
The Directed Steiner Network problem is tractable for a constant
number of terminals

JonFeldman
�

MatthiasRuhl†

MIT Laboratoryfor ComputerScience
Cambridge,MA 02139,USA

Abstract

We considerthe DIRECTED STEINER NETWORK prob-
lem, also called the POINT-TO-POINT CONNECTION

problem, where given a directed graph G and p pairs���
s1 � t1 �����	���
� � sp � tp ��� of nodesin thegraph,onehasto find

thesmallestsubgraphH of G that containspathsfromsi to
ti for all i. Theproblemis NP-hard for general p, sincethe
DIRECTED STEINER TREE problemis a specialcase. Until
now, thecomplexity wasunknownfor constantp  3.

We prove that theproblemis polynomiallysolvableif p
is any constantnumber, evenif nodesand edgesin G are
weightedandthegoal is to minimizethetotal weightof the
subgraphH.

In addition, we give an efficient algorithm for the
STRONGLY CONNECTED STEINER SUBGRAPH problem
for any constantp, where given a directedgraph and p
nodesin thegraph,onehasto computethesmalleststrongly
connectedsubgraphcontainingthe p nodes.

1. Introduction

In this paperwe addressoneof themostgeneralSteiner
problems,the DIRECTED STEINER NETWORK problem,
alsocalledthePOINT-TO-POINT CONNECTION problem.

DIRECTED STEINER NETWORK (p-DSN): Given a di-
rectedgraphG � �

V � E � , andp pairsof nodesin thegraph���
s1 � t1 �����	���
� � sp � tp ��� , find the smallestsubgraphH of G

thatcontainspathsfrom si to ti for 1 � i � p.

According to how ‘smallest’ is defined,thereare sev-
eral variationsof this problem. In this paper, ‘smallest’
will mean‘minimum numberof nodes’. Other possibili-
tiesare‘minimum numberof edges’or ‘smallestcost’ if G�
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is a graphwith nodeandedgecosts.We extendour results
to thesevariationsat theendof thepaper.

TheDSN problemoccursnaturallywhendesigningnet-
worksdeliveringgoodsfrom sourcesto destinations,where
anunderlyingnetwork is present,but its serviceshaveto be
paid for. For example,thegraphG couldbea setof inter-
net routers,whereedgesareconnectionsbetweenrouters.
Supposethata bankneedsto sendsecuredataover thenet-
work from sourcessi to destinationsti . But to transmittheir
datasecurely, the routersusedin the transmissionshave to
beupgraded,which is expensive. Thebanknaturallywants
to minimizethenumberof routersto upgrade.

Justlike theoriginal STEINER TREE problem[6], DSN
is NP-completeif the numberof pairs p is part of the in-
put. For constantp, on theotherhand,its complexity was
mostly unknown so far. The casep � 1 is just a shortest
pathquery, andfor p � 2 theproblemwassolved in 1992
by Li, McCormickandSimchi-Levi [8]. They statethecase
p  3 asanopenproblem.

Our Contribution In this paper, we give a polynomial
time algorithm for any constantp, and thereforeresolve
this open problem. More precisely, the running time is� �

mn4p � 2 � n4p � 1 logn� , wheren ���V � andm ���E � .
Our algorithm for p-DSN can best be understoodin

termsof a game,wherea playermovestokensaroundthe
graph. Initially, p tokensareplacedon the startingnodes
s1 �	�����
� sp, onetokenpernode.Theplayeris thenallowedto
makecertaintypesof moveswith thetokens,andhisgoalis
to performa seriesof thesemovesto getthetokensto their
respectivedestinationst1 ���	���
� tp (thetokenfrom s1 to t1, the
tokenfrom s2 to t2, etc).

Every possiblemove hasa costassociatedwith it: the
numberof nodesthatarevisitedby themoving tokens.We
definethemovescarefullysothat thelowestcostmove se-
quenceto getthetokensfrom s1 �	�����
� sp to t1 ���	���
� tp will visit
exactly thenodesof theoptimalsubgraphH. Thedifficulty
of theconstructionis to ensurethatsucha sequenceexists
for every optimal H. For p � 2 this is easyto do, since
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thetwo involvedpathscanonly shareverticesin a very re-
strictedmanner. However for p  3 the relationshipsbe-
tweenthe pathsbecomesignificantlymorecomplex. Crit-
ical to our argumentis a structurallemmaanalyzinghow
thesepathsmayoverlap.

We find that most of the difficulty of p-DSN is con-
tainedin thespecialcasewhenti � si � 1 for 1 � i � p, and
tp � s1. It is not hardto seethatevery optimal solutionH
to this specialcasemustbea stronglyconnectedsubgraph.
This problem is thereforeequivalent to the STRONGLY

CONNECTED STEINER SUBGRAPH problem, definedas
follows.

STRONGLY CONNECTED STEINER SUBGRAPH (p-
SCSS): Givena directedgraphG � �

V � E � , and p vertices�
s1 �	�����
� sp � in V, find the smallest strongly connected

subgraphH of G thatcontainss1 ���	���
� sp.

We give an algorithm for p-SCSS that runs in time� �
mn2p � 3 � n2p � 2 logn� , for any constantp, which makes

useof a tokengamesimilar to theonementionedabove.

Related Work Therearemany relatedSteinerproblems
that arewell-studied,mostof themfor undirectedgraphs.
For a monographon thesubject,see[7].

The only previously known polynomial-timealgorithm
for p-DSN with constantp, exceptfor thetrivial casep � 1,
wasthe onegivenby Li, McCormick andSimchi-Levi [8]
for p � 2. The running time of their algorithm is

� �
n5 � .

Natu andFangin [9] and[10] improvedthis runningtime
first to

� �
n4 � , andthento

� �
mn� n2 logn� . In [10] they also

presentanalgorithmfor p � 3, andconjecturethatavariant
for their algorithmworksfor all constantp. In AppendixA
we provide whatwe believe to bea counterexampleto the
correctnessof their algorithmfor p � 3, andthus to their
conjecture.

There is strong evidence that p-DSN is not fixed-
parametertractable,i.e. thereis no algorithmwith a run-
ning time of

� �
nk � for someconstantk independentof the

parameterp. This follows from resultsprovedfor the ‘W-
hierarchy’definedbyDowney andFellows[3], whereit was
shown thatDIRECTED STEINER TREE is W � 2� -hard.

Thep-DSN problembecomesmuchharderif thep paths
betweenthe si and ti are requiredto be edge-disjoint(or
node-disjoint). Under that restriction,the problemis NP-
completealreadyfor p � 2 [4]. More precisely, it is NP-
hardevento determinewhetherany feasiblesolutionH ex-
ists.

Other recentwork hascenteredon the approximability
of p-DSN for generalp. Thebestpositive resultobtained
so far is by Charikaret al [1], who achieve an approxi-
mationratio of

� �
p2� 3 log1� 3 p� for any p. They alsogive

anapproximationalgorithmfor p-SCSS for generalp that
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Figure 1. A samplegraph

achievesanapproximationratioof 2i
�
i � 1� p1� i andrunsin

time
� �

ni p2i � . On thenegativeside,DodisandKhanna[2]
provethat p-DSN is Ω

�
2log1 � ε p � -hard.

Overview In section2, we give a simplealgorithmthat
solves p-SCSS for p � 2, while also defining the token
gamein moredetail. We generalizethis approachto any
constantp andstatethealgorithmsolving p-SCSS in sec-
tion 3. Thecorrectnessproof is givenin sections4 and5.

Using the algorithmfor p-SCSS, we then in section6
give the algorithm for the p-DSN problemand prove its
correctness.We concludethe paperby summarizingour
resultsanddiscussingpossiblefutureresearchdirectionsin
section7.

2. A Solution for 2-SCSS

We begin by solving 2-SCSS, theproblemof finding a
minimum stronglyconnectedsubgraphH of a graphG ��
V � E � that includestwo specifiednodess1 ands2. This is

equivalentto findingthesmallestH thatcontainspathsfrom
s1 to s2 andfrom s2 to s1. Consideringthis simpleproblem
allows us to introducethe notationandmethodologyused
in the following sections.The algorithmdescribedhereis
similar to theonegivenby NatuandFang[10].

Figure1 illustratessomeof thedifficultiesof this prob-
lem. Let s1, s2 be our terminals. The optimal subgraph
consistsof thesix nodess1 � x6 � x7 � x8 � x9 � s2. Thepathsfrom
s1 to s2 ands2 to s1 sharevertex x6, andsharethe vertex
sequencex7 � x8 � x9. Notethattheoptimalsubgraphin-
cludesneithertheshortestpathfrom s1 to s2, nor theshort-
estpathfrom s2 to s1.

2.1. The token game

To computethe optimalsubgraphH, we will placetwo
tokens,called f and b, on vertex s1. We then move the
tokensalongedges,f moving forwardalongedges,andb
moving backwardsalong edges,until they both reachs2.
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Thenthesetof nodesvisitedduringthesequenceof moves
will containpathss1 � s2 ands2 � s1.

To find thesmallestsubgraphH containingthosepaths,
we will charge for the moves. The costof a move will be
the numberof new verticesenteredby the tokensduring
thatmove. Thelowestcostmovesequenceto getthetokens
from s1 to s2 thencorrespondsto theoptimalsolution.

The three kinds of moves we allow are given below.
The notation  x � y! refersto the situationwheretoken f is
on vertex x, and token b is on vertex y. The expression
“  x1 � y1 ! c�  x2 � y2 ! ” meansthat it is legal to move token f
from x1 to x2, andtokenb from y1 to y2 (at thesametime),
andthat this move hascostc. We want to find a move se-
quencefrom  s1 � s1 ! to  s2 � s2 ! with minimalcost.

(i) Token f moving forward: For every edge
�
u � v�#" E

andall x " V, we allow

(a) themove  u � x! 1�  v� x! , and

(b) themove  u � v! 0�  v� v! .
(ii) Tokenb moving backward: For every edge

�
u � v�$" E

andall x " V, we allow

(a) themove  x � v! 1�  x � u! , and

(b) themove  u � v! 0�  u � u! .
(iii) Tokensswitching places: For every pair of vertices

a � b " V for which thereis a pathfrom a to b in G, we
allow the move  a � b! c�  b � a! , wherec is the length
of the shortestpath from a to b in G. By lengthwe
meanthe numberof verticesbesidesa andb on that
path.

Type(i) and(ii) movesallow thetokens f andb to move
forwardalonga singleedge,andbackwardalongan edge,
respectively. Usually the costis 1, accountingfor the new
vertex that thetokenvisits. Only in thecasewherea token
reachesa vertex with a token alreadyon it, the cost is 0,
sinceno ‘new’ verticesarevisited.

Type (iii) movesallow the two tokensto switch places.
We call this typeof movea “flip”, andsaythat thevertices
on theshortestpathfrom a to b are implicitly traversedby
thetokens.Thecostc of themoveaccountsfor all of these
vertices.

Let usreturnto theexamplein figure1 to seehow these
movesareused.The lowestcostway to move bothtokens
from s1 to s2 is the following (we usesubscriptsto denote
thetypeof themove). s1 � s1 ! 1� %

i &  x6 � s1 ! 0� %
ii &  x6 � x6 ! 1� %

i &  x7 � x6 !
1� %
ii &  x7 � x9 ! 1�%

iii &  x9 � x7 ! 1� %
ii &  x9 � s2 ! 0� %

i &  s2 � s2 !

Theweightof this sequenceis 5, which is �H �'� 1. The
differenceby one is due to the fact that we never pay for
enterings1.

2.2. The Algorithm

Let usphrasethepreceedingdiscussionin analgorithmic
form. To computeH, we first constructa ‘game-graph’ (G.
Thenodesof thegraphcorrespondto tokenpositions x � y! ,
theedgesto legalmovesbetweenpositions.In ourcase,the
nodesarejustV ) V, andtheedgesaretheonesgivenabove
aslegal moves. Clearly, this game-graphcanbecomputed
in polynomialtime.

FindingH is doneby computinga lowestcostpathfrom s1 � s1 ! to  s2 � s2 ! in (G. ThegraphH thenconsistsof all the
verticesfrom V thatarementionedalongthatpath,includ-
ing theverticesthatareimpliedby type(iii) moves.

2.3. Correctness

Theproofthatouralgorithmactuallysolves2-SCSScan
besplit into two claims.We just providetheessentialideas
behindthe proof, andrefer the readerto section4 for the
generalcase,or to [9, 10] for an alternative proof for the
p � 2 case.

Claim 2.1
If thereis a legal move sequencefrom  s1 � s1 ! to  s2 � s2 !
with costc, thenthereis a subgraphH of G of size � c � 1
thatcontainspathss1 � s2, ands2 � s1.

This is easyto see.If we follow a move sequencefrom s1 � s1 ! to  s2 � s2 ! , then f andb traceout pathss1 � s2 and
s2 � s1. Moreoverthetokenstraverseatmostc � 1vertices,
sincewe payfor eachvertex (excepts1) thatwe visit.

Claim 2.2
Let H * beanoptimalsubgraphcontainingpathss1 � s2 and
s2 � s1. Thenthereexistsamovesequencefrom  s1 � s1 ! to s2 � s2 ! with total cost �H *+�
� 1.

This is the moredifficult part of the correctnessproof.
We canprove it by actuallyconstructinga move sequence s1 � s1 ! �  s2 � s2 ! , thatvisits every vertex in H * only once.
The key ideahereis that if we fix two pathss1 � s2 and
s2 � s1 in H * , then wlog, they shareverticesonly in a
very restrictedmanner. They mayshareseveraldisjoint se-
quencesof vertices,but thesesequencesoccur in reverse
orderon thetwo paths(seefigure2). This is becauseif two
segmentsoccur in the sameorder, they canbe mergedby
makingthepathsthesamebetweenthetwo segments.

Soto constructthemovesequence,wemovebothtokens
usingtype(i) and(ii) movesuntil they reacha sharedseg-
menton thepaths.In figure2, token f will reachvertex x,
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Figure 2. Pathss1 , s2 ands2 , s1 sharingsequencesof
vertices.Thestraighthorizontalline from s1 to s2 givesthe
paths1 , s2, theroundsegmentsarepartof s2 - s1. The
bold linesaresequencessharedby bothpaths.They occur
in oppositeorderon thetwo paths.

andtokenb – moving backwards– will reachvertex y. Now
we canapplya type(iii) move to exchangethetwo tokens,
andcounttheverticesin thesharedsegmentonly once.We
canthencontinueto usetype(i) and(ii) movesuntil we hit
thenext sharedsegment,andsoon,until bothtokensreach
s2.

The tokenmovementsfor p  3 will be muchmorein-
volved,sincethepathscanshareverticesin morecomplex
ways.

3. Strongly Connected Steiner Subgraphs

In this sectionwe giveanalgorithmfor p-SCSS, which
is ageneralizationof thealgorithmfor 2-SCSS givenin the
previoussection.

Again we will usetokenmovementsto traceout theso-
lution H. The way the tokensmove is motivatedby the
following observation. Considerany stronglyconnectedH
containing

�
s1 �����	�	� sp � . ThisH will containpathsfromeach

s1 ���	���
� sp � 1 to sp, andthesepathscanbe chosento form a
treerootedatsp; wewill call this treetheforward tree. The
graphH will alsocontainpathsfrom sp to eachs1 ���	���
� sp � 1,
forming what we call the backward tree. Moreover, every
H that is the union of two suchtreesis a feasiblesolution
to our p-SCSS instance.Note that for 2-SCSS thesetwo
treeswerejust singlepaths.

For easeof notation,we setq : � p � 1 for theremainder
of this sectionand the next section,and let r : � sp, assp

playsthespecialrole of ‘root’ in thetwo trees.

3.1. Token moves for p-SCSS

To traceout the two trees,we will have q “F-tokens”
moving forward along edgesin the forward tree from�
s1 �	�����
� sq � to r, andq “B-tokens”moving backwardalong

edgesfrom
�
s1 �	���	�	� sq � to r. Given a set of legal moves,

we will againlook for the lowestcostmove sequencethat
moves all tokens to r. This will then correspondto the

. . .. . .. . ./ // // / 0 00 00 01 11 11 1 2 2 22 2 22 2 23 33 33 34 44 44 45 55 55 56 6 66 6 66 6 67 7 77 7 77 7 78 88 88 89 99 99 9 : :: :: :; ;; ;; ; < << << <= == == =
f br

F’
F’ B’ F’

B’

Figure 3. Flipping f andb, with tokensF’ andB’ that
needto be“pickedup.” TheblacknodesarethesetM.

smallestsubgraphcontainingpathssi � r and r � si for
all i � q, which is thegraphwearelooking for.

Sincebothsetsof tokenstraceoutatree,oncetwo tokens
of the samekind reacha vertex, they will travel the same
wayto theroot. In thatcase,wewill simplymergetheminto
onetoken. It is thereforeenoughto describethe positions
of thetokensby apair of sets  F � B! , whereF andB arethe
setsof nodescurrentlyoccupiedby theF- andB-tokens.

Again, we have threetypesof legal tokenmoves. Type
(i) movescorrespondto F-tokensmoving forwardalongan
edge,and type (ii) movescorrespondto B-tokensmoving
backwardalongan edge. We do not charge for enteringa
vertex if anothertokenis alreadyon it.

For any setS, let > k
�
S� bethesetof subsetsof Sof size

at mostk.

(i) Singlemovesfor F-tokens:For every edge
�
u � v�?" E,

andall tokensetsF " > q � 1
�
V @ � u �+� , B " > q

�
V � , the

following is a legalmove: F A � u ��� B! c�  F A � v �B� B!
wherethe costc of the move is 1 if v C" F A B, and0
otherwise.

(ii) Singlemovesfor B-tokens:For every edge
�
u � v�?" E,

andall tokensetsF " > q
�
V � , B " > q � 1

�
V @ � v �D� , the

following is a legalmove: F � B A � v � ! c�  F � B A � u � !
wherethecostc of themove is 1 if u C" F A B, and0
otherwise.

Type(iii) movesallow tokensto passeachother, similar
to the type (iii) movesin the previous section,except that
this timethe“flip” is morecomplex (seefigure3). We have
two ‘outer’ tokens, f andb, trying to passeachother. Be-
tween f andb thereareotherF-tokensmoving forwardand
trying to passb, andB-tokensmoving backwardandtrying
to passf . Thesetokens,sitting on nodesetsF E andBE , are
‘pickedup’ duringtheflip.

(iii) Flipping: For everypairof verticesf � b, vertex setsF ,
B, F EGF F, BEHF B, suchthat:
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I thereis apathin G from f � b goingthroughall
verticesin F E�A BEI F " > q � 1

�
V @ � f � b �+�I B " > q � 1
�
V @ � f � b �+�

thefollowing is a legal tokenmove: F A � f �B� B A � b � !KJM J�  � F @ F E � A � b �B� � B @ BE � A � f � !
whereM is thesetof verticesonashortestpathfrom f
to b in G goingthroughall verticesin F E'A BE , besides
f ,b andtheverticesin F E A BE .

3.2. The algorithm for p-SCSS

We cannow statethealgorithmfor p-SCSS:

1. Constructa game-graph(G � � (V � (E � from G � �
V � E � .

Set (V : �L> q
�
V � )M> q

�
V � , thepossiblepositionsof the

token sets,and (E : � all legal token moves defined
above.

2. Find a shortest path P in (G from � s1 ���	���	� sq �B� � s1 ���	���
� sq � ! to  � r ��� � r � ! .
3. Let H betheunionof

�
s1 �	�����
� sq � r � andall nodesgiven

by P (includingthosein setsM for type(iii) moves).

The difficult part of constructingthe game-graph(G is
computingthecostsfor thetype(iii) movesthatflip f and
b. Wedonotrequirethattheshortestpathfrom f to b going
throughall verticesin F ENA BE be simple. Sincethe num-
berof tokensin F E�A BE is boundedby 2

�
q � 1� , which is a

constant,we cancomputethis pathin polynomial time by
simply trying all possiblesequencesof thenodesin F E
A BE ,
andcomputingshortestpathsalongthesequence.For more
detailson therunningtime,seeappendixB.

3.3. Example

As an example we look at how the algorithm works
on the graph in figure 1, where now our terminals are
s1 � s2 � s3 � s4 � s5. The optimal solution is the node set�
s1 � s2 � s3 � s4 � s5 � x1 � x2 � x3 � x4 � x5 � . The following is a se-

quenceof lowestcostmovesfor this graph: � s1 � s2 � s3 � s4 ��� � s1 � s2 � s3 � s4 � !
1� %
i &  � s1 � s2 � s3 � x3 �B� � s1 � s2 � s3 � s4 � !
0� %
ii &  � s1 � s2 � s3 � x3 �B� � s1 � s2 � s3 � ! 2�%

iii &  � s2 ��� � x3 � !
1� %
i &  � x5 ��� � x3 � ! 1� %

ii &  � x5 �B� � x4 � ! 0�%
iii &  � x4 �B� � x5 � !

1� %
i &  � s5 �B� � x5 � ! 0� %

ii &  � s5 �B� � s5 � ! �

The total costof the movesis 6, andthereforeequalto�H ��� q � 10 � 4 � 6, asexpected. The solution is made
up of the terminals

�
s1 � s2 � s3 � s4 � s5 � , the nodes

�
x3 � x4 � x5 �

mentionedin thesequenceof moves,andthenodes
�
x1 � x2 �

in thesetM for thefirst type(iii) move.

4. Correctness of the p-SCSS algorithm

Thecorrectnessproof for our p-SCSS algorithmcanbe
split into thesametwo partsweusedfor 2-SCSS.

Lemma 4.1
Suppose there is a move sequence from � s1 ���	���
� sq �B� � s1 ���	���
� sq � ! to  � r ��� � r � ! with total cost
c. Thenthereexists a solutionH to this p-SCSS instance
of size � c � q. Moreover, given the move sequence,it is
easyto constructsuchanH.

Proof: This follows directly from the definition of the
moves. Thecostof any move sequenceis an upperbound
on the number of vertices traversed by that sequence.
Given the constructive natureof the moves,it is alsoeasy
to actuallyfind H. O

Together with the following, much more involved
lemma,thecorrectnessof thealgorithmis proved.

Lemma 4.2
SupposeH *P� �

V * � E * � is any minimum cardinality fea-
sible solution. Then there is a move sequencefrom � s1 ���	���
� sq �B� � s1 ���	���
� sq � ! to  � r �B� � r � ! with weightequalto�H *Q�
� q.

Proof: To prove this lemma,we will effectively construct
sucha move sequence,whereall intermediatepositionsof
thetokenswill bein H * .

Whenmoving the F- andB-tokensfrom
�
s1 �	�����
� sq � to

r, we ‘pay’ eachtime we reacha new vertex. In order to
achieve total cost �H *D��� q we mustmake surethatwe pay
only oncefor eachvertex. To ensurethis, we enforceone
rule: after a token movesoff a vertex, no othertoken will
ever move to that vertex again. We say that a vertex be-
comes‘dead’onceatokenmovesfrom it, sothattokensare
only allowedto move to verticesthatare‘alive’. This also
makessurethatour move sequencewill befinite, sinceno
tokencanreturnto a vertex it hasalreadyvisited.Notethat
the notion of deadand alive verticesis only usedfor the
analysis,thealgorithmitself neverexplicitly keepstrackof
them.

We will constructour move sequencein a greedyfash-
ion. That is, we will move tokens towards r using type
(i) and(ii) moves,until eachtoken sits on a vertex that is
neededby someothertokento getto r. In thiscasewecan-
not applyany moretype(i) or (ii) moves– doingsowould
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leave anothertoken strandedas it is not allowed to move
ontothethendeadvertex.

In thiscaseweneedto useatype(iii) moveto resolvethe
deadlock.Showing that this is alwayspossibleis the core
of thecorrectnessproof, the ‘flip lemma’shown in section
5. To statethis lemmaandseehow it implies the correct-
nessof thealgorithm,wehaveto introducesomeadditional
notation.

We saythat a token t requiresa vertex v " V * if all le-
gal pathsfor t to get to r passthroughv. By ‘legal paths’
we meanpathsthat are within H * , go in the appropriate
directionfor the token t, anddo not includeany deadver-
tices.We will sometimesspeakof tokensrequiringtokens;
in this casewe meanthat thefirst tokenrequiresthevertex
on which thesecondtokenis sitting. Notethat therequire-
ment relationamongtokensmoving in the samedirection
is transitive, i.e. if f1 requiresf2, and f2 requiresx, then f1
alsorequiresx.

Let the‘F0-tokens’betheF-tokensthatarenot required
by any otherF-token. Similarly, let the ‘B0-tokens’be the
B-tokensthatarenot requiredby any otherB-token.

Lemma 4.3 (The Flip Lemma)
Supposeevery tokenis requiredby someothertoken.Then
thereis anF0-token f anda B0-tokenb suchthatI f requiresb, andno otherF0-tokenrequiresb,I b requiresf , andno otherB0-tokenrequiresf . R

Wewill provethis lemmain thenext section.Let usnow
seehow it concludestheproofof Lemma4.2.

Let f andb bechosenaccordingto theFlip Lemma.Fix
any pathP from f to b thatusesonly live vertices.For all
verticesx on the pathP, every pathx � r mustincludeb,
otherwisef couldmoveto x, andthento r, withoutvisiting
b.

SupposesomeF-token f ESC� f requiresavertex onP, and
thereforeby transitivity alsorequiresb. The token f E can-
not bean F0-token,sincetheFlip Lemmatells us that f is
the only F0-token that requiresb. Note that dueto transi-
tivity, every F-token is either an F0-token, or requiredby
someF0-token, so f E mustbe requiredby someF0 token
f E E . By transitivity, f E E requiresb, andso f E ED� f , by theFlip
Lemma.Thetoken f E mustthereforebeon P. In summary,
all F-tokensareeitheron P, or do not requireany vertex on
P. By symmetry, thesameappliesto B-tokens.

Let F E bethesetof F-tokensthatareon thepathP, and
BE be the setof B-tokenson P. We canapply a type (iii)
move that switchesf andb, andpicks up F E andBE along
the way. All verticeson P becomedead,but no token is
stranded.

Thisprovesthatwecanalwayscontinuetheconstruction
of ourmovesequenceuntil all tokensreachr. O

5. The Flip Lemma

Proof of Lemma 4.3 (The Flip Lemma): Let Greq ��
Vreq � Ereq� be a new directedgraph,whosenodesare the

F0 andB0-tokens.Theedgesin Ereq correspondto require-
ments:Greq hasan edgex � y if f the tokenx requiresthe
tokeny.

By assumption(every token is requiredby someother
token) and by definition (an F0-token is not requiredby
any F-token), we know that every F0-token is requiredby
at leastoneB-token. We know thateitherthatB-tokenis a
B0-token,or thereis anotherB0-tokenthat requiresthatB-
token. Therefore,by transitivity, every F0-tokenis required
by at leastoneB0-token. By symmetry, every B0-token is
requiredby at leastoneF0-token. Thus,every nodein Greq

hasat leastoneincomingedge.Greq is alsobipartite,since
notwo F0-tokens(andnotwo B0-tokens)requireeachother.

We canview Greq asa dag (directedacyclic graph)of
stronglyconnectedcomponents,andsort thestronglycon-
nectedcomponentstopologically. Let C bethefirst compo-
nentin that ordering. This meansthatno token outsideof
C requiresany token in C. Furthermore,C cannotconsist
of only onenode,sincethenthat token would be required
by no othertoken, in contradictionto our assumptionthat
every tokenis requiredby at leastonetoken. If C contains
exactly two nodes,thesetokensrequireeachother, but are
requiredby no othertokens,andthelemmais proven.

In thefollowing we prove thatC cannotconsistof more
thantwo nodes.

Claim 5.1
No stronglyconnectedcomponentC of Greq hasmorethan
2 nodes.

Proof: The proof restson the observation that Greq satis-
fiesa kind of transitivity property. Supposefor threenodes
f1 � f2 � b1 ( f1 C� f2) in Greq we have edges f1 � b1 and
b1 � f2 in Greq. Thenthefollowing holds:all nodesb that
haveanedgeb � f1 alsohaveanedgeb � f2.

Thisis nothardto see.By definitionof F0, thereis alegal
pathin H * from f1 to r avoiding f2, andsince f1 requires
b1, thereis a pathP1 from f1 to b1 avoiding f2 (seefigure

b1

f2

f1

b

1

2

P

P

r

Figure 4. Proving transitivity in Greq. Thesolid linesare
pathsin H T correspondingto edgesf1 - b1 andb1 - f2 in
Greq, thedashedline to theedgeb - f1.
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f2
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f1
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1
P

P

r

Figure 5. Componentswith morethan2 elementsareim-
possible

4). Now assumethatb � f1 is in Greq. If b � f2 is not in
the requirementgraph,thenthereis alsoa legal pathP2 in
H * from r to f1 avoiding f2, sinceb requiresf1. Combining
P2 andP1, we obtaina pathfrom r to b1 thatdoesnot visit
f2 in contradictionto b1 � f2 beingin Greq.

A symmetricargumentholdsby exchangingf ’s andb’s,
i.e. for any triple f1 � b1 � b2, if thereareedgesb1 � f1 and
f1 � b2 in Greq, then for every F0-token f , if thereis an
edgef � b1, thentheremustalsobeanedgef � b2.

We now prove the claim by contradiction.Assumethat
astronglyconnectedcomponentC in Greq hasat leastthree
elementsf1 ���	���
� fk � b1 ���	���
� bU (k �WV  1). For everypair fi � b j

thereis a pathfrom fi to b j in Greq. Applying our transi-
tivity observationalongthepathwe concludethat theedge
fi � b j mustactuallybe in Greq. By symmetry, Greq also
containstheedgesb j � fi for all i, j.

Sincek � V  3,oneof k andV mustbeatleast2. Assume
k  2 (thecaseV  2 is handledin thesamemanner).Then
thetokenb1 requiresall fi ’s. Thereforethereis a legalpath
in H * from r to b1 thatvisitsall fi ’s (solid linesin figure5).
Without lossof generalityassumethat f1 is thefirst nodeon
thatpath,so that thereis a pathP1 from r to f1 thatavoids
f2.

Sincethe token on node f1 requiresb1, but f1 doesnot
require f2, theremustalsobe a pathP2 from f1 to b1 that
avoids f2 (dashedlines in figure5). CombiningP1 andP2,
we obtaina legal pathin H * from r to b1 thatavoids f2, in
contradictionto theassumptionthatb1 requiresall fi ’s.

ThiscontradictionshowsthatC cannothavemorethan2
elements.O
6. The Directed Steiner Network problem

6.1. The Algorithm

In this sectionwe show how to apply the algorithmde-
velopedin the previous sectionsto solve the DIRECTED

STEINER NETWORK problem(p-DSN), for any constant
p.

Weusethesamegeneralmodelof atokengame,but now

XYZ[ \] ^_ `a bc defg
4-SCSS

4-SCSS

s1 t1

s3

s2 t2

t3

Figure 6. A solutionto p-DSN is a dagof stronglycon-
nectedcomponents

we have tokensmoving from eachsourcesi to its destina-
tion ti . This time, we have no backwardsmoving tokens,
and also tokensdo not merge when they reachthe same
node.We describethepositionsof thetokensby a p-tuple f1 � f2 ���h�i�h� fp ! . We have two kindsof movesfor thetokens.
The first kind of move allows a singletoken to move one
stepalonganedge.

(i) For each edge
�
u � v� we include the moves u ! c�  v ! , meaning that one to-

ken movesfrom u to v, andall othersremainwhere
they are.Thecostc of themoveis 0 if v alreadyhasa
tokenon it, and1 otherwise.

We also allow a group of tokens to move through a
strongly connectedcomponentall at once. To seewhy
this is useful,considertheoptimalsolutionto p-DSN and
contractevery stronglyconnectedcomponentinto a single
node;theresultinggraphis a dag(seefigure6). Eachcon-
tractedcomponenthasat most p tokensentering,and at
most p tokensexiting. We cancomputethe bestway for
somegroupof k tokens(k � p) to movefrom any k specific
entrancepoints to any k specificexit points in a strongly
connectedcomponentby solvinganinstanceof 2k-SCSS.

(ii) For all k � p, and for every set of k node-
pairs

���
f1 � x1 ��� � f2 � x2 ���	�����
� � fk � xk ��� , for which there

is a strongly connectedsubgraphof G containing�
f1 � f2 ���	����� fk � x1 � x2 �����	�	� xk � , we allow themove�

f1 f2 ���	� fk �
c� �

x1 x2 ���	� xk ���
The cost c of this move is the size of the smallest
stronglyconnectedcomponentcontainingthevertices�

f1 � f2 ���	����� fk � x1 � x2 �����	�	� xk � minus the sizeof the set�
f1 ���	���
� fk � . We canusethe the algorithmdeveloped

in section3 to computethis cost.

Similar in structureto our algorithmfor p-SCSS in sec-
tion 3, the algorithmfor p-DSN consistsof the following
steps.
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1. Computethe game-graphj , wherethe verticesin j
arep-tuplesof verticesin theinputgraphG, andedges
areincludedfor eachlegal tokenmove.

2. Find the minimum-weight path P in j from s1 �����	�	� sp ! to  t1 �	���	�	� tp ! .
3. Output the subgraphH of G inducedby P, i.e. the

subgraphcontainingI all verticesof G explicitly ‘mentioned’ by ver-
ticesin P, andI for all type (ii) movesusedin P, all thevertices
makingup thesmalleststronglyconnectedcom-
ponentcontainingthe fi ’s andxi ’s usedto define
thatmove.

6.2. Correctness

As for the previous algorithms, it is easyto seethat
for any move sequencefrom  s1 �	�����
� sp ! to  t1 ���	���
� tp ! of
cost c, thereis a feasiblesolution H of size at most c �� � s1 ���	���
� sp � � . It is alsoeasyto find this H, giventhemove
sequence.The following lemmathenimplies the correct-
nessof thealgorithm.

Lemma 6.1
Let H * be a minimum size subgraphof G that contains
pathssi � ti for all i " �

1 ���	����� p � . Thenthereis a legal se-
quenceof tokenmovesfrom  s1 �	���	�	� sp ! to  t1 �	���	��� tp ! with
cost �H *D�
�k� � s1 �����	�	� sp � � .
Proof: We againdo a constructiveproof. We startwith to-
kens f1 ���	���
� fp at s1 ���	���
� sp, andmove themto their respec-
tivedestinationst1 �����	�	� tp.

Regardeachstronglyconnectedcomponentin H * asa
singlenode,andtopologicallysortthisdagof stronglycon-
nectedcomponents.Let C1 �����	�	� Cm be the resultingorder
of stronglyconnectedcomponents.We now considereach
componentin order, andmoveeachtokenin thecomponent
eitherto its destination(if its destinationis in the compo-
nent),or to somecomponentafter it in theordering.After
doingso,all nodesin thecomponentaredead.Thisensures
thatwepayonly oncefor everynode.

ForeachcomponentCi containingsomek tokens(k � p),
we performthefollowing moves.We execute(a) and(b) if
Ci consistsof morethanonenode,andonly (b) if Ci consists
of asinglenode.

(a) We applya type(ii) move. For eachtoken f U in Ci we
definea nodexU in Ci to which it moves.For tokens f U
whosedestinationt U is in Ci , we setxU to that destina-
tion. For all othertokens f U wechooseany legalpathto
its destinationt U andlet xU bethe lastnodeof thatpath
that is in Ci . Usinga type(ii) movewe simultaneously
moveall thetokens f U to their respectivexU .

(b) We applya type(i) move for eachtoken f U in Ci thatis
notyetat its destinationt U . Wemovealongoneedgeof
a pathto t U into a new componentCj . O

6.3. Weights and edges

The algorithmsprovided for p-DSN and p-SCSS can
easilybemodifiedto handleweightednodes;just make the
cost of a move the total weight of the unoccupiednodes
enteredduringthemoveinsteadof just their number.

It is alsoeasyto minimize the total edgeweight in H.
To do this, we make every vertex in G have weight0, and
replaceevery edgee by a new vertex having the weightof
e. We connectthis new vertex to the two verticesincident
to e. Naturally, it is alsopossibleto combinevertex weights
andedgeweights.

7. Conclusion

We have developeda polynomial time algorithm that
computesthesmallestsubgraphcontainingpathsbetweenp
pairsof nodesin a directedgraph.It is aninterestingques-
tion whetherthetoolsdevelopedto obtainthis resultcanbe
usedto constructimproved approximationalgorithmsfor
arbitrary p, or for thecloselyrelatedDIRECTED STEINER

TREE problem. Another openquestionis whetherthese
techniquescanbeusedto obtainnew resultsfor othernet-
work designproblems.
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A. Natu and Fang’s algorithm for 3-DSN

In [10] Natu andFangproposean algorithmfor the 3-
DSN problem,provide a correctnessproof, andconjecture
thatanextensionof their algorithmsolvesp-DSN for p l
3. In thissectionwewill briefly discusstheirapproach,and
givea counterexampleon which their algorithmapparently
doesnotwork correctly.

Their algorithmoperateson edge-weightedgraphsand
minimizesthe total weightof edges in H. To computethe
optimalH, they usea ‘divide-and-conquer’approachbased
on dynamicprogramming.Centralto the designof the al-
gorithmis their ‘Optimal DecompositionTheorem’(p. 220
in [10]). It statesthatoptimalsolutionscanbebrokendown
into independentpartsin thefollowing manner.

Theorem A.1 (Optimal Decomposition Theorem)
SupposeH is the optimal subgraphfor a 3-DSN instance���

s1 � t1 ��� � s2 � t2 ��� � s3 � t3 �'� . Thenthereis apartitionof H into
edge-disjointsubgraphsH � H EQA H E E , and threevertices
a1 � a2 � a3 in H suchthat:I H E , H E E containat leastoneedgeI For all i � 1 � 2 � 3 eitherm H E containsapathsi � ai andH E E containsapath

ai � ti , orm H E containsapathai � ti andH E E containsapath
si � ai. R

Thetheoremasstateddoesnot hold for thegraphgiven
in figure7. Notethat theoptimalH mustcontainall edges
of thegraph.Supposethatwesplit thisgraphinto two non-
emptyedgedisjointsubgraphsH E andH E E . Thentheremust

s

s

s

t

t

t1

2

3

3

2

1

Figure 7. Counterexampleto theOptimalDecomposition
Theorem

bea pair of consecutiveedgesthatarenot in thesamesub-
graph.

Assumethat, e.g, s1 � t2 and t2 � s2 are in different
subgraphs.Sinceoneof thesubgraphshasto containapath
s3 � a3, andthe othera patha3 � t3, we musthave a3 �
t2, and

�
s3 � t1 � t1 � s1 � s1 � t2 � areall in the samesub-

graph. But then the other subgraphcontainsnoneof the
edgesincidentto s1 or t1, andthereforecancontainneither
a path s1 � a1 nor a patha1 � t1, and thus the theorem
fails. For all otherpairsof consecutive edgesin thegraph,
essentiallythesameargumentapplies.

B. Runtime analysis

In this section,we provide therunningtime analysisfor
our algorithmssolving p-SCSS (from section3) and p-
DSN (from section6).

Theaimof thissectionis mainlyto giveanideaasto how
the running time is distributed over the different partsof
the algorithms(game-graphconstructionandshortestpath
computation).

It wasnot our goal to produceoptimal algorithms,but
ratherto keepthemsimpleto explain.

B.1. The p-SCSS algorithm

The algorithm consistsof two main parts: the gen-
eration of the game-graph (G from the input G ��
V � E � , and the computation of a shortest path from � s1 ���	���
� sq �B� � s1 ���	���
� sq � ! to  � r ��� � r � ! in (G.

Let usfirst computethesizeof (G. In thefollowing n and
marealwaysthenumberof verticesandedges,respectively,
of theinputgraphG.

Thenumberof verticesin thegame-graph(G isnn > q
�
V � )o> q

�
V � nn � p

q

∑
i q 0 r n

i sut 2 � � �
n2q ���
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Thenumberof type (i) edgescanbecomputedasfollows.
If we fix anedge

�
u � v�v" E, thenthereare � > q � 1

�
V @ � u �D� �

choicesfor F , and � > q
�
V � � choicesfor B, sothetotalnumber

of type(i) edgesis

m w'� > q � 1
�
V @ � u �+� �xw
� > q

�
V � ��� � �

m w nq � 1 w nq � � � �
mn2q � 1 �

By symmetry, thenumberof type(ii) edgesis thesame.
For the type (iii) edges,we can also obtain an up-

per boundon their numberby multiplying the numberof
choicesfor f andb (

� �
n� each),F andB (

� �
nq � 1 � each),

andF E andBE (
� �

2q � 1 � eachafterchoosingF andB). This
yieldsaboundof

� �
n2q � .

The numberof edgesin (G thereforeis not muchlarger
thanthenumberof nodes.Thus,edgesshouldbestoredas
lists for eachvertex, andnot in anadjacency matrix.

Computingtheedgeweightstakesconstanttimefor type
(i) and (ii) edges,but is slightly more expensive for type
(iii) edges.It canbedonewith reasonableefficiency by first
running an all-pairs shortestpathsalgorithm on the input
graphG; this takes time at most

� �
n2 logn � mn� . Com-

puting a shortestpath from a node f to a nodeb visiting
nodesin F EyA BE cannow be donein time

� �	�
2q � 2� ! � by

going throughall possiblesequencesin which the vertices
in F EyA BE could appearon the path. So as long as p (and
thereforeq) is constant,this time is constant.

To summarize,we spenda constantamount of time
to computeeachof the edgesin the graph, which leads
to a total time of

� �
n2q � mn2q � 1 � for the game-graph

construction– subsumingthetime for theall-pairsshortest
pathcomputation.

Thesecondpartof thealgorithmis to computeashortest
pathqueryin thegame-game(G � � (V � (E � . UsingFibonacci
heaps[5] this can be done in time

� � � (E � � � (V � log � (V � � ,
which is� �

n2q � mn2q � 1 � n2q logn� � � �
mn2p � 3 � n2p � 2 logn���

Sincecomputingtheshortestpathtakesmoretimethatcon-
structingthegraph,this alsois thetotal runningtime of the
algorithm.

B.2. The p-DSN algorithm

For this algorithm,thegame-graphj consistsof
� �

np �
nodes,andcanhave up to

� �
n2p � edges.This meansthat

the final shortestpathcomputationwill take time at most� �
n2p � . It turnsout thatfor this algorithm,thetime to con-

struct the game-graphactually overshadows this shortest-
pathcomputation.

The most time-consumingpart of the game-graphcon-
structionis to determinetheweightsof the type(ii) edges.
Obviously, it would bevery inefficient to call our k-SCSS
algorithmfor every type (ii) edgein the game-graph.For-
tunately, a simple observation makes it possibleto avoid
that. First, note that the game-graph(G constructedfor an
instanceof k-SCSS doesnot dependon thesourceandter-
minal verticessi � ti , but only on theunderlyinggraphG and
thenumberk. Let uscall thisgame-graph(Gk. It is alsotrue
that (Gk is a sub-graphof (G2p if k � 2p. Moreover, there
arenoedgesfrom thissub-graph(Gk to any otherverticesin(G2p.

Solvinga k-SCSS instancerequirescomputinga short-
estpathin (Gk, or, equivalently, in (G2p, to anodeof theform � r ��� � r � ! . This suggeststhe following strategy: We can
solve all theseproblemsat thesametime by runningn sin-
gle destinationshortestpathalgorithms,onefor eachdes-
tination  � r ��� � r � ! � r " V � . The weightsof type (ii) edges
can thenbe computedin constanttime by looking up the
appropriateshortestpathlength.

The running time for all n single destinationshortest
pathqueriesis

� �
mn4p � 2 � n4p � 1 logn� , which thereforeis

thetotal runningtime of thealgorithm.

As anaside,thereis asimplerway to solve 2-DSN than
usingour algorithm: Given a graphG andtwo node-pairs�
s1 � t1 � , � s2 � t2 � , addtwo nodess, t andedgess � s1, t1 � t,

t � s2, t2 � s to the graphandsolve 2-SCSS for the two
terminalss, t. It is not hardto seethat thesolutionfor this
problemis alsoanoptimalsolutionfor theoriginal 2-DSN
problem(if we omit s and t). This leadsto an improved
runningtime of

� �
mn � n2 logn� , which is thesameasthe

runningtimeobtainedby NatuandFang[9].
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