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� Binary Symmetric Channel (BSC): each bit flipped
independently with probability � (small constant).
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Turbo Codes + LDPC Codes

� Low-Density Parity-Check (LDPC) codes [Gal ’62] .

� Turbo Codes introduced [BGT ’93], unprecedented
error-correcting performance.

� Ensuing LDPC “Renaissance” [SS ’94, MN ’95,
Wib ’96, MMC ’98, Yed ’02, ... ].

� Simple encoder, “belief-propagation” decoder.

� Theoretical understanding of good performance:
- “Threshold” as � [LMSS ’01, RU ’01];
- Decoder unpredictable with cycles.

� Finite-length analysis: combinatorial error
conditions known only for the binary erasure
channel [DPRTU ’02].
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Our contributions
[FK, FOCS ’02] [FKW, Allerton ’02] [FKW, CISS ’03]

� Poly-time decoder using LP relaxation.

� Decodes: binary linear codes LDPC codes
turbo codes.

� “Pseudocodewords:” exact characterization of error
patterns causing failure.

� “Fractional distance”

�

:
- LP decoding corrects up to

� ���

errors.
- Computable efficiently for turbo, LDPC codes.

� Error rate bounds based on high-girth graphs.

� Closely related to iterative approaches, other notions
of “pseudocodewords.”
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Outline

� Error correcting codes.

� Using LP relaxation for decoding.

� Details of LP relaxation for binary linear codes.

� Pseudocodewords.

� Fractional Distance.

� Girth-based bounds.
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Maximum-Likelihood Decoding

� Code � ���
�

� ���

.

� Cost function 	�
 : negative log-likelihood ratio of � 
 .

� BSC: 	
  �

if

� � 
  �

, 	�
  � �
if

� � 
  �

.

� Other channels: 	 
 takes on arbitrary “soft values.”

Given: Corrupt code word

� �.
Find: � � such that 
 	
 � 
 is minimized.

� Linear Programming formulation:
- Variables � 
 for each code bit,

� � 
 �

.
- Linear Program:

� �� �� � �




	
 � 
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Linear Programming Relaxation

� Polytope : relaxation,  � ���
�

� � �

.

� Decoder: Solve LP using simplex/ellipsoid. If

� � � ���
�

� ���

, output � �

, else output “error.”

� ML certificate property: all outputs ML codewords.

� Want low word error rate (WER) :=

��� � � �	�
 [ �  � ].

noisyno noise
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� No noise: � optimal.

� Noise: perturbation of
objective function.

� Design code, relaxation
accordingly.
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Tanner Graph

� The Tanner Graph of a linear code is a bipartite
graph modeling the parity check matrix of the code.
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� “Variable nodes” � �� � � �� �� .

� “Check Nodes” � �� � � �� � �.

� �� �
: n’hood of check ��� .

� Code words: � � ��
�

� � �

s.t.:
� ���


�� � � � �
� 
  � � � � � � �

� Codewords: 0000000, 1110000, 1011001, etc.
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IP/LP Formulation of ML Decoding

� Variables

� 
 �

for each code bit � 
 .

IP: 
 � ���
�

� �

. LP:

� 
 �
.

� For check bit ��� , � = valid configurations of

�  �

.

�  �� �� ��� � � � �� � � �

� Variables

� � ��� � �

for each check node � � ,

� � � .

IP: � �� � � ���
�

� �
. LP:

� � �� � �

.
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� Vars: � � � 	, � � � 
 � � �� � � � � , � � � 
 � � � � ,
� � � 
 � � � � , � � � 
 � � � � , � � � 
 �� � � , � � � 
 �� � � ,

� � � 
 � � � �
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IP/LP Formulation of ML Decoding

� Minimize 
 	�
 
 , subject to:
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�

�� ���
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� Let be the relaxed polytope.

� � � �  � � ���
�

� �� � � � ��
�

�
�

� � � � �

� IP: formulation of ML decoding.

� What do fractional solutions look like?
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Fractional Solutions
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� ML codeword:
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� ML codeword cost: � �

.
——————————————
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� Frac. sol cost: � �
�

�

.
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LP Decoding Success Conditions

� Pr[ Decoding Success ] = Pr[ � is the unique OPT ].

� Assume �  � �

- Common asssumption for linear codes.
- OK in this case due to symmetry of polytope.

� Pr[ � is the unique OPT ]
= Pr[ All other solutionss have cost > 0].

Theorem [FKW, CISS ’03]: Assume the all-
zeros codeword was sent. Then, the LP de-
codes correctly if̃f all non-zero points in P have
positive cost.
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Pseudocodewords

� Pseudocodewords are scaled points in .
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� Scaled to integers:
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.

� Natural combinatorial definition of pseudocodeword
(independent of LP relaxation).

Theorem [FKW, CISS ’03]: LP decodes correctly
if̃f all pseudocodewords have cost

�

.
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Fractional Distance

� Classical distance:
-

�

= min Hamming dist. of codewords in .

� Adversarial performance bound:
- ML decoding can correct

� ��� � �
errors.

� Another way to define minimum distance:
-

��
� = min (

� � ) dist. between two integral verts of .

� Fractional distance:
-

��
� = min (

� � ) dist. between an integral and a
fractional vertex of .

-

��
� = min wt. fractional vertex of .

- Lower bound on classical distance:

�
�

�

.
- LP Decoding can correct

�
�

� � � �

errors.
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LP Decoding corrects �
�

errors

� Suppose fewer than

�
�

���

errors occur.

� Let

� �
� � � �

be a vertex of ,

�  � �  �.
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� .
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, 	
  � �

if
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flipped, +1 o.w.; So,
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 �
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 �
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 � �
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� Therefore 
 	
 �
 � �

.
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Computing the Fractional Distance

� Computing

�

for linear/LDPC codes is NP-hard.

� If the polytope has small size (LDPC), the fractional
distance is easily computed.
- More general problem: Given an LP, find the two

best vertices �� �
�

.
- Algorithm:

* Find �.
* Guess the facet on which �

�

sits but � does not.
* Set facet to equality, obtaining

�

.
* Minimize �

� �
over

�

.

� Good approximation to the classical distance?

� Good prediction of relative classical distance?
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Using Girth for Error Bounds

� For rate-1/2 RA (cycle) codes: If has large girth,
neg-cost pseudocodewords (promenades) are rare.

� Erdös (or [BMMS ’02]): Hamiltonian 3-regular
graph with girth

� �� �.

Theorem [FK, FOCS ’02]: For any � �

, as
long as

��� � ��� 	 �
��  � � �� � �
, WER �� �

.

� Arbitrary , girth �, all var. nodes have degree

�

:

Theorem [FKW, CISS ’03]: � � � � � ��� � � � � �

� Can achieve
�
�  �

�
��� � �

. Stronger graph
properties (expansion?) are needed for stronger
results.
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Other “pseudocodewords”

� BEC: Iterative decoding successful iff no zero-cost
“stopping sets.” [DPRTU ’02]
- In the BEC, pseudocodewords = stopping sets.
- Iterative/LP decoding: same performance in BEC.

� Tail-Biting trellisses (TBT): Iterative decoding
successful iff “dominant pseudocodeword” has
negative cost [FKMT ’98].
- TBT: need LP along lines of [FK, FOCS ’02].
- Iterative/LP decoding: same performance on TBT.

� “Min-sum” decoding successful iff no neg-cost
“deviation sets” in the computation tree [Wib ’96].
- Pseudocodewords are natural “closed” analog of

deviation sets.
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Other Results

� For “high-density” binary linear codes, need
representation of without exponential dependence
on check node degree.
- Use “parity polytope” of Yannakakis [’91].

- Orig. representation:

�
� �� ��� �

.

- Using parity polytopes:
� � � � � �
� � �
�

�
�

�

.

� New iterative methods [FKW, Allerton ’02]:
- Iterative “tree-reweighted max-product” [WJW

’02] tries to solve dual of our LP.
- Subgradient method for solving LP gives

provably convergent iterative algorithm.

� Experiments on performance, distance bounds.
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Performance Comparison
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Growth of Average Fractional Distance
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Future Work

� New WER, fractional distance bounds:
- Lower rate turbo codes (rate-1/3 RA).
- Other LDPC codes, including

* Expander codes, irregular LDPC codes, other
constructible families.

- Random LDPC, linear codes?

� ML Decoding using IP, branch-and-bound?

� Using generic “lifting” procedures to tighten
relaxation?

� Deeper connections to “sum-product”
belief-propagation?

� LP decoding of other code families, channel models?
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