frequentist regression methods in gene knockdown application

@ Beneficial personalized interventions for writing improvement

a = 0.05 produces far fewer harmful interventions than o = 0.5

@ Methods work well in misspecified setting (theory 4+ empirical results)

where sparse-intervention actually affects descendant-covariates in causal DAG
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Population Intervention for Gene Perturbation

@ X = expression of 10 TF genes?, Y = expression of small molecule
metabolism gene (n = 161, try 16 different Y)

2Kemmeren P et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific
repressors. Cell (2014).
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Population Intervention for Gene Perturbation

@ X = expression of 10 TF genes?, Y = expression of small molecule
metabolism gene (n = 161, try 16 different Y)

@ Propose single TF knockdown (uniform intervention) which will lead
to largest down-regulation of metabolism gene

(verification: single gene deletion applied to each TF in subsequent experiments)

2 . . o
Kemmeren P et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific
repressors. Cell (2014).

J. Mueller 12 /15



Population Intervention for Gene Perturbation

@ X = expression of 10 TF genes?, Y = expression of small molecule
metabolism gene (n = 161, try 16 different Y)

@ Propose single TF knockdown (uniform intervention) which will lead
to largest down-regulation of metabolism gene

(verification: single gene deletion applied to each TF in subsequent experiments)

19 © ~— Multivariate Regression

Marginal Regression
| ~— GP Population Intervention
~— Optimal Intervention
(b),
[

Intervention Effect

Kemmeren P et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific
repressors. Cell (2014).
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Personalized Intervention for Writing Improvement

@ X = Various text-features® extracted from articles (eg. word-count,
polarity, subjectivity), Y = # of shares on social media (n = 5000)

3K Fernandes Vinagre P, Cortez P. A proactive intelligent decision support system for predicting the popularity of online

news. EPIA Portuguese Conference on Atrtificial Intelligence (2015).
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@ X = Various text-features® extracted from articles (eg. word-count,
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@ Uncertainty-averse method with o = 0.05 outperforms alternative
which ignores uncertainty (a = 0.5), producing half as many harmful
interventions without reduction in overall average improvement
(evaluated in held-out set of new articles)
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Personalized Intervention for Writing Improvement

@ X = Various text-features® extracted from articles (eg. word-count,
polarity, subjectivity), Y = # of shares on social media (n = 5000)

@ Uncertainty-averse method with @ = 0.05 outperforms alternative
which ignores uncertainty (a = 0.5), producing half as many harmful
interventions without reduction in overall average improvement
(evaluated in held-out set of new articles)

@ Proposes different sparse interventions for articles in Business
category vs. Entertainment category: Sparse transformations for
business articles uniquely advocate decreasing polarity, whereas
interventions to decrease title subjectivity are uniquely prevalent for
entertainment articles.

K Fernandes Vinagre P, Cortez P. A proactive intelligent decision support system for predicting the popularity of online

news. EPIA Portuguese Conference on Artificial Intelligence (2015).
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Misspecified Setting

@ In practice, sparse interventions may inadvertently affect covariates
downstream (in causal DAG) of those chosen for intervention
(our framework incorrectly assumes T is perfectly enacted)
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(our framework incorrectly assumes T is perfectly enacted)

@ Generate data from underlying non-Gaussian linear structural
equation model*
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4
Shimizu S et al. A linear non-Gaussian acyclic model for causal discovery. JMLR (2006)

J. Mueller 14 /15



Misspecified Setting

@ In practice, sparse interventions may inadvertently affect covariates
downstream (in causal DAG) of those chosen for intervention

(our framework incorrectly assumes T is perfectly enacted)

@ Generate data from underlying non-Gaussian linear structural
equation model*

@ Find best uniform intervention-policy where T" allowed to determine
single covariate s € {1,...,d} (T'(z) = [z1,...,Ts—1, 25, Ts11, - - -, Td])

@ Intervention actually realized by applying do-operation do(zs = zs) in
underlying SEM (used to evaluate results)

4Shimizu S et al. A linear non-Gaussian acyclic model for causal discovery. JMLR (2006)
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Misspecified Setting
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Red = uniform intervention selected with GP regression
Blue = best intervention in LinGAM-inferred SEM
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