Decoding Error-Correcting Codes via Linear Programming

Ph.D. Thesis Defense

Jon Feldman

jonfeld@theory.lcs.mit.edu

Advisor: David Karger

Joint work with David Karger, Martin Wainwright

MIT Laboratory for Computer Science
June 3, 2003

Binary Error-Correcting Code

Transmitter with encoder

Receiver with decoder

Repetition Code Example

• Encoder: Repeat each information bit 5 times.

Information word: 1011

Codeword: 11111 00000 11111 11111

Corrupt codeword: 10110 01000 01001 10111

• Decoder: Take majority within every group of 5.

Decoded codeword: 11111 00000 00000 11111

Decoded info word: 1001

Information transmitted successfully
 ⇒ at most 2 bits flipped per group of 5.

Outline

- Coding background
- Our contributions:
 - LP decoding: general method.
 - LP decoders for turbo, LDPC codes.
 - Performance bounds tor turbo, LDPC codes.
 - Connections to message-passing decoders.
 - Experiments (supporting theory).
 - Methods for tightening the relaxation.
 - New dual-based message-passing algorithms.
- Future work

Basic Coding Terminology

- A code is a subset $C \subseteq \{0,1\}^n$, where $|C| = 2^k$.
- Block length = length = n. Affects latency, encoder/decoder complexity, performance.
- Rate = k/n. Measures redundancy of transmission. Affects efficiency, performance.
- Minimum distance = distance = $d = \min_{y,y' \in C} \Delta(y,y')$. "Worst case" measure of performance.
- Word error rate (WER) = probability of decoding failure = \Pr_n^{oise} [transmitted $\overline{y} \neq \text{decoded } y$]. Practical measure of performance.

Maximum-Likelihood (ML) Decoding

- ML decoders minimize WER.
 - BSC: Finds $y \in C$ s.t. $\Delta(y, \hat{y})$ is minimum.
 - Corrects errors up to half the minimum distance.

• Cost function γ_i : negative log-likelihood ratio of y_i .

$$[\gamma_i > 0 \implies y_i \text{ likely 0}] \quad [\gamma_i < 0 \implies y_i \text{ likely 1}]$$

ML DECODING: Given corrupt codeword \hat{y} , find $y \in C$ such that $\sum_{i} \gamma_{i} y_{i}$ is minimized.

LP Decoding

- LP variables y_i for each code bit, relaxed $0 \le y_i \le 1$.
- Alg: Solve LP. If y^* integral, output y^* , else "error."
- *ML certificate* property

LP Decoding Success Conditions

Objective function cases

trans. cw("The Eagle has landed")

cw("The beagle was branded")

- (a) No noise
- (b) Both succeed
- (c) ML succeed, LP fail
- (d) Both fail, detected
- (e) Both fail, undetected

Fractional Distance

- Another way to define (classical) distance d:
 - $d = \min l_1$ dist. between two integral vertices of P.
- Fractional distance:
 - $d_{fr}ac = \min l_1$ distance between an integral vertex and any other vertex of P.
 - Lower bound on classical distance: $d_{frac} \leq d$.

Theorem: In the binary symmetric channel, LP decoders can correct up to $\lceil d_{fr}ac/2 \rceil - 1$ errors.

• Given facets of P, fractional distance can be computed efficiently.

Turbo Codes + LDPC Codes

- Low-Density Parity-Check (LDPC) codes [Gal '62].
- Turbo Codes introduced [BGT '93], unprecedented error-correcting performance.
- Ensuing LDPC "Renaissance:"
 - Expander codes [SS '94]
 - Message-passing algorithms [Wib '96]
 - Connection to belief-propagation [MMC '98]
 - Message-passing capacity [RU, LMSS, RSU, BRU, CFDRU, '99-'01]
 - Designing irregular codes [LMSS '01]
 - Connection to "Bethe free energy" [Yed '02]

Factor Graph

• Factor (Tanner) Graph of a linear code: bipartite graph modeling the parity check matrix of the code.

- "Variable nodes" y_1, \ldots, y_n .
- "Check Nodes" c_1, \ldots, c_m .
- N(j): neighborhood of check c_j .
- Codewords: $y \in \{0, 1\}^n$ s.t.:

$$\forall c_j, \sum_{i \in N(j)} y_i = 0 \pmod{2}$$

Codewords: 0000000, 1110000, 1011001, etc.

LP Relaxation on the Factor Graph

Fractional Solutions

• Suppose: $\gamma_1 = -2.8$

$$\gamma_2 = +0.8$$

$$\gamma_{3...7} = +1$$

- ML codeword: [1, 1, 1, 0, 0, 0, 0]
- ML codeword cost: -1.

- Frac. sol: $f = [1, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{2}].$
- Satisfies LP constraints?

A:
$$[1, \frac{1}{2}, \frac{1}{2}, 0] = \frac{1}{2}[1, 1, 0, 0] + \frac{1}{2}[1, 0, 1, 0]$$

B,C: similar.

• Frac. sol cost: -1.4.

LP Decoding Success Conditions

- Pr[Decoding Success] = Pr[\overline{y} is the unique OPT].
- Can we assume $\overline{y} = 0^n$? (This is a common asssumption for linear codes.)

Thm: For LP decoding of binary linear codes, the WER is independent of the transmitted codeword.

- $Pr[\overline{y} \text{ is the unique OPT }] = Pr[All pcw's cost > 0].$
- "Combinatorial" characterization of pseudocodewords (scale the LP vertices).

Thm: The LP decoder succeeds iff all non-zero pseudocodewords have positive cost.

Performance Bounds

- **Turbo Codes:** For rate-1/2 RA (cycle) codes: If G has large girth, negative-cost points in P are rare.
 - Erdös (or [BMMS '02]): Hamiltonian 3-regular graph with girth $\log n$.

Thm: For any $\alpha > 0$, if $p < 2^{f(\alpha)}$, then WER $\leq n^{-\alpha}$.

• LDPC Codes: All var. nodes in G have degree $\geq d_{\ell}$:

Thm: If G has girth g, then $d_{frac} \geq (d_{\ell} - 1)^{\lceil g/4 \rceil - 1}$

- Can achieve $d_{frac} = \Omega(n^{1-\epsilon})$. Stronger graph properties (expansion?) are needed for stronger results.

Growth of Fractional Distance

• Random (3,4) LDPC Code

Message-Passing Decoders

Min-Sum Update Rules

$$m_{ij} = \gamma_i + \sum m_{ji} = -8$$

$$m_{ji} = \min(S : i = 1) - \min(S : i = 0)$$

$$egin{array}{c} [exttt{1}, exttt{0}, exttt{1}] : -1 \ [exttt{0}, exttt{1}] : +2 \ &-1 \ \end{array}$$

- Let $x = \sum m_{ii} + \gamma_i$.
 - if x > 0, output 0
 - if x < 0, output 1

Analyzing Message-Passing Decoders

- Sum-product, min-sum, Gallager, Sipser/Spielman, tree-reweighted max-product [WJW '02].
- Message cycles: dependencies difficult to analyze.
- Density Evolution [RU '01, LMSS '01, ...]:
 - Assume "tree-like" message neighborhood, random graph from ensemble.
 - If err < threshold, any WER achievable (with high probability), for sufficiently large n.
- Finite-length analysis: combinatorial error conditions known for the binary erasure channel [DPRTU '02].
- LP Decoding: well-characterized error conditions for general channels, any block length, even with cycles.

Unifying other "pseudocodewords"

- BEC: Sum-prod. fails *⇔ stopping set* [DPTRU '02].
 - Thm: LP pseudocodewords = stopping sets.
- Tail-Biting trellisses: Min-sum fails ←⇒ neg-cost dominant pseudocodeword [FKMT '98].
 - Thm: LP pcws. = dominant pseudocodewords
- Cycle Codes: Min-sum fails ←⇒ neg-cost irreducible closed walk [Wib '96].
 - Thm: LP pcws. = irreducible closed walks
- LDPC codes: Min-sum fails ←⇒ neg-cost *deviation* set in computation tree [Wib '96].
 - LP pseudocodewords: natural "closed" analog of deviation sets.

Performance Comparison

WER Comparison: Random Rate-1/2 (3,6) LDPC Code

• Length 200, left degree 3, right degree 6.

Tightening the Relaxation

• If constraints are added to the polytope, the decoder can only improve. Example: redundant parity checks.

Generic tightening techniques [LS '91] [SA '90].

Using Lift-And-Project

WER Comparison: Random Rate-1/4 (3,4) LDPC Code

• Length 36, left degree 3, right degree 4.

New Message-Passing Algorithms

← Original LP relaxation

- Dual variables: messages.
- Enforce dual constraints.
- Convergence to codeword
 primal optimum.
- ML certificate.

New Message-Passing Algorithms

- Tree-reweighted max-product uses LP dual variables
 - ⇒ TRMP has ML certificate property.
- Using complimentary slackness, conventional message-passing algorithms gain ability to show an ML certificate.
- Use subgradient algorithm to solve dual directly.
 - Gives message passing algorithm with ML certificate property, combinatorial success characterizations.

Future Work

- New WER, fractional distance bounds:
 - Lower rate turbo codes (rate-1/3 RA).
 - Other LDPC codes, including
 - * Expander codes,
 - * Irregular LDPC codes,
 - * Other constructible families.
 - Random linear/LDPC codes?
- ML Decoding using IP, branch-and-bound?
- Using "lifting" procedures to tighten relaxation?
- Deeper connections to "sum-product" (belief-prop)?
- LP decoding of other code families, channel models?