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Consider high-dimensional random variables X, Y € R¢
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Y = measurements of same variables under condition 2

. . iid iid
Given unpaired samples z1,...,2, ~ Px , y1,...,ym ~ Py:

(Q1) IsPx =Py? (Two-sample testing)

(Q2) If not, what is minimal feature subset S C {1,...,d} such that
marginal distributions Px, # Pyy while Px_, ~ Py_.7?

J. Mueller 2/29



Objectives

Consider high-dimensional random variables X, Y € R¢

X = measurements of various variables under condition 1
Y = measurements of same variables under condition 2

. . jid jid
Given unpaired samples 1, ..., Zn ~ Px , Y1,.-sYm ~ Py:

(Q1) IsPx =Py? (Two-sample testing)

(Q2) If not, what is minimal feature subset S C {1,...,d} such that
marginal distributions Px, # Pyy while Px_, ~ Py_.7?

(Q3) How much does each feature contribute to the overall difference?
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Motivation

@ Understanding differences between populations
= fundamental scientific problem

General differences beyond mean shifts are of interest
(e.g. variance/covariance)

Undesirable to restrict the analysis to specific parametric differences

e Often many variables are measured (high-dimensional data), but only
a small subset expected to exhibit differences between populations

@ Two-sample testing is easy in univariate case: can use any statistical
divergence D that measures difference between univariate
distributions (e.g. Kullback-Leibler, Kolmogorov-Smirnov)
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Related Work

© Marginal per-variable analysis
(ignores potentially important interactions between variables)

@ Logistic regression with lasso (Tibshirani, 1996)
(requires (log)linear relationships, only models expectation)

© Sparse linear discriminants analysis (Clemmensen, 2011)
(requires multivariate Gaussianity)

© Random projection (Lopes, 2011)
Direction-projection-permutation (Wei, 2015)
(only suited for specific types of differences)

Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B.
Clemmensen L, Hastie T, Witten D, Ersbo Il B (2011). Sparse Discriminant Analysis. Technometrics.

Lopes M, Jacob L, Wainwright M (2011). A More Powerful Two-Sample Test in High Dimensions using Random Projection.
NIPS.

Wei S, Lee C, Wichers L, Marron JS (2015). Direction-Projection-Permutation for High Dimensional Hypothesis Tests.
Journal of Computational and Graphical Statistics.
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Principal Differences Analysis (PDA)

@ User chooses statistical divergence D
e Goal: Find (unit-norm) projection 3 which maximizes D(B7 X, 1Y)

@ Transforms hard high-dimensional statistical problem into
simple 1-D measure
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Cramer-Wold Device

Theorem (Cramer & Wold, 1936) }

Multivariate X £ Y if and only if 37X 2 BTY for all B € RY

o If Px #£ Py and D is positive definite divergence, then
PDA-projection 3* is guaranteed to ensure D(5*T X, 3*TY) > 0

@ PDA can capture any type of difference between populations, using a
single linear projection

Cramer H, Wold H (1936). Some Theorems on Distribution Functions. Journal of the London Mathematical Society.
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Sparse Differences Analysis (SPARDA)

o Additional Goal: Select features over which populations differ

@ Method: Impose sparsity on 5 and examine features with nonzero
weight in resulting projection-vector

SPARDA

Find projection B that solves: max D(BTX (”), )
PRARSEN 3 sl o (DXL EYTE))

B:={8ecR®:|Blla<1,6 >0} , BTX"™ = projected empirical distribution

e Cardinality constraint may be relaxed by adding A||3]||1 penalty

@ In practice: choose A or k by maximizing projected divergence
between held-out samples

J. Mueller 7/29
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Choice of divergence D

@ PDA enables application of rank-based measures (eg. Mann-Whitney)
to high-dimensional data

@ Support Vector Machine = special case of PDA where D measures
margin between projected distributions

@ Fisher’s Discriminant Analysis = special case of PDA where D is ratio
of within-vs-between-class variance (Bhattacharyya distance for
Gaussian X, Y with identical covariance)

e If D defined over densities (eg. f-divergence), can use kernel density
estimation. For smooth kernel (eg. Gaussian), locally optimal
projection can be found via projected gradient methods.

@ Our focus is D = Wasserstein distance; natural choice when variables
are measured on common scale (eg. expression of various genes).

J. Mueller 8/29



Wasserstein Distance

Definition (Squared Wasserstein Distance)
D(X,Y) = min Ep || X — Y|
Pxy

where (X,Y)~Pxy and X ~Px, Y ~Py

Mallows, C (1972). A note on asymptotic joint normality. The Annals of Mathematical Statistics.
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Wasserstein Distance

Definition (Squared Wasserstein Distance)
D(X,Y) = min Ep || X — Y|
Pxy

where (X,Y)~Pxy and X ~Px, Y ~Py

@ Canonical divergence between distributions on metric space,
successfully used in many applications (eg. shape/image data)

@ Intuitively: minimal amount of work to transform Px into Py
where work = probability mass moved x distance transported

o Natural dissimilarity measure between populations: integrates both
fraction of individuals which are different & magnitude of differences

@ Statistically & computationally inefficient in high dimensions

Mallows, C (1972). A note on asymptotic joint normality. The Annals of Mathematical Statistics.
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SPARDA with Wasserstein distance
Objective

Find 8 = in ATW
ind argé%ax { ]\1}161}\14 15} Mﬁ}
[18]lo<k

M := set of n x m matching matrices (entries > 0, row sums = 1, column sums = )
W = Zi,j [Zij ® Zij]Mij Zij = z® — y(j)

m

Since: D(ﬁTX(n)’BT?(m)) _ A%?AZM” (5Tx<i) _ ﬂTy(j))2 _ 1\5}1615\1,, BTWMB
©,J
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Objective

Find 8 = in ATW
ind ar%gllgax { Al/rlnel/r\l/l 15} Mﬁ}
[18]lo<k

M := set of n X m matching matrices (entries > 0, row sums = % column sums = nl@)
W = Zi,j [Zij ® Zij]Mij Zij = z® — y(j)

Since: D(ﬁT)?(n)’ﬁT?(m)) _ A%?AZM” (/BTx(i) _ ,BTy(j))z _ Al}g}\l/l ﬁTWMB
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@ Non-concave max-min optimization
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SPARDA with Wasserstein distance
Objective

~

Find 8 = in BTW
ind ar/%ggax { AI/IHEI/I\I/I 15} Mﬁ}
[18]lo<k

M := set of n X m matching matrices (entries > 0, row sums = % column sums = %)

Wi =32, ;1Zi; ® Zi]Mi; Zij = a® — 4y

Since: D(/BT)A(("),ﬂT)A/(m)) = 1\1411615\1/1 ZMij (/3T39(i) - ,/J)Ty(j))2 = 1\1}1615\1/1 BTWup
4,

@ Non-concave max-min optimization

Two-step relax-tighten procedure:
@ Solve convex relaxation (semidefinite program).
@ Run steepest ascent method to greedily improve the current
projection with respect to the original nonconvex objective
(if relaxation is not tight).

Wang Z, Lu H, Liu H (2014). Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time. NIPS.
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Semidefinite Relaxation
@ Can rewrite SPARDA objective:

. . < 1.2 _
max min tr (W B) subject to B € B,, ||Bl|lo < k%, rank(B) =1

where B=3®f and B, = {B € R . tr(B) =1, B = 0}
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Semidefinite Relaxation
@ Can rewrite SPARDA objective:

. . < 2 _
max min tr (Wa B) subject to B € B,, ||Bllo < k*, rank(B) =1

where B=3®f and B, = {B € R . tr(B) =1, B = 0}

Relaxation: tr(WyB) — \||B
@ Relaxation ngeaé{mlf\l/t r( M) || ||1}

@ While concave, max-min relaxation remains computationally
demanding. Instead, turn to the dual:
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Semidefinite Relaxation
@ Can rewrite SPARDA objective:

. . < 2 _
max min tr (Wa B) subject to B € B,, ||Bllo < k*, rank(B) =1

where B=3®f and B, = {B € R . tr(B) =1, B = 0}

Relaxation: tr(WyB) — \||B
@ Relaxation ngeazs}i{mlf\l/t r( M) || ||1}

@ While concave, max-min relaxation remains computationally
demanding. Instead, turn to the dual:

max me{o tr([Zi;®Zij) B) —us —v; }+— Zuz Zlvj—)\HBHl
u€R™ vER™ % i=

@ Find optimal B* via projected subgradient method, take largest
eigenvalue of B* as best projection vector Brejax

J. Mueller 11/29



Subgradient Algorithm for Semidefinite Relaxation

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices 5,

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest
A (the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data (), ... 2" and y, ... 5" (with n = m) Input: B e R*4

Parameters: \ > 0 controls the amount of regularization, 5 > 0 is the step-size used for B Parameters: A > 0 conols th amountof egularizaton = 5/|0 > s theactulscp-sie
updates, 7 > 0 is the step-size used for updates of dual variables u and v, T s the maximum number used in the B-
of iterations without improvement in cost after which algorithm terminates.

ize B [@ ﬁ} B 3O @80 & B, ul® 0,1, v — 0y

11 QAQT eigendecompns!lmn of B

20 w* — argmin {||w — diag(A)|[3 : w e [0,1]% [Jw||, = 1 (Quadratic program)

2: While the number of iterations since last improvement in objective function is less than 7 gmin {I eI s we 0.1 lulls = 1} prog
du[1/n,... . 1/n] € R", v« [Lfm,....1/m] € R™, OB « Oyuq 3 B Q-diag{w!,..., wj}- Q"
Fori,je {1,....n} x {1.....m};

Zij — al) — y)

1 w((Z; ® 2] BO) - uf? = o <0

Suy o g — 1fm, dvy nu] —1/m, B « 0B+ Z;;® Zyj /m

End For
Wt u® 4 ou and 0D — o) 4 o0
B «—iju’tion(Bm + A 0B A -«/HaBH;)
Output: Frui € B defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix B(**) which attained the best objective value over all iterations.

4 16N> 0: Forrse{l,....d?: B, < sign(B,,) max{0,|B,.| - 6\}
Output: Be B,

S ee vk W
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Subgradient Algorithm for Semidefinite Relaxation

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest
eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices 5,
(the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

Input: d-dimensional data "), ..., ) and y™") ...,y (with n = m)
Parameters: A > 0 controls the amount of regularization, 7 > 0 is the step-size used for B
updates, 7 > 0 is the step-size used for updates of dual variables  and v, 7 is the maximum number
of iterations without improvement in cost after which algorithm terminates.

1: Initialize 3©) « [L{ ﬁ]. B 3O @80 & B, ul® 0,1, v — 0y

2: While the number of iterations since last improvement in objective function is less than 7

Su e [1/n,....1/n] €RY, dv e [L/m,...,1/m] € R™, 0B « Ouxa

4 Forije{l,...n}x{l....m

5. Ziy 2l — )

6 1 (2 ® Z51B9) —u? — oY <0

7 Su; — du; = 1m, dvj — dv; — 1fm, OB — 2B + Z;; @ Zij /m
8 EndFor

9: w4y u and D o) 4. 00

0

B — iju‘tion(}?m + e 0B A /1Bl
Output: Frui € B defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix B(**) which attained the best objective value over all iterations.

Input: B e R4

Parameters: \ > Ucomrclslhe amount of regularization, § = ~/|[0B|[r > 0is the actual step-size
used in the B-up

11 QAQT « elg:ndecompns“mﬂ of B
2 w* « argmin {||w — diag(A)|[3 : w e [0.1], [[ull; = 1}
3 B Q-diaglwf.... wl}- QT

4 M A= 0: Forrse{l.... .d*:
Output: B e B,

(Quadratic program)

B,., « sign(B,,) - max{0, | B,..| — 5\}

e Guaranteed to converge to global optimum (Bertsekas, 2011)

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey.

Optimization for Machine Learning.

Mueller 12 /29




Subgradient Algorithm for Semidefinite Relaxation

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices B,
eigenvector of the solution t0 (2) as the desired projection direction for SPARDA. (the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.
Input: d-dimensional data (), ... 2" and y, ... 5" (with n = m) Input: B c RO*d
Parameters: \ > 0 controls the amount of regularization, 5 > 0 is the step-size used for B Parameters: A > 0 controls the amount of regularization, § = 7/[|B]| > 0 s the actual step-size
updates, 7 > 0 is the step-size used for updates of dual variables u and v, T s the maximum number used in the B-update
of iterations without improvement in cost after which algorithm terminates. - OAOT w0 §
o ! 1: QAQ” « cigendecomposition of B
1 tnitialze 50— [ S| BO 50 @60 By ul® 0,00 Oy
20 w* — argmin {|[w — diag(A)[|3 : w e [0, 1]%, |Jw]|; = 1} (Quadratic program)
2: While the number of iterations since last improvement in objective function is less than 7
fu[/n,...,1/n] € lk“. v [1fm,....1/m] € R™, 3B « Ogyq 3 B Q-diag{w},... w}}- QT
Fori, je {1, ; ”i AL 4 N0 Forrse (L. .d?: By, sign(B,.) - max{0, || - 6A}
Zij o al =y Output: B e B,

1 (2 ® Z51B9) —u? — oY <0
Suy o du = 1fm, dv;  du; — 1fm, 3B — OB + Zyy ® Ziy /m
End For
WD) u® 4y o and oD — o ® 4.y
I B+ Prujectiun(ﬂ“’ + o 0B A -/,/H("BHF)
Output: Fru & BY defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix B(**) which attained the best objective value over all iterations.

S ewwo v w

e Guaranteed to converge to global optimum (Bertsekas, 2011)

@ To scale to large datasets, can employ incremental subgradients by
drawing random (i, j) pairs

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey.
Optimization for Machine Learning.

Mueller




Subgradient Algorithm for Semidefinite Relaxation

eigenvector of the solution to (2) as the desired projection direction for SPARD:

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest
A

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices 5,
(the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

Input: d-dimensional data "), ..., ) and y™") ...,y (with n = m)

of iterations without improvement in cost after which algorithm terminates.
1: tnitalize 5O o~ [, S| B 5O @600 € B, u® 01, 1) = 0,00
2: While the number of iterations since last improvement in objective function is s than 7
3 fue[Un,...,1/n] € R, dv e [Ifm,...,1/m] € R™, OB « Oguq

4 Forige{l...n}x{l....m}
5 Zuy e 2 —y)

6 1 (2 ® Z51B9) —u? — oY <0

7 Ou; — du; = 1/m, v = dv; - 1m , OB« 0B + Zi; ® Ziy /m
8: End For

00wt 4y fu and oD o 4 -0

0. B FPrujectiun(H“’ + o 0B A -/,/HFBHF)

tude) of the matrix B(**) which attained the best objective value over all iterations.

Parameters: A > 0 controls the amount of regularization, 7 > 0 is the step-size used for B
updates, 7 > 0 is the step-size used for updates of dual variables u and v, T s the maximum number

Input: B e R4

Parameters: A = 0 controls the amount of regularization, & = /||B]|r = 0 is the actual step-size
used in the B-update.

1: QAQ” « cigendecomposition of B

2: w* — argmin {|[w — diag(A)|[3 : w e [0,1]%, [[w][y = 1} (Quadratic program)
3 B Q-diaglwf.... . wl}- QT

4 A= 0: Forryse(l....d)?: B, < sign(B,,) max{0,|B,.| — 5\}
Output: B e B,

Output: Jaus & B defined as the largest eigenvector (based on corresponding eigenvalue’s magni-

e Guaranteed to converge to global optimum (Bertsekas, 2011)

@ To scale to large datasets, can employ incremental subgradients b

drawing random (i, j) pairs

e Use different learning rates for B, u, and v (eg. Adagrad).

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey.

Optimization for Machine Learning.
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Tightening Step
@ Projected subgradient method to greedily improve original nonconvex
objective J(8) = min BTWuB st. B€B,|Bllo <k
o Sparsity level k := ||Brelax||0

e For any 3: matching-minimization (and subgradients of .J) computed
by sorting scalars BTz(l), . ,,BT:C("), ﬂTy(l), .. ,ﬁTy(m)
(matching matrices not needed)

Fact
In 1-D, Wasserstein distance = Lo norm between quantile functions.

1
D(X,Y) = /0 [FyL(p) - F'(p) dp
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Tightening Step
@ Projected subgradient method to greedily improve original nonconvex
objective J(3) = Ar4r1€1/r\14 BTWup st. BEB,|Bllo <k
o Sparsity level k := ||Brelax||0

e For any 3: matching-minimization (and subgradients of .J) computed
by sorting scalars ,BTac(l), ... ,,BTJU("), BTy(l), ... ,BTy(m)
(matching matrices not needed)

Fact
In 1-D, Wasserstein distance = Lo norm between quantile functions.

1
D(X,Y) = /0 [FyL(p) - F'(p) dp

e Time-complexity (per iteration):
Tightening procedure = O(dnlogn) , RELAX algorithm = O(d®n?)

J. Mueller 13 /29



Some cases where relaxation is tight

@ The projected Wasserstein distance between X and Y in some
direction is nearly as large as overall Wasserstein distance in R¢.

Ex: if [E[X] - E[Y]|]> > max{]|Cov(X)||, || Cov(Y)]|r}
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Some cases where relaxation is tight

@ The projected Wasserstein distance between X and Y in some
direction is nearly as large as overall Wasserstein distance in R¢.

Ex: if [[E[X] — E[Y]]|2 > max{|[Cov(X)||p, ||Cov(Y)||r}
Q@ X ~ N(ux,¥x)and Y ~ N(uy,Xy) with ux # py and Xx ~ Xy
© X ~N(ux,Xx)and Y ~ N(uy,Xy) where ux ~ py and

argmax ||(BY/2Sx B/%)1/2 — (BY/?%y BY/?)1/2||2, is nearly rank 1.
BeB,

Ex: ¥y =~ V - Xx (where V is a diagonal matrix)
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PDA Objective Function

Projected Wasserstein distance

Figure: PDA objective for two 3-dimensional Gaussian distributions.
Green = solution found by tightening procedure.
Red = solution found by RELAX algorithm.
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Statistical Properties

Simplifying assumptions: (Al) n =m (A2) X,Y admit continuous density functions
(A3) X,Y compactly supported with nonzero density in Euclidean ball of radius R
(A4) B = argmax D(5"X™, 5TV ()
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Simplifying assumptions: (Al) n =m (A2) X,Y admit continuous density functions
(A3) X,Y compactly supported with nonzero density in Euclidean ball of radius R
(A4) B = argmax D(5"X™, 5TY)

Theorem 1

If there exists direction 3* € B such that D(6*T X, 3*1Y) > A, then:

N N 2
D(BTX("),ETY(")) > A —e  with probability > 1 — 4exp <—%)

v

Theorem 2
If X aﬂd Y areAidentically distributed in R, then:
D(BTX™, BTY™) < e

. .- R2 d 02 2
with probability > 1—C7 (1+ — | exp —qane
€

v
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Statistical Properties
Extra assumptions: (A4) Y sub-Gaussian, (A5) E[X] = E[Y] =0, (A6) Var[X,] =1

Jirak M (2011). On the maximum of covariance estimators. Journal of Multivariate Analysis.
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Statistical Properties
Extra assumptions: (A4) Y sub-Gaussian, (A5) E[X] = E[Y] =0, (A6) Var[X,] =1

Let T,(X,Y) = [Pr(Xy| < ar...,|Xel < 0) — Pr(Vi| < a,....|Ya| < a)
(measures difference between X,Y € R, parameterized by a > 0)
Define h(g(A)) := min{A1, Az}

A1 = (a+d)*(g(A) +d) + exp(~a®/2) + Yexp (~1/(V20))

Az = (g(A) + exp(—a®/2)) - d

¥ =|[|Cov(X)[|1, g(A) = A" (1+ @) ", and @ = sup,cp {sup, |fory ()]}
with f,7y (y) defined as the density of the projection of Y in the « direction.
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Statistical Properties
Extra assumptions: (A4) Y sub-Gaussian, (A5) E[X] = E[Y] =0, (A6) Var[X,] =1
Let T,(X,Y) = [Pr(Xy| < ar...,|Xel < 0) — Pr(Vi| < a,....|Ya| < a)
(measures difference between X,Y € R, parameterized by a > 0)
Define h(g(A)) := min{A1, Az}

A1 = (a+d)*(g(A) +d) + exp(~a®/2) + Yexp (~1/(V20))

Az = (9(A) + exp(—a?/2)) - d
¥ =[|Cov(X)|, g(A) = A" (1+ @), and & = sup,cps {sup, |[fory ()]}

with f,7y (y) defined as the density of the projection of Y in the « direction.

Theorem 3

If 3a>0s.t To(X,Y) > h(g(A)), then: D(BTX™ BTY ™) > CA — ¢
with probability > 1 — C; exp ( —ﬁne2)

Jirak M (2011). On the maximum of covariance estimators. Journal of Multivariate Analysis.
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Statistical Properties

Define C' as in Theorem 3 and 3*) := argmax {D(BTX™ Ty (™M)
BEB,||Bllo<k

Theorem 4 (Sparsistency)

Suppose there exists feature subset S C {1,...,d} s.t. |S| =k,
T(Xs,Ys) > h(g(e(d+1)/C)), and remaining marginal distributions
Xgo , Ygo are identical. Then: B #0, B" =0 Vies,jesC

d—k C
with probability > 1— C} (1 aF ?) exp (—R—ine2)
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Feature Selection

@ Two-class MADELON dataset from NIPS 2003 feature selection
challenge

e n=m = 1000,d = 500
@ 20 features with differences between groups

480 noise features with no difference

Only differences present are in interactions between features
(resembles parity problem)

Guyon |, Gunn S, Nikravesh M, Zadeh LA (2006). Feature Extraction: Foundations and Applications. NIPS 2003 Feature
Selection Challenge

J. Mueller 19 /29



Feature Selection: Results
MADELON

20

15

Relevant features
5 10

0 100 200 300 400 500
Cardinality

Figure: How well SPARDA (red), top sparse principal component (black), sparse linear
discriminants analysis (green), and logistic lasso (blue) identify the 20 relevant features

over different regularization settings.

* = SPARDA result with X\ chosen via cross-validation (46 features selected with 17
relevant). Many A-settings return 14 relevant features with no false positives.

* = best result (ARD kernel SVM) in the NIPS challenge (8 of the 20 relevant features
selected).

J. Mueller 20 /29



Two-sample Testing

@ Generated 20 datasets of varying dimensionality, only first 3 features
in each dataset differ

@ Centered multivariate Gaussian with covariances ~ Wishart
(n = m = 1000)
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Two-sample Testing

@ Generated 20 datasets of varying dimensionality, only first 3 features
in each dataset differ

@ Centered multivariate Gaussian with covariances ~ Wishart
(n = m = 1000)

e For PDA/SPARDA, test statistic = D(37X (™ BTy (M)

@ Evaluate significance of all test statistics via permutation testing
(exact Type | error control)

J. Mueller 21 /29



Two-sample Testing: Results

Two Sample Testing

0.6

p value
0.4

0.2

0.0

10 20 30 4o, .50
Data dimension (d)

60

Figure: (10-repetition averaged) p-values produced by SPARDA (red), PDA (purple),
overall Wasserstein distance in R? (black), Maximum Mean Discrepancy’ (green), and
DiProPerm? (blue).

1 Gretton A, Borgwardt KM, Rasch MJ, Scholkopf B, Smola A (2012). A Kernel Two-Sample Test.
Journal of Machine Learning Research.

2Wei S, Lee C, Wichers L, Marron JS (2015). Direction-Projection-Permutation for High Dimensional Hypothesis Tests.
Journal of Computational and Graphical Statistics.
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Cellular gene expression in cortex vs. hippocampus

@ From juvenile mice: 1,691 cells sampled from somatosensory cortex,
1,314 hippocampus cells (Zeisel, 2015)

@ Expression of 10,305 genes measured within individual cells via
single-cell RNA-seq (on comparable log-FPKM scale)

Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, et al. (2015). Cell types in the mouse cortex
and hippocampus revealed by single-cell RNA-seq. Science.
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Cellular gene expression in cortex vs. hippocampus

@ From juvenile mice: 1,691 cells sampled from somatosensory cortex,
1,314 hippocampus cells (Zeisel, 2015)

@ Expression of 10,305 genes measured within individual cells via
single-cell RNA-seq (on comparable log-FPKM scale)

@ Standard method to identify differentially expressed genes: assume
expression distribution follows parametric family, assess statistical
significance of marginal-mean-shifts (eg. Limma)

@ Brain regions contain vast diversity of cell subtypes
(mean differences unsatisfactory, there is no “average” cell)

@ Single-cell RNA-seq data is highly noisy and does not follow nice
parametric distribution

Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, et al. (2015). Cell types in the mouse cortex
and hippocampus revealed by single-cell RNA-seq. Science.

Ritchie M, Phipson B, Wu D, Hu Y, Law CW, et al. (2015). Limma powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Research.
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Single-cell RNA-seq differential expression analysis

GENE WEIGHT DESCRIPTION

Cck 0.0593 Primary distinguishing gene between distinct interneuron classes
identified in the cortex and hippocampus

Neurod6 0.0583 General regulator of nervous system development whose induced mutation
displays different effects in neocortex vs. the hippocampal region

Stmn3 0.0573 Up-expressed in hippocampus of patients with depressive disorders

Plp1l 0.0570 An oligodendrocyte- and myelin-related gene which exhibits cortical
differential expression in schizophrenia

Crym 0.0550 Plays a role in neuronal specification

Spink8 0.0536 Serine protease inhibitor specific to hippocampal pyramidal cells

Gap43 0.0511 Encodes plasticity protein important for axonal regeneration
and neural growth

Cryab 0.0500 Stress induction leads to reduced expression in the mouse hippocampus

Mal 0.0494 Regulates dendritic morphology and is expressed at lower levels
in cortex than in hippocampus

Tspanl3 0.0488 Membrane protein which mediates signal transduction events in

cell development, activation, growth and motility

Table: Genes with the greatest weight in the projection 3 produced by SPARDA

o Crym, Spink8, Neurod6 are also among the top 10 genes identified by
LIMMA

T



Snca

@ Presynaptic signaling and membrane trafficking gene whose defects
are implicated in both Parkinson and Alzheimer's disease

@ Ranks 11th highest in SPARDA analysis, but only 349 by LIMMA
differential expression analysis

Snca expression
15 20 25
Il Il

1.0

05
1

0.0

J. Mueller
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Cortex

T
Hippocampus
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Marginally-normalized differential expression analysis

@ Data from both populations is marginally centered at zero with unit
variance (per-gene basis)

@ Only major remaining differences are changes in gene-gene
relationships between cortex and hippocampus

GENE WEIGHT DESCRIPTION
Thyl 0.1245 Plays a role in cell-cell & cell-ligand interactions during synaptogenesis
and other processes in the brain
Vsnll 0.1245 Modulates intracellular signaling pathways of the central nervous system
Stmn3 0.1222 Stathmins form important protein complex with tubulins
Stmn2 0.1188 Note: Tubulins Tubb3 and Tubb2 are ranked 20" and 25t by weight in E
Tmem59 0.1176 Fundamental regulator of neural cell differentiation. Knock out in the
hippocampus results in drastic expression changes of many other genes
Baspl 0.1171 Transcriptional cofactor which can divert the differentiation of cells to
a neuronal-like morphology
Snhgl 0.1166 Unclassified non-coding RNA gene
Milt11 0.1145 Promoter of neurodifferentiation and axonal/dendritic maintenance
Uchll 0.1137 Loss of function leads to profound degeneration of motor neurons
Cck 0.1131 Targets pyramidal neurons and enables neocortical plasticity allowing

for example the auditory cortex to detect light stimuli

Table: Genes with the greatest weight in /3 produced by SPARDA analysis of marginally
normalized data
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PCA — PDA

o Consider setting with paired samples (2, y(?))
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PCA — PDA

o Consider setting with paired samples (2, y(?))

o Bpca 1= largest principal component of (uncentered) differences
(1) _ (@)
z Yy

° B\pDA := direction which maximizes projected Wasserstein difference
between empirical distribution of X — Y and delta distribution at 0.

Fact
B\PCA = B\PDA J
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Future Work

@ Develop structural assumptions to leverage underlying sparsity in
differences and improve exponential bounds on convergence in
high-dimensional settings (eg. spiked covariance, restricted isometry).
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Future Work

Develop structural assumptions to leverage underlying sparsity in
differences and improve exponential bounds on convergence in
high-dimensional settings (eg. spiked covariance, restricted isometry).

e Confidence intervals for projection weights 3 (beyond bootstrap)

Employ multiple successive projections (eg. maximum-entropy)

Adapt approach to non-pairwise comparison of multiple populations
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Thanks!

Questions?

Paper: Mueller J, Jaakkola T. Principal Differences Analysis:

Interpretable Characterization of Differences between Distributions.
NIPS 2015.

Code: http://www.mit.edu/~jonasm/
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