Linear Programming-based Decoding of Turbo-Like Codes and its Relation to Iterative Approaches

Jon Feldman
David Karger
jonfeld@theory.Ics.mit.edu
MIT LCS MIT LCS
Martin Wainwright
martinw@eecs.berkeley.edu

UC Berkeley

Decoding via Linear Programming

- New algorithm for decoding any turbo-like code [Feldman, Karger, FOCS 2002].
- Uses linear programming (LP) relaxation.
- Precise characterization of noise patterns that cause decoding error for BSC, AWGN: "noisy promenades."
- Reminiscent of work on "stopping sets" in the BEC [Di, Proietti, Richardson, Telatar, Urbanke, '02; Richardson, Urbanke, Allerton'02].
- For rate-1/2 Repeat-Accumulate (RA) codes:
- WER $\leq n^{-\epsilon}, \quad($ noise $<f(\epsilon))$.
- ML certificate property:
- Outputs ML information word, or "error."

Our Contributions

- Iterative subgradient decoding for any turbo-like code:
- Uses trellis passes, message-passing.
- \exists step size guaranteeing convergence to same solution as LP decoder.
\rightarrow Same noise pattern error conditions, WER bounds.
\rightarrow ML certificate property.

Our Contributions

- Iterative subgradient decoding for any turbo-like code:
- Uses trellis passes, message-passing.
- \exists step size guaranteeing convergence to same solution as LP decoder.
\rightarrow Same noise pattern error conditions, WER bounds.
\rightarrow ML certificate property.
- Relation to Tree-Reweighted Max-Product (TRMP):
- Iterative algorithm for finding optimal configurations on factor graphs [Wainwright, Jaakkola, Willsky, Allerton'02], Session V.B, Friday, 10am.
- Turbo-like codes: simple message-passing decoder.
- If constituent codes agree on a code word, it is the ML code word.

Outline

1. Turbo Codes, RA codes.
2. LP-based decoding of turbo-like codes.
3. Lagrangian dual form of LP:

- Subgradient decoding,
- TRMP decoding.

4. Noisy Promenades.

Classic Turbo Codes

[Berrou, Glavieux, Thitimajshima, 1993]
Information word

- "Turbo-like" codes: Parallel, serial concatenated convolutional codes.

Repeat-Accumulate Codes

[Divsalar, Jin, McEliece, 1998]

Information
(word x)

Repeat

Permute

Accumulate
(path $P(x)$)

Decoding

1100101

- Costs on nodes: local log-likelihood ratio (LLR).
- Viterbi algorithm: finds max-cost path.
- Max-cost path does not necessarily correspond to code word.

Received word

Max-Likelihood Agreeable Path

1100101

- Path P is Agreeable if, for all info bits x_{i} :
"1-edge" at t and \hat{t}, or " 0 -edge" at t and \hat{t}
- How do we find ML agreeable path?

Received word

Turbo Code Linear Program

- Variable f_{P} for all paths $P, 0 \leq f_{P} \leq 1$. Cost $c_{P}=\sum_{e \in P} c_{e}$. For rate-1/2 RA codes (RALP):

$$
\begin{aligned}
\max \quad \sum_{P} c_{P} f_{P} & \text { s.t. } \\
\sum_{P} f_{P} & =1 \\
\forall x_{i}, X_{i}=\{t, \hat{t}\}, \quad \sum_{P \in S(t)} f_{P} & =\sum_{P \in S(\hat{t})} f_{P}
\end{aligned}
$$

- $S(t)$: set of paths that "switch" at segment t.
- $X_{i}=\{t, \hat{t}\}$: two copies of x_{i}.
- Natural generalization for any turbo-like code.

Using RALP to Decode

- Solving RALP finds maximum-likelihood agreeable distribution f^{*} on paths.
- Strict "relaxation" of ML decoding problem.
- All the mass on one path: "integral solution."

Using RALP to Decode

- Solving RALP finds maximum-likelihood agreeable distribution f^{*} on paths.
- Strict "relaxation" of ML decoding problem.
- All the mass on one path: "integral solution."
- If f^{*} integral:
- $f_{P}^{*}=1$ for some P.
- $f_{P^{\prime}}^{*}=0$ for all $P \neq P^{\prime}$.
- P is the ML agreeable path.
- If not, f^{*} is an agreeable convex combination of paths.
- Output "error."

Solving RALP

- Use generic LP solver.
- Ellipsoid algorithm: provably poly-time, but impractical.
- Simplex algorithm: useful in practice, but not in real time.

Solving RALP

- Use generic LP solver.
- Ellipsoid algorithm: provably poly-time, but impractical.
- Simplex algorithm: useful in practice, but not in real time.
- Solve using subgradient algorithm:
- Operates on Lagrangian dual form of the LP.
- Takes the form of a standard message passing decoder

Lagrangian Dual

- Lagrange multipliers λ_{i} for each info bit x_{i}.
- For a path P, cost under λ :

$$
\mathcal{L}(P, \lambda)=c_{P}+\sum_{x_{i}} \lambda_{i} A_{i}(P)
$$

"agreeability" $A_{i}= \begin{cases}+1 & \text { if } P \in S(t) P \notin S(\hat{t}) \\ 0 & \text { if } P \text { agreeable for } x_{i} \\ -1 & \text { if } P \notin S(t) P \in S(\hat{t})\end{cases}$

Lagrangian Dual

- Lagrange multipliers λ_{i} for each info bit x_{i}.
- For a path P, cost under λ :

$$
\begin{gathered}
\mathcal{L}(P, \lambda)=c_{P}+\sum_{x_{i}} \lambda_{i} A_{i}(P) \\
\text { "agreeability" } A_{i}= \begin{cases}+1 & \text { if } P \in S(t) P \notin S(\hat{t}) \\
0 & \text { if } P \text { agreeable for } x_{i} \\
-1 & \text { if } P \notin S(t) P \in S(\hat{t})\end{cases}
\end{gathered}
$$

- Cost λ_{i} on 1 -edges at segment t.
- Cost $-\lambda_{i}$ on 1 -edges at segment \hat{t}.
- Natural generalization to any parallel concatenated convolutional code.

Lagrangian Dual, continued...

- Dual function $Q(\lambda)=\max _{P}\{\mathcal{L}(P, \lambda)\}$.
- Let $\hat{P}(\lambda)=\arg \max \{\mathcal{L}(P, \lambda)\}$.

Lagrangian Dual, continued...

- Dual function $Q(\lambda)=\max _{P}\{\mathcal{L}(P, \lambda)\}$.
- Let $\hat{P}(\lambda)=\underset{P}{\arg \max }\{\mathcal{L}(P, \lambda)\}$.
- Let $\lambda^{*}=\arg \min _{\lambda} Q(\lambda)$. By LP duality, $\sum_{P} c_{P} f_{P}^{*}=Q\left(\lambda^{*}\right)$.
- Find λ^{*} using sequence of "message-passing" updates:

$$
\lambda^{m+1}=\lambda^{m}-\alpha^{m} A_{i}\left(\hat{P}\left(\lambda^{m}\right)\right)
$$

- Subgradient $A_{i}\left(\hat{P}\left(\lambda^{m}\right)\right)$ computed w/ Viterbi algorithm.
- Appropriate step size α^{m} assures convergence to λ^{*}.

Lagrangian Dual, continued...

- Dual function $Q(\lambda)=\max _{P}\{\mathcal{L}(P, \lambda)\}$.
- Let $\hat{P}(\lambda)=\underset{P}{\arg \max }\{\mathcal{L}(P, \lambda)\}$.
- Let $\lambda^{*}=\arg \min _{\lambda} Q(\lambda)$. By LP duality, $\sum_{P} c_{P} f_{P}^{*}=Q\left(\lambda^{*}\right)$.
- Find λ^{*} using sequence of "message-passing" updates:

$$
\lambda^{m+1}=\lambda^{m}-\alpha^{m} A_{i}\left(\hat{P}\left(\lambda^{m}\right)\right)
$$

- Subgradient $A_{i}\left(\hat{P}\left(\lambda^{m}\right)\right)$ computed w/ Viterbi algorithm.
- Appropriate step size α^{m} assures convergence to λ^{*}.
- May take a long time to converge to LP optimum.

Tree-Reweighted Max-Product

- General MAP estimation algorithm [Wainwright, Jaakkola, Willsky, Allerton '02].
- On turbo-like codes: simple message passing decoder.
- Same "cost adjustments" λ as subgradient decoding.
- Messages computed using log-likelihood ratio (LLR):

$$
\lambda_{i}^{m+1}=\lambda_{i}^{m}+\alpha^{m}\left(\operatorname{LLR}\left(\lambda^{m} ; \hat{t}\right)-\operatorname{LLR}\left(\lambda^{m} ; t\right)\right)
$$

- If $\operatorname{sign}(\operatorname{LLR}(\lambda ; \hat{t}))=\operatorname{sign}(\operatorname{LLR}(\lambda ; t))$, for all $X_{i}=\{t, \hat{t}\}$:
\rightarrow the constituent codes (repeater, accumulator) agree on a codeword.

Tree-Reweighted Max-Product

- General MAP estimation algorithm [Wainwright, Jaakkola, Willsky, Allerton '02].
- On turbo-like codes: simple message passing decoder.
- Same "cost adjustments" λ as subgradient decoding.
- Messages computed using log-likelihood ratio (LLR):

$$
\lambda_{i}^{m+1}=\lambda_{i}^{m}+\alpha^{m}\left(\operatorname{LLR}\left(\lambda^{m} ; \hat{t}\right)-\operatorname{LLR}\left(\lambda^{m} ; t\right)\right)
$$

- If $\operatorname{sign}(\operatorname{LLR}(\lambda ; \hat{t}))=\operatorname{sign}(\operatorname{LLR}(\lambda ; t))$, for all $X_{i}=\{t, \hat{t}\}$:
\rightarrow the constituent codes (repeater, accumulator) agree on a codeword.
- By LP duality,
\rightarrow TRMP has found the ML code word.

Promenades

- Precise characterization of noise patterns that cause decoding error for BSC, AWGN.
- Let G be a particular weighted, undirected graph:

$$
\operatorname{cost}\left(e_{j}\right)= \begin{cases}-1 & \text { if bit } j \text { flipped by channel } \\ +1 & \text { otherwise }\end{cases}
$$

- A promenade is a collection D of subpaths of G, where
- For all $X_{i}=\{t, \hat{t}\}, \operatorname{deg}_{t}(D)=\operatorname{deg}_{\hat{t}}(D)$.
- $\operatorname{deg}_{t}(D)=$ number of subpaths in D that start or end at t.

Noisy Promenades

- The cost of a promenade is the sum of the costs of its subpaths.
- A noisy promenade is one whose cost is less than or equal to zero.
Theorem [FeKa02]: RALP makes a decoding error iff G has a noisy promenade.
- Natural generalization to AWGN, any turbo-like code.

Noisy Promenades

- The cost of a promenade is the sum of the costs of its subpaths.
- A noisy promenade is one whose cost is less than or equal to zero.
Theorem [FeKa02]: RALP makes a decoding error iff G has a noisy promenade.
- Natural generalization to AWGN, any turbo-like code.
- Rate-1/R RA codes, $R \geq 3$:
- Combinatorics tricky (future work).

Noisy Promenades

- The cost of a promenade is the sum of the costs of its subpaths.
- A noisy promenade is one whose cost is less than or equal to zero.
Theorem [FeKa02]: RALP makes a decoding error iff G has a noisy promenade.
- Natural generalization to AWGN, any turbo-like code.
- Rate-1/R RA codes, $R \geq 3$:
- Combinatorics tricky (future work).
- Rate-1/2 RA codes:

Theorem [FeKa02]: $\operatorname{Pr[noisy~promenade]~} \leq n^{-\epsilon}$, if:

$$
p \leq 2^{-4(\epsilon+(\log 24) / 2)}(\mathrm{BSC}) \quad \sigma^{2} \leq \frac{\log e}{4+2 \log 3+4 \epsilon}(\mathrm{AWGN})
$$

Conclusions

- LP decoding of turbo-like codes:
- Precise characterization of noise patterns that cause decoding error for BSC, AWGN: "noisy promenades."
- Rate-1/2 RA codes: WER $\leq n^{-\epsilon}$.
- ML certificate property.
- New iterative algorithms for decoding turbo-like codes:
- Subgradient decoding: converges to LP solution.
- TRMP: finds ML code word when LLRs agree.

Open Questions

- Better WER bound for rate-1/R RA using noisy promenades?
- Conjecture: LP decoding WER $\leq e^{-\left(c n^{\epsilon}\right)}$.
- WER bounds for other turbo-like codes?
- (Poly-time) convergence proof for TRMP?
- Relationship to sum- and max-product?

