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Abstract
We consider algorithms to find wrongly labeled
data, which lurks in many real-world applications
and hampers training/evaluation of ML models.
We present the first empirical study of various
scoring methods for this task on real datasets with
naturally-occurring label errors (as opposed to
synthetically introduced label errors). The label
quality scores considered here can be utilized with
arbitrary classification models. We examine five
popular image recognition models (and ensem-
bles thereof) to comprehensively characterize how
well different scores detect label errors in practice.

1. Introduction
While supervised machine learning (ML) assumes the labels
we train/evaluate our model on are correct, this is often not
the case in real-world datasets (Müller & Markert, 2019;
Northcutt et al., 2021a; Kang et al., 2022). One report by
Hivemind & Cloudfactory found that datasets labeled via
third-party data annotation vendors contained between 7%
to 80% percent label errors. To address this, ML researchers
have studied methods for supervised ML with data that is
Noisily Labeled (Song et al., 2022; Natarajan et al., 2013).
The goal of this task, which we abbreviate as MLwNL, is
training models on noisily labeled data to produce accurate
predictions on new test examples.

While most MLwNL methods aim to achieve this via mod-
ified training objectives and other modeling tricks (Song
et al., 2022; Sukhbaatar & Fergus, 2014; Jiang et al., 2018;
Zhang & Sabuncu, 2018; Nishi et al., 2021), an alternative
option is to first identify which examples are mislabeled,
manually deal with these examples, and finally train models
on the resulting cleaned dataset (Northcutt et al., 2021b). As
advocated for in the practice of data-centric AI, this latter
workflow improves the dataset independently of the models.
A key challenge here is the task of Label Error Detection
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(LED) in which we aim to find which examples are labeled
correctly vs not. Effective algorithms for LED should help
human reviewers efficiently find the bad labels in a dataset.

While LED methods are intended for real-world applications
with messy data, existing LED benchmarks have relied upon
synthetically introduced label errors in which labels are
randomly swapped with other labels (Brodley & Friedl,
1999; Müller & Markert, 2019; Northcutt et al., 2021b; Gu
et al., 2021). However label errors in the wild can exhibit
very different distributions (Jiang et al., 2020; Wei et al.,
2022) and it is thus important to study LED with data and
labels from real-world applications. To our knowledge, this
paper presents the first real-world benchmark of label error
detection methods. While the real-world datasets studied
here have been previously used to benchmark ML methods
for supervised learning with noisy labels, the goal there
is to maximize predictive accuracy in the presence of bad
labels. In contrast, we study methods for directly identifying
which examples are badly labeled. Here performance is
evaluated by how accurately each method identifies which
examples are correctly labeled vs. not (via ground-truth
labels available only during evaluation, but not while scoring
the noisy given labels). Appendix A delves into reasons why
LED is a task of independent interest from MLwNL.

With the shift towards more data-centric AI, LED will play
a prominent role in future ML workflows. Despite this,
little is known about which LED methods work best on
real data with naturally-occuring label errors. All of the
top-performing LED methods identified here are publicly
available in the cleanlab package1 to easily run on any
dataset, as is the code2 to reproduce our benchmarks.

2. Scoring Label Quality
This paper specifically focuses on classification datasets
where each example is labeled with one of K classes. Given
an example x, a trained classification model hp¨q outputs
predicted probabilities p “ hpxq “ rp1, . . . , pKs, where pk
estimates the probability that x belongs to class k. Because
predictions may be overfit for examples from the classifier’s

1https://github.com/cleanlab/cleanlab
2https://github.com/cleanlab/
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training set, we always employ out-of-sample p ensuring
the classifier has not seen x during training. Throughout
we obtain out-of-sample predictions for every example in a
dataset by fitting each model via 5-fold cross-validation.

Here we consider various scores for evaluating how likely a
particular example is labeled correctly (lower scores indicate
labels more likely to be wrong). All scores studied here are
entirely model-agnostic and can be computed with any clas-
sifier. For any given example, its label quality score solely
depends on the predicted probabilities output by a trained
classifier p P RK and the given label y P t1, . . . ,Ku. In
particular, we consider the following label quality scores:

Self-Confidence is the model’s estimated probability that
the example x belongs to the class of its given label y.

Scorepx, y,pq “ py for y P t1, . . . ,Ku (1)

Self-confidence is a natural score based on the likelihood of
the given labels under our model, which Müller & Markert
(2019); Northcutt et al. (2021b) previously illustrated can
uncover some label errors in real datasets.

Normalized-Margin is defined as the gap between our
model’s estimated probability of: the given label vs. the
otherwise most likely class (that is not the given label).

Scorepx, y,pq “ py ´ pk˚ for k˚ “ argmax
k‰yPt1,...,Ku

pk (2)

Northcutt et al. (2021b) previously considered normalized-
margin as an alternative score of label quality, finding it can
be more effective than self-confidence in synthetic bench-
marks where labels are randomly flipped to incorrect classes.
Assuming our model outputs trustworthy predictions, then
the smallest normalized-margin scores occur for examples
where the true label has been replaced by another class in the
given label. While such swapping of classes is the only type
of label error in most existing synthetic LED benchmarks,
we note that real-world datasets can exhibit other types of
label errors such as out-of-distribution (OOD) examples for
which no label in the set of classes really applies.

Confidence-weighted Entropy is a novel score we define as
the ratio of the self-confidence and the (normalized) entropy
HK of the predicted probabilities over all classes.

Scorepx, y,pq “
py

HKppq

where HKppq “ ´
1

logK

K
ÿ

k“1

pk ¨ logppkq

The motivation to still consider the likelihood of the given
label being correct, as in self-confidence, but place greater
emphasis on finding OOD examples. OOD examples may
not belong to any of the specified classes {1,. . . ,K}, and

thus are expected to receive higher entropy predictions from
a classifier capable of proper uncertainty estimation.

We also consider two scores which solely depend on the
classifier prediction and not the given label. Originally
intended for use in active learning as a way to find examples
whose label the model is current least certain about, these
scores have also been proposed for finding bad labels in an
already-labeled dataset (Warmerdam, 2021; Munro, 2021).

(Negative) Entropy of the predicted probabilities p.

Scorepx, y,pq “

K
ÿ

k“1

pk ¨ logppkq (3)

Least-Confidence is defined as the probability our model
assigns to class it finds most likely for x.

Scorepx, y,pq “ pk˚ for k˚ “ argmax
kPt1,...,Ku

pk (4)

Adjusted Scores. We can adjust label quality scores based
on our model’s propensity to predict certain classes:

Adjusted-Scorepx, y,pq “ Scorepx, y, p̃q

where p̃ 9 p ´ sp with spk “
1

|Xk|

ÿ

x1PXk

hpx1q

and Xk defined as the subset of examples whose given label
is k. Adjusting predictions via the confidence threshold sp
was proposed by Northcutt et al. (2021b) to obtain theoret-
ical performance guarantees for particular LED methods.
Here we re-normalize p̃ to be a valid probability distribution.
This adjustment also naturally accounts for class imbalance.

Ensemble Label Quality Scores. Although the aforemen-
tioned label-quality scores can be used with any model, their
LED performance ultimately depends on the quality of the
predictions output by the model. Model ensembling can
improve predictions by training multiple diverse types of
models and then aggregating their outputs. Given J dif-
ferent trained classifiers hp1q, . . . , hpJq, a straightforward
ensemble prediction can be computed as

pens “ henspxq “

J
ÿ

j“1

wj ¨ hpjqpxq “

J
ÿ

j“1

wj ¨ ppjq (5)

where aggregation weights wj typically sum to one (for
example, a uniform average of the different models’ pre-
dictions is commonly used). Once the predictions have
been aggregated into a single pens, this ensemble-prediction
can be used with our label quality scores in a straightfor-
ward fashion. Here we alternatively consider aggregating
label-quality scores computed with respect to each individ-
ual model, rather than aggregating their predictions and
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then computing a single label-quality score. The resulting
ensemble label quality score is given by:

Score
`

x, y, tppjquJj“1

˘

“

J
ÿ

j“1

wj ¨ Score
`

x, y,ppjq
˘

(6)

Again, uniform aggregation weights may be used. Here we
also consider non-uniform aggregation weights selected as:
wj “ expp´T ¨ ℓjq where ℓj denotes the log-loss between
the given label y and jth model’s prediction ppjq, and T is
a hyperparameter (more details in Appendix E).

3. Experiments

Beyond the fact that image classification forms one of the
cornerstone tasks of ML, our study is focused on image
data in part due to the ease of visually verifying detected
label errors for images, and because true labels happen to
be available for some image datasets. Enabling quantitative
evaluation of LED methods, these true labels are assumed to
reflect the underlying ground truth class (eg. obtained from
more diligent expert reviewing effort than the annotation
process for assigning the labels given in the dataset).

Datasets. We consider the following image classification
datasets with naturally-occurring label errors (Table S4):

Food-101n (Lee et al., 2018). We only consider the subset
of 53k training images for which true labels are available.

Cifar-10n-worst, Cifar-10n-agg (Wei et al., 2022). The
former contains more noisy labels than the latter.

For reference, we also include these datasets common in
past studies of data-centric AI and label error detection:

Roman-numeral (Ng, 2021) with miscellaneous issues.

Cifar-10s (Northcutt et al., 2021b) with synthetic errors.

Models. To evaluate our scores across various models, we
consider some of the most popular architectures from the
timm library for image classification (Wightman, 2019):
ResNet-18, ResNet-50d, EfficientNet-B1, Twins PCPVT,
and the Swin Transformer. Table S3 lists the accuracy
achieved by the trained classifier on each dataset.

Evaluation Metrics. As the broader purpose of label error
detection is flagging suspicious examples for human review,
we evaluate our LED methods using metrics from informa-
tion retrieval. The following metrics only depend on the
ranking of the scores rather than their absolute values:

AUROC for classifying whether each label is correct vs. not.
This evaluates both the precision and recall of our scores.

For applications with large datasets, we believe high pre-
cision is more important than high recall. Without high

precision, a human reviewer will not find the scores very
effective for discovering label errors. Regardless what a
LED algorithm outputs, a data analyst will be hard-pressed
to manually review even 1% of a dataset whose sample size
is in the millions. Our study measures precision at two
particular levels via the following evaluation metrics:

Lift @ 100 measures how many times more prevalent label
errors are in the top-100 scoring examples vs. entire dataset.

Lift @ #Errors is the lift at T instead of 100, for T defined
as the true number of label errors in the dataset.

Results. Figures 1, S1, S2 illustrate that which method
is best unsurprisingly depends on the types of label errors
present in the data. The specific model used plays a smaller
role. For any one score, the model’s predictive accuracy sig-
nificantly affects LED performance. The overall best LED
performance is achieved using our most accurate model,
the Swin Transformer, together with either the confidence
weighted entropy or self-confidence scores (or normalized
variants thereof). Tables 1, 2, S1 zoom in on this model
to highlight how our label quality scores behave with ef-
fective models. The least-confidence and entropy scores
perform poorly overall, confirming the intuition that good
LED methods should account for the given label.

The overall best method to identify label errors utilizes an
ensemble label quality score leveraging multiple models
(Figures 2, S3, S4). Amongst ensembling options, aggregat-
ing the individual model’s label quality scores is similar but
occasionally better than: first aggregating their predictions
and then computing a single label quality score. While a
uniformly-weighted ensemble (which leverages the diver-
sity across models) is sometimes the overall best approach,
it underperforms just using the single best model on many
datasets. In contrast, our weighted ensemble approach never
significantly underperforms the best single model, while sub-
stantially outperforming it on the Roman-numeral dataset.

Adjustment of the scores does not reliably improve their per-
formance, although may still be useful if we wish to grant
equal consideration to label errors from different classes in
an imbalanced dataset rather than simply finding the most
label errors overall as evaluated here. We observe that confi-
dence weighted entropy performs much better on datasets
that contain more OOD examples vs. Cifar-10 where there
are few such examples. Our overall results remain simi-
lar between Cifar-10n-agg and Cifar-10n-worst suggesting
these findings generalize across different noise levels under
a given systematic distribution of label errors. In contrast,
the results are not similar between Cifar-10n (naturally oc-
curring label errors) and Cifar-10s (synthetically introduced
label errors), which demonstrates the importance of bench-
marking LED with real label errors in the wild as opposed
to the simulation studies conducted in the past.
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Figure 1. AUROC for LED achieved by label quality scores for each dataset and model. Models are ordered by accuracy on each dataset.

Figure 2. AUROC of label quality scores used with best single model (Swin Transformer) vs. ensembling strategies with multiple models.

Table 1. Lift @ 100 for LED with Swin Transformer model.
Label Quality Score roman- food- cifar- cifar- cifar-

numeral 101n 10n-worst 10n-agg 10s

Self Confidence 5.78 4.99 2.49 11.10 5.01
Normalized Margin 4.34 4.45 2.49 11.10 5.01
Adjusted Self Confidence 6.24 4.34 2.49 11.10 5.01
Adjusted Normalized Margin 4.34 4.07 2.49 11.10 5.01
Confidence Weighted Entropy 6.16 4.83 2.49 11.10 5.01
Entropy 4.11 5.37 1.84 5.77 0.10
Least Confidence 3.27 5.32 2.06 4.99 0.30

Table 2. Lift @ #Errors for LED with Swin Transformer model.
Label Quality Score roman- food- cifar- cifar- cifar-

numeral 101n 10n-worst 10n-agg 10s

Self Confidence 4.05 3.80 2.36 10.34 4.94
Normalized Margin 3.89 3.16 2.37 10.36 4.92
Adjusted Self Confidence 4.11 3.42 2.35 10.35 4.87
Adjusted Normalized Margin 3.85 3.33 2.38 10.37 4.92
Confidence Weighted Entropy 4.17 3.84 2.33 10.29 4.93
Entropy 3.01 2.81 1.28 3.59 0.52
Least Confidence 2.84 2.73 1.32 3.67 0.61
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Appendix:
Model-Agnostic Label Quality Scoring to Detect Real-World Label Errors

A. Why focus on Label Error Detection vs. ML with Noisy Labels?

There are numerous reasons to consider our LED task independently of MLwNL’s focus on predictive performance (Brodley
& Friedl, 1999; Müller & Markert, 2019; Northcutt et al., 2021b). Many methods for MLwNL are highly model-specific,
relying on techniques like loss modification (Natarajan et al., 2013; Zhang & Sabuncu, 2018; Jiang et al., 2018), iterative
training (Jiang et al., 2018; Han et al., 2018; Reed et al., 2015), or special bespoke architectures (Sukhbaatar & Fergus,
2014). In contrast, the LED methods considered here can be utilized with any classification model. Thus while particular
MLwNL methods may or may not benefit from various advances in ML modeling (as the state-of-the-art marches relentlessly
forward), all of our LED methods benefit directly from any form of modeling improvement.

Furthermore, the output of LED methods is typically used to directly improve the dataset itself. Subsequently, arbitrary
advanced modeling techniques can be applied to the improved dataset, leading to potentially better predictions than
obtainable via model-specific MLwNL. In particular, a data analyst or domain expert can manually review/correct the
output of LED methods and easily produce greater improvements in dataset quality just by allocating extra reviewing time.
Manually improving the predictive accuracy from MLwNL can be far less trivial, often requiring ML expertise and modeling
creativity. We also emphasize that these two paradigms are entirely complementary: LED can be used to partially improve a
portion of the dataset with subsequent application of MLwNL to account for the remaining noisy labels (Brodley & Friedl,
1999; Northcutt et al., 2021b).

Another challenge in real-world ML projects beyond improving predictions is estimating their accuracy. Unlike MLwNL,
LED plays a fundamental role in properly estimating predictive performance given noisy labels. Without LED, accuracy
estimates computed from test sets with erroneous labels can lead to suboptimal models potentially being selected for
deployment (Northcutt et al., 2021a). Beyond model selection, many other critical decisions also hinge on proper performance
estimation such as deciding: when to introduce ML into a product, how much compute/investment to allocate to ML, and
how to best translate ML predictions into actions with consequences.

We finally note that, although many MLwNL algorithms could also be applied for the task of LED (Song et al., 2022),
past evaluations of MLwNL with naturally-occurring label errors have all focused on predictive accuracy of the trained
models rather than how effectively they can detect label errors (Lee et al., 2018; Jiang et al., 2020; Zhang et al., 2021; Wei
et al., 2022). Recall the simple label quality scores we evaluate here can be trivially employed with any regularly trained
classification model. This is a key advantage over other LED methods with more restrictive requirements, as our experiments
reveal model accuracy is one of the most important factors determining the performance of methods for LED. In order to
remain competitive, a good LED method must be usable with future state-of-the-art models regardless of their architecture
and training strategy.

B. Supplementary Results

Additional raw results can be found in the Github repository3 which reproduces our experiments. Note that the performance
of the Entropy and Least-Confidence scores is listed in the tables, but omitted from figures to avoid clutter (these scores
performed poorly overall). The Lift @ 100 metric favors high-precision scores, whereas Lift @ #Errors favors scores
capable of detecting a sizeable chunk of the overall set of label errors present in the data.

3https://github.com/cleanlab/label-error-detection-benchmarks/

https://github.com/cleanlab/label-error-detection-benchmarks/
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Figure S1. Lift @ 100 achieved by label quality scores for each dataset and model. Models are ordered by accuracy on each dataset.

Figure S2. Lift @ T achieved by label quality scores for each dataset and model; T is the true number of label errors in each dataset.
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Table S1. AUROC achieved by label quality scores with Swin Transformer model.
Score roman-numeral food-101n cifar-10n-worst cifar-10n-agg cifar-10s

Self Confidence 0.8350 0.9223 0.9905 0.9958 0.9996
Normalized Margin 0.8247 0.8906 0.9921 0.9960 0.9991
Adjusted Self Confidence 0.8373 0.9001 0.9892 0.9950 0.9977
Adjusted Normalized Margin 0.8218 0.8911 0.9929 0.9955 0.9993
Confidence Weighted Entropy 0.8366 0.9234 0.9868 0.9951 0.9993
Entropy 0.7716 0.8159 0.6380 0.7572 0.3541
Least Confidence 0.7620 0.8102 0.6549 0.7613 0.3637

Figure S3. Lift @ 100 achieved by various label quality scores for each dataset. Here we consider various ensembling strategies as well as
scores computed with respect to the best individual model, the Swin Transformer.
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Figure S4. Lift @ T achieved by label quality scores for each dataset, where T is the true number of label errors in each dataset. Here we
consider various ensembling strategies as well as scores computed with respect to the best individual model, the Swin Transformer.
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C. Comparing Label Quality Scores with Label Error Filters

While much past work has considered detecting label errors via label quality scores (Lee et al., 2018; Müller & Markert,
2019; Huang et al., 2019; Pruthi et al., 2020; Warmerdam, 2021), a key issue is selecting the score threshold below which to
flag a label as being incorrect. In practice, such a threshold can be manually determined via human review of a few labels
from different score-ranges or based on the number of examples there is time/willingness to review (Müller & Markert,
2019). There exists an alternative class of filter methods for LED that circumvent this issue by not relying on numeric label
quality scores, but rather using discrete binary statistics to determine a label is either wrong or not (Brodley & Friedl, 1999;
Patrini et al., 2017; Chen et al., 2019; Cheng et al., 2020; Northcutt et al., 2021b). Here we compare our label quality scores
against a particularly effective model-agnostic set of such filter methods that Northcutt et al. (2021b) proposed as a suite of
confident learning algorithms to identify label errors.

In particular, we consider the following 4 confident learning filter options:

confident joint off diag, prune by noise rate, prune by class, both which are respectively detailed as CL method 2, 3, 4,
5 in the paper of Northcutt et al. (2021b). Here we use the same names and implementations provided in the cleanlab
package4 (except for the filter option confident joint off diag, which is called confident learning in cleanlab, even though
all of the other above filters also belong to the confident learning family of algorithms from Northcutt et al. (2021b)).

We also evaluate the following simple baseline previously considered by Brodley & Friedl (1999); Northcutt et al. (2021b);
Lee et al. (2018) and others working on LED:

predicted neq given flags an example as having the wrong label if the model’s class prediction does not agree with the
given label, i.e. if y ‰ argmax

k“1,...K
pk from p “ hpxq.

Table S2 compares these filter options on our datasets, and Figures S5, S6, S7, S8, S9 compare the precision/recall of
these hard filters vs. some of our continuous scoring functions (across different score thresholds). These results indicate
that for a properly-chosen threshold, our scores can match the LED precision/recall of the filter methods in the 3 versions
of Cifar-10 (where there are few OOD examples), and can outperform the filters in the Food-101n and Roman-numeral
datasets (where there are more OOD examples). Note that the theory under which these filter methods were developed
only accounts for certain forms of noise in which some labels are replaced with other classes (Northcutt et al., 2021b), as
opposed to the existence of OOD examples for which no label in the given set of classes is appropriate. All methods fare
worse on the Food-101n and Roman-numeral datasets where there are more different ways a label can be wrong than in
the Cifar-10 variants. Theoretical analysis of label error detection under a broader range of possible error types and more
realistic assumptions remains an important line of research (Zhang et al., 2021).

4https://github.com/cleanlab/cleanlab
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Table S2. Treating LED as a binary classification task (label is correct vs. not) and the outputs of each label filter method as class
predictions, we can evaluate these predictions according to their accuracy, precision, or recall. On each dataset, we employ these filters
with predictions from our most accurate model, the Swin Transformer.

Dataset Filter method Precision Recall Accuracy

roman-numeral prune by noise rate 0.4684 0.1989 0.8651
roman-numeral prune by class 0.6582 0.2796 0.8863
roman-numeral both 0.5526 0.1129 0.8714
roman-numeral confident joint off diag 0.4257 0.1156 0.8633
roman-numeral predicted neq given 0.4544 0.6156 0.8523
food-101n prune by noise rate 0.5508 0.3401 0.8272
food-101n prune by class 0.7542 0.4847 0.8759
food-101n both 0.7096 0.2425 0.8421
food-101n confident joint off diag 0.5264 0.2157 0.8196
food-101n predicted neq given 0.5512 0.8168 0.8436
cifar-10n-worst prune by noise rate 0.9813 0.8724 0.9420
cifar-10n-worst prune by class 0.9833 0.8974 0.9526
cifar-10n-worst both 0.9880 0.8492 0.9352
cifar-10n-worst confident joint off diag 0.9766 0.8204 0.9199
cifar-10n-worst predicted neq given 0.9624 0.9432 0.9624
cifar-10n-agg prune by noise rate 0.9808 0.6238 0.9650
cifar-10n-agg prune by class 0.9955 0.6333 0.9667
cifar-10n-agg both 0.9957 0.5148 0.9561
cifar-10n-agg confident joint off diag 0.9898 0.5410 0.9581
cifar-10n-agg predicted neq given 0.9110 0.9476 0.9869
cifar-10s prune by noise rate 0.9784 0.9957 0.9948
cifar-10s prune by class 0.9619 0.9978 0.9917
cifar-10s both 0.9798 0.9947 0.9948
cifar-10s confident joint off diag 0.9854 0.9762 0.9924
cifar-10s predicted neq given 0.9514 0.9994 0.9897
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Figure S5. Precision-Recall of label error detection on Food-101n dataset using the Swin Transformer model.
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Figure S6. Precision-Recall of label error detection on Roman-numeral dataset using the Swin Transformer model.
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Figure S7. Precision-Recall of label error detection on Cifar-10n-worst dataset using the Swin Transformer model.
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Figure S8. Precision-Recall of label error detection on Cifar-10n-agg dataset using the Swin Transformer model.
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Figure S9. Precision-Recall of label error detection on Cifar-10s dataset using the Swin Transformer model.
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D. Experiment Details

To compute many of the label quality scores, we utilize implementations from the cleanlab package5. Note that in
cleanlab, all scores are transformed and rescaled to lie between 0 and 1, in a manner that preserves their relative ordering
and thus does not change their LED performance. To avoid having to manually tune/manage model training, all classifiers
are fit using the autogluon AutoML package (Erickson et al., 2020). Each model is initialized with default pretrained
weights and then fine-tuned on our dataset (we use 5-fold cross-validation). Additional details can be found in the code6 for
reproducing our experiments, as can raw results of all methods on all datasets.

Table S3. Accuracy achieved by trained classifiers on each dataset (estimated via 5-fold cross-validation). We also report the accuracy of
ensembles that aggregate the predictions of our 5 individual models via a uniform (Lakshminarayanan et al., 2017) or weighted average.

Model roman-numeral food-101n cifar-10n-worst cifar-10n-agg cifar-10s

Swin Transformer (Liu et al., 2021) 0.8220 0.7268 0.6059 0.9063 0.7905
Twins PCPVT (Chu et al., 2021) 0.8163 0.6827 0.6015 0.8971 0.7810
EfficientNet-B1 (Tan & Le, 2019) 0.7114 0.6271 0.5804 0.8715 0.7358
ResNet-50d (He et al., 2019) 0.7089 0.6287 0.5919 0.8788 0.7551
ResNet-18 (He et al., 2016) 0.7831 0.6123 0.5779 0.8745 0.7398
Ensemble (Average Predictions) 0.8418 0.7108 0.6064 0.9040 0.7853
Ensemble (Weighted Average; Weights 9 Log Loss) 0.8488 0.7268 0.6078 0.9065 0.7907

E. Details of Weighted Ensemble

Selecting hyperparameter T . Recall that our ensemble weights depend on hyperparameter T . In practice, we can
choose the value of T for which the resulting weights lead to the best ensemble-prediction pensemble when used to aggregate
predictions rather than scores as in (5). Here we apply grid-search over T optimizing with respect to the overall log-loss
(Gneiting & Raftery, 2007) between y and pensemble across the dataset. We favor the log-loss metric as it accounts for the
accuracy and calibration of p, which both intuitively affect the resulting label quality scores.

Why aggregate scores instead of predictions? Note that for the self-confidence score, it is equivalent to aggregate
predictions before computing a single LQS vs. aggregating LQS values from each model into an ensemble LQS. However
the latter has some conceptual advantages for other scores. For example, consider a K-way classification task with K
models that all predict a different class with high confidence for some given x. Averaging model predictions in this scenario
will lead to near-uniform predicted probabilities, so x may fail to be flagged as wrongly labeled, with only a moderate label
quality score if we use say the normalized margin. In contrast, the ensemble score for normalized margin will be quite low,
as there will be K-1 models that confidently say this is label error and only 1 that does not. Thus x will likely be flagged
as badly labeled, as it should be (if we assume our models are reasonably behaved). More generally, we might consider
each model’s predicted probability ppjq is an unbiased (but imperfect) estimate of p˚, the true probability of each class
given x. Our goal is to estimate the target quantity Scorepx, y,p˚q, which would presumably be the best version of each
particular score. Supposing we use uniform aggregation weights and Scorep¨q is a nonlinear function of p˚, then aggregating
predictions first can produce a biased estimate of the target (due to linearity of expectation), whereas aggregating scores
produces an unbiased estimate.

F. Dataset Details

While previous MLwNL benchmarks have studied our chosen datasets, they have to our knowledge not been considered
for evaluating LED methods (except for the synthetic Cifar-10s dataset). Unlike supervised learning benchmarks, we do

5https://github.com/cleanlab/cleanlab
6https://github.com/cleanlab/label-error-detection-benchmarks/

https://github.com/cleanlab/cleanlab
https://github.com/cleanlab/label-error-detection-benchmarks/
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not consider train/test splits in our setting. In LED, one is often interested in identifying all of the bad labels across an
entire given dataset, which is a key step to ensure the data are of reasonable quality. To this end, we therefore compute label
quality scores for all examples and evaluate their effectiveness for detecting all label errors in the dataset.

For each dataset in our benchmark, external ground truth labels are available (see Table S4 for the source of ground truth),
which differ from some of the given labels in the dataset on which our LED methods are run. The ground truth labels in
each dataset are reserved solely for evaluation. We do not allow LED methods to access any of the ground truth labels since
typical ML applications merely have a dataset and some given labels of unknown quality. In our datasets, the given labels
may be incorrect for various reasons listed in Table S4. These label errors arise naturally in the datasets named with suffix
n, whereas their source is known only by the Data-centric AI competition organizers (Ng, 2021) for the roman-numeral

data. Glancing through the data, we see far more out-of-distribution examples in roman-numeral than in Cifar-10. Finally as
a reference to facilitate comparison with past work (Northcutt et al., 2021b; Müller & Markert, 2019; Gu et al., 2021), we
also include cifar-10s with synthetic label errors introduced by Northcutt et al. (2021b) who randomly replaced some labels
with other classes. While our findings for these synthetic label errors qualitatively agree with the conclusions of prior work,
our results appear substantially different on the other datasets, highlighting the need for benchmarks with real label errors.

Table S4. Descriptions of each dataset, including the source of the noisy given labels and true underlying labels, as well as a link to the
data. Note that the labels in the original Cifar-10 data have been previously validated as being quite high-quality (Northcutt et al., 2021a).

Dataset Description

food-101n Noisy labels arise from dataset being curated via web-crawling.
(Lee et al., 2018) Labels were manually verified for subset of 53k training images, we discard the rest of the dataset.

https://kuanghuei.github.io/Food-101N/

cifar-10n-worst Noisy labels obtained from 3 Amazon Mechanical Turk annotators.
(Wei et al., 2022) Given label is incorrect if any of the 3 annotators chose incorrect label (high noise).

True labels are the original Cifar-10 labels.
http://ucsc-real.soe.ucsc.edu:1995/Home.html

cifar-10n-agg Noisy labels obtained from 3 Amazon Mechanical Turk annotators.
(Wei et al., 2022) Given label is majority-vote aggregate of the annotators’ choices (less noise).

True labels are the original Cifar-10 labels.
http://ucsc-real.soe.ucsc.edu:1995/Home.html

roman-numeral Dataset from Andrew Ng’s 2021 Data-centric AI competition.
(Ng, 2021) Noisy labels stem from unknown sources (known only to competition organizers).

Contains a myriad of different types of label errors.
For this paper, we have manually verified labels for all examples in this dataset.
https://github.com/cleanlab/label-error-detection-benchmarks/
(andrew-ng-dcai-comp-2021-manual-review-for-label-errors.xlsx)

cifar-10s Synthetically introduced class-conditional label noise with
(Northcutt et al., 2021b) 20% noisy labels, 40% sparsity in label-swapping rates between classes.

True labels are the original Cifar-10 labels.
https://github.com/cleanlab/label-error-detection-benchmarks/
(cifar10 train dataset noise amount 0.2 sparsity 0.4 20220326055753.csv)

Figure S10. Example label errors in each dataset (Cifar-10s not shown as it only has synthetically-introduced label errors).

https://kuanghuei.github.io/Food-101N/
http://ucsc-real.soe.ucsc.edu:1995/Home.html
http://ucsc-real.soe.ucsc.edu:1995/Home.html
https://github.com/cleanlab/label-error-detection-benchmarks/
https://github.com/cleanlab/label-error-detection-benchmarks/blob/main/src/experiments/roman-numeral/andrew-ng-dcai-comp-2021-manual-review-for-label-errors.xlsx
https://github.com/cleanlab/label-error-detection-benchmarks/
https://github.com/cleanlab/label-error-detection-benchmarks/blob/main/src/experiments/cifar-10/cifar10_train_dataset_noise_amount_0.2_sparsity_0.4_20220326055753.csv
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G. Discussion

This work presented a first empirical evaluation of label error detection methods on real-world data with naturally-occuring
label errors. We hope our study helps inform which label quality scoring methods will be effective for identifying
label errors in practice. More comprehensive benchmarks will be required for a deeper understanding of the empirical
strengths/weaknesses of each score, given the extreme variation in datasets and types of label errors encountered in the wild.
Important extensions to our LED benchmark left for future work include:

1. Adding real-world datasets beyond the image modality, which will require collecting more ground truth labels. In new
benchmarks, it is important to ensure there is no systematic distribution shift (i.e. confounding or selection bias) in the
examples for which ground truth labels happen to be available.

2. Adding prediction tasks beyond classification, such as those with structured labels like object detection, where datasets
are also plagued by label errors (Kang et al., 2022).

3. Also evaluating model-specific label quality scores and other LED methods that leverage particular properties of certain
models (Lee et al., 2018; Cheng et al., 2020; Song et al., 2022).


