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Binary Error-Correcting Code

110011101001010011

Transmitter with encoder

010011 110011101001 11001 1010 10 1

corrupt codeword

Receiver with decoder

Binary Symmetric Channel: Flip each bit w/ probability  p < 1/2

Information: "lg. pepperoni" 

"lg. pepperoni" 

"lg. pepperoni" 

"lg. pepperoni" 

codeword(                         )

codeword(                         )
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Repetition Code Example

� Encoder: Repeat each information bit 5 times.
Information word:

� � � �

Codeword:

� � � � � � � � � � � � � � � � � � � �

Corrupt codeword:

� � � � � � � � � � � � � � � � � � � �

� Decoder: Take majority witihin every group of 5.
Decoded codeword:

� � � � � � � � � � � � � � � � � � � �

Decoded info word:
� � � �

� Information transmitted successfully
at most 2 bits flipped per group of 5.
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Outline

� Coding background

� Our contributions:
- LP decoding: general method.
- LP decoders for turbo, LDPC codes.
- Performance bounds tor turbo, LDPC codes.
- Connections to message-passing decoders.
- Experiments (supporting theory).
- Methods for tightening the relaxation.
- New dual-based message-passing algorithms.

� Future work
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Basic Coding Terminology

� A code is a subset

� �� � ���

, where

� � � 	 

.

� Block length = length = �. Affects latency,
encoder/decoder complexity, performance.

� Rate =

� 
 �. Measures redundancy of transmission.
Affects efficiency, performance.

� Minimum distance = distance =
�

= � ����� �� ��� � ��� � � ��

.
“Worst case” measure of performance.

� Word error rate (WER) = probability of decoding
failure =

�! #" $ %'&( )+*  ,� - � �* * . /
� � / .01 / . / � 2

.
Practical measure of performance.
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Maximum-Likelihood (ML) Decoding

� ML decoders minimize WER.
- BSC: Finds � � s.t.

��� � �� �

is minimum.
- Corrects errors up to half the minimum distance.

PSfrag replacements

��� = rec. cw

cw(“Red Sox win” ) cw( “Yankees win” )� ��

� � �

———————————————————

� Cost function �
	 : negative log-likelihood ratio of � 	 .

[ �	 � � � � 	 likely
�

] [ �
	 � � � � 	 likely

�

]

ML DECODING: Given corrupt codeword

�� ,
find � � such that 	 �
	 � 	 is minimized.
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LP Decoding

PSfrag replacements

cw

cw
cw

cw

� � �� � ��� �

min 	 �	 � 	

“pseudocodeword”
noise

no noise

Polytope

) �� � 2 �

Convex hull( )

� LP variables � 	 for each code bit, relaxed

� � 	 �

.

� Alg: Solve LP. If � �

integral, output � �

, else “error.”

� ML certificate property
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LP Decoding Success Conditions

PSfrag replacements

(a) (b)
(c)

(d)

(e)
(a) No noise

(b) Both succeed

(c) ML succeed, LP fail

(d) Both fail, detected

(e) Both fail, undetected

trans. cw(“The Eagle has landed” )

cw(“The beagle was branded” )Objective function cases

pseudo-
codeword

noise
no noise

Polytope
Convex hull( )
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Fractional Distance

� Another way to define (classical) distance

�

:
-

�

= min

�
� dist. between two integral vertices of .

� Fractional distance:
-

�
��� �� = min

�
� distance between an integral vertex

and any other vertex of .
- Lower bound on classical distance:

�
��� ��

�

.

Theorem: In the binary symmetric channel, LP de-
coders can correct up to

� �
��� ��


 	 �

	
�

errors.

� Given facets of , fractional distance can be computed
efficiently.
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Turbo Codes + LDPC Codes

� Low-Density Parity-Check (LDPC) codes [Gal ’62] .

� Turbo Codes introduced [BGT ’93], unprecedented
error-correcting performance.

� Ensuing LDPC “Renaissance:”
- Expander codes [SS ’94]
- Message-passing algorithms [Wib ’96]
- Connection to belief-propagation [MMC ’98]
- Message-passing capacity [RU, LMSS, RSU,

BRU, CFDRU, ’99-’01]
- Designing irregular codes [LMSS ’01]
- Connection to “Bethe free energy” [Yed ’02]
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Factor Graph

� Factor (Tanner) Graph of a linear code: bipartite
graph modeling the parity check matrix of the code.PSfrag replacements

� 	 �

�

� �

�

� “Variable nodes” � � � � � � � � � .

� “Check Nodes” � � � � � � � � �.

�

�	� �

: neighborhood of
check ��
 .

� Codewords: � � � �� � � �

s.t.:

� ��
 �
	 � 
 � 
 �

� 	 � � � �1 / 	�

� Codewords: 0000000, 1110000, 1011001, etc.
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LP Relaxation on the Factor Graph
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For all var. nodes
�

:

�

� 	 �
For all check nodes

�

:

�

�
	 �

� � � � � � � 



 : Parity Polytope
� [Yan ’99, Jer ’75]

��


�
� � � � �

� � 


� � � � � � � �

� � �
� � �

� � �

� � �
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Fractional Solutions
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� 	 �

�
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�

� Suppose: � � � 	
	

�
�

� � � �
�

�

� ��
�

� �

� � �

� ML codeword:

) � � � � � � �� � � �� � 2

� ML codeword cost: 	
�

.
——————————————
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� Frac. sol: � ) � �
�

� � � �
�

� � �� ��
�

�
2

.

� Satisfies LP constraints?
A:

) � �
�

� �
�

� � � 2 � �
�

) � � � � �� � 2 �
�

) � � �� � � � 2

B,C: similar.
� Frac. sol cost: 	

�
�

�

.
J. Feldman, Ph.D. thesis defense – p.13/26



LP Decoding Success Conditions

� Pr[ Decoding Success ] = Pr[ � is the unique OPT ].

� Can we assume � � ��

? (This is a common
asssumption for linear codes.)

Thm: For LP decoding of binary linear codes, the
WER is independent of the transmitted codeword.

� Pr[ � is the unique OPT ] = Pr[ All pcw’s cost > 0].

� “Combinatorial” characterization of pseudocodewords
(scale the LP vertices).

Thm: The LP decoder succeeds if̃f all non-zero pseu-
docodewords have positive cost.
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Performance Bounds

� Turbo Codes: For rate-1/2 RA (cycle) codes: If has
large girth, negative-cost points in are rare.

- Erdös (or [BMMS ’02]): Hamiltonian 3-regular
graph with girth

�1 � �.

Thm: For any � � �

, if � � 	 � ��� �
, then WER � � � .

� LDPC Codes: All var. nodes in have degree

�	� :

Thm: If has girth 
, then

�
��� ��

� �� 	
� � ��� 
 � � � �

- Can achieve
�
��� �� � � � � � �� . Stronger graph

properties (expansion?) are needed for stronger
results.
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Growth of Fractional Distance
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� Random (3,4) LDPC Code
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Message-Passing Decoders

(a)  

(b)  

(c)   
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Var-to-check
messages

Check-to-var
messages

Repeat

Hard Decision
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Min-Sum Update Rules

PSfrag replacements

� �
� �

� � � 	 
 � �	 � 
 	 � 	
�

�� � � �

� �
� �

) � � � � � 2
�

�

) � � � � � 2
�

�

) � � � � � 2
� 	

�

) � � � � � 2
�

	

� 
 	 � � ��� ��
�

� � � �
	 � �� � �

�

� � ��

	
�

	

� � 	
�

� Let 	 � � 
 	 �
	 .

� if 	 � �

, output

�

� if 	 � �

, output

�

� � � �

� �
�� � � �
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Analyzing Message-Passing Decoders

� Sum-product, min-sum, Gallager, Sipser/Spielman,
tree-reweighted max-product [WJW ’02].

� Message cycles: dependencies difficult to analyze.

� Density Evolution [RU ’01, LMSS ’01, ...]:
- Assume “tree-like” message neighborhood,

random graph from ensemble.
- If err < threshold, any WER achievable (with high

probability), for sufficiently large �.

� Finite-length analysis: combinatorial error conditions
known for the binary erasure channel [DPRTU ’02].

� LP Decoding: well-characterized error conditions for
general channels, any block length, even with cycles.
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Unifying other “pseudocodewords”

� BEC: Sum-prod. fails stopping set [DPTRU ’02].
- Thm: LP pseudocodewords = stopping sets.

� Tail-Biting trellisses: Min-sum fails neg-cost
dominant pseudocodeword [FKMT ’98].

- Thm: LP pcws. = dominant pseudocodewords

� Cycle Codes: Min-sum fails neg-cost
irreducible closed walk [Wib ’96].

- Thm: LP pcws. = irreducible closed walks
————————————

� LDPC codes: Min-sum fails neg-cost deviation
set in computation tree [Wib ’96].

- LP pseudocodewords: natural “closed” analog of
deviation sets.
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Performance Comparison
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WER Comparison: Random Rate-1/2 (3,6) LDPC Code

Min-Sum Decoder
LP Decoder
Both Error

� Length 200, left degree

�

, right degree

�

.
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Tightening the Relaxation

� If constraints are added to the polytope, the decoder
can only improve. Example: redundant parity checks.

PSfrag replacements
PSfrag replacements

� �
� 0

�
�

0 0

�
�

� Generic tightening techniques [LS ’91] [SA ’90].
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Using Lift-And-Project
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AWGN Signal-to-noise ratio (Eb / N0 in dB)

WER Comparison: Random Rate-1/4 (3,4) LDPC Code

LP Decoder
Lift-and-project Decoder

ML Decoder

� Length 36, left degree

�

, right degree

�

.
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New Message-Passing Algorithms

PSfrag replacements

Original LP relaxation

�
� ��

� Dual variables: messages.
� Enforce dual constraints.

� Convergence to codeword

� primal optimum.

� ML certificate.

Primal

Dual
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New Message-Passing Algorithms

� Tree-reweighted max-product uses LP dual variables

� TRMP has ML certificate property.

� Using complimentary slackness, conventional
message-passing algorithms gain ability to show an
ML certificate.

� Use subgradient algorithm to solve dual directly.
- Gives message passing algorithm with ML

certificate property, combinatorial success
characterizations.
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Future Work

� New WER, fractional distance bounds:
- Lower rate turbo codes (rate-1/3 RA).
- Other LDPC codes, including

* Expander codes,
* Irregular LDPC codes,
* Other constructible families.

- Random linear/LDPC codes?

� ML Decoding using IP, branch-and-bound?

� Using “lifting” procedures to tighten relaxation?

� Deeper connections to “sum-product” (belief-prop)?

� LP decoding of other code families, channel models?
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