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Abstract

We give a linear programming (LP) decoder that achieves
the capacity (optimal rate) of a wide range of probabilistic
binary communication channels. This is the first such re-
sult for LP decoding. More generally, as far as the authors
are aware this is the first known polynomial-time capacity-
achieving decoder with the maximum-likelihood (ML) cer-
tificate property—where output codewords come with a proof
of optimality. Additionally, this result extends the capacity-
achieving property of expander codes beyond the binary
symmetric channel to a larger family of communication
channels.

Perhaps most importantly, since LP decoding performs
well in practice on turbo codes and low-density parity-
check (LDPC) codes (comparable to the popular “belief
propagation” algorithm), this result exhibits the power of
a new, widely applicable “dual witness” technique (Feld-
man, Malkin, Servedio, Stein and Wainwright, ISIT ’04) for
bounding decoder performance.

For expander codes over an adversarial channel, we
prove that LP decoding corrects a constant fraction of er-
rors. To show this, we provide a new combinatorial charac-
terization of error events that is of independent interest, and
which we expect will lead to further improvements.

1 Introduction

A great deal of current research in coding theory fo-
cuses on turbo codes [5], low-density parity-check
(LDPC) codes [17] and expander codes [27], using
highly efficient “soft information” message-passing
(MP) decoders such as belief-propagation and min-
sum. These codes and decoders perform1 very well in
practice on probabilistic channels, yet this performance
has not been fully explained. The main difficulty lies
in the heuristic nature of these message-passing tech-
niques. Operating on graphs that represent the code,
the success of an MP decoder depends highly on its

�
Dept. of Industrial Engineering and Operations Research, Columbia

University, New York, NY. email: jonfeld@ieor.columbia.edu.
Supported by NSF Mathematical Sciences Postdoctoral Research Fellow-
ship DMS-0303407.�

Dept. of Industrial Engineering and Operations Research, Columbia
University, New York, NY. email: cliff@ieor.columbia.edu. Re-
search partially supported by NSF Grant DMI-9970063.

1Throughout the presentation, we will use the verb “perform” in refer-
ence to a decoder’s ability to correct errors, not to its time complexity.

“schedule” of updates, which in turn depends on local
graph topologies in highly complex ways. These com-
plexities have often been avoided by either (i) assuming
an acyclic message schedule, (ii) using bit-flipping de-
coders that are easier to analyze (but don’t perform as
well in practice), or (iii) considering simplified noise
models or code structures. Each of these assumptions
are dissatisfying for various reasons.

Linear programming (LP) decoding is an alterna-
tive soft-information decoding algorithm. LP decoders
have a simple combinatorial characterization of de-
coding success, and enjoy a principled technique for
bounding performance that avoids the need to make
any of the assumptions listed above. LP decoders have
been applied successfully to turbo codes and LPDC
codes, and in preliminary testing, have been shown to
perform as well in practice as message-passing tech-
niques [9]. This performance is not surprising since the
error events of the LP and MP decoders are closely re-
lated [10, 21, 31, 30], suggesting that, in some sense,
the decoding LP represents the problem that MP de-
coders “want” to solve [22]. The main disadvantage of
LP decoding is the complexity that comes from having
to solve a linear program. Therefore as a practitioner,
one should view LP decoding not necessarily as an al-
ternative decoder to be used in practice, but rather as a
principled method to study the performance of modern
codes under soft-information decoding. We also note
that it is conceivable that LP decoding can be imple-
mented much more efficiently, since the LP’s used have
only a linear number of highly structured constraints.

Results. We give the first linear-programming (LP)
decoders [12] for expander codes. Using a particular
family of expander codes due to Barg and Zémor [2],
we prove the following performance bounds:

LP decoding achieves the capacity of any binary-
input memoryless symmetric LLR-bounded (MSB)
channel. (MSB channels include most probabilistic
channels commonly considered in practice; see Sec-
tion 2.1 for a definition). By “achieving capacity,” we



mean that for any rate less than the capacity (optimal
rate) of the channel, the probability of decoding error
decreases exponentially in the length of the code. This
is the first capacity-achieving result for LP decoding.

Under the adversarial channel, using an expander
code of rate ���������
	�� , the LP decoder corrects
an 	��������� fraction of errors, for any ��� � ,
matching the result of Barg and Zémor [2] using a bit-
flipping decoder on the same code. In proving this
result, we give a new combinatorial characterization of
a necessary condition for LP decoding failure. This
characterization is of independent interest, and has
parallels to the “pseudocodeword” results for other
code families [32, 16, 8, 21].

Our main result shows for the first time that ex-
pander codes can achieve capacity for arbitrary MSB
channels using a polynomial-time decoder.2 It was pre-
viously known [2, 4, 3] that expander codes can achieve
capacity in the binary symmetric channel (BSC), a par-
ticular MSB channel.

A maximum-likelihood (ML) certificate decoder
has the property that any codeword output by the de-
coder comes with a proof of optimality (maximum-
likelihood). Since LP decoders are always ML certifi-
cate decoders, we obtain an interesting corollary to our
result: Polynomial-time maximum-likelihood (ML) cer-
tificate decoders can achieve capacity. As far as the
authors are aware, this was not known previous to this
result.3

Techniques and Related Work. LP decoding was
introduced in [12] for turbo codes, and has since been
extended to LDPC codes [14, 9, 13] and considered
in general for binary codes [11, 9]. Our work is the
first to consider LP decoding for expander codes, and
the LP given here is a natural generalization of the one
in [14, 9].

The idea behind LP decoding is to use a linear
program to try to find the ML codeword. For a specific
code, a polytope � ��� �������! over variables "�#%$'& is
specified such that the integral points in the polytope

2This has also been achieved independently by Roth and Skatchek [25]
using a different code and decoder.

3We note that our definition of “achieving capacity” requires that the
word error rate decrease exponentially in the size of the code. Another
definition requires only that the word error rate go to zero as the code size
increases; this is achieved trivially by ML decoding a convolutional code
with logarithmic distance [22].

are exactly the codewords of the code. Using an
appropriate objective function, and enforcing #(�)� ,
# $ ��"*������& , one obtains an integer linear program that
is a maximum-likelihood decoder.

We relax the integer constraints to �,+-# $ +.� to
obtain a LP relaxation that is solvable in polynomial
time. Upon solving the LP, if the solution # is inte-
gral, then # must represent the ML codeword; if it is
fractional, then an error is declared. This gives LP de-
coders the ML-certificate property. The word error rate
of an LP decoder is the probability, taken over the noise
in the channel, that the transmitted codeword is the op-
timal solution to the LP.

Our analysis uses the dual of the linear program.
We show that coding success is equivalent to the exis-
tence of a “dual witness:” a dual feasible solution with
objective value 0. Using complimentary slackness, we
derive conditions that the dual must satisfy and then ex-
plain how to construct such a dual solution. The con-
struction of the dual solution, as a function of the noise
in the channel, is one of the key technical ideas.

In recent joint work [13] with Malkin, Servedio and
Wainwright, we used a dual witness to prove that LP
decoding corrects a constant fraction of errors using
LDPC codes. In the current paper, this technique is ex-
tended to expander codes, and to both a probabilistic
and an adversarial setting. We show that when the code
rate is below the capacity of the channel, then with high
probability over the noise in the channel, there exists a
dual witness proving that the transmitted codeword is
optimal. We also introduce new combinatorial condi-
tions that characterize when an expander code fails to
decode correctly.

Expander codes were introduced in [27] (see
also [29]). One of the original results gave codes of rate
�/�0�����
	�� , built on Ramanujan graphs; it was shown
that a bit-flipping algorithm (a variant on the algorithm
in [17]) corrects a 	����1�� fraction of errors. Zémor [33]
uses another variant of the algorithm to improve this
to 	�*��� (which has since been further improved [28] to
	  ��� ).

In later work, Barg and Zémor [2] give a bit-
flipping algorithm that achieves the capacity of the bi-
nary symmetric channel. Our paper is very much in-
spired by their work, and our capacity-achieving code
construction is roughly equivalent. Using more sophis-
ticated constructions [4, 3], they correct a fraction of



errors up to the Zyablov bound, and improve the er-
ror probability in the BSC. Guruswami and Indyk [19]
give a different expander-based binary code construc-
tion, and also attain the Zyablov bound. In later work,
they achieve the Gilbert-Varsharmov bound for low
rates [20]. It would be interesting to see if LP decoding
could improve the results for these constructions.

Density evolution [24, 23] has given near-capacity
rate thresholds for distributions of random LDPC codes
under BP and min-sum decoding for more general
channels, and represents a major breakthrough in the
analysis of the message-passing decoders. However the
thresholds computed using density evolution are only
estimates of the true behavior of the decoders, because
they assume a cycle-free message history, which is not
the case in practice. That being said, density evolu-
tion has yielded thresholds that are quite close to capac-
ity [7]. Burshtein and Miller [6] use expander-based ar-
guments to give further results on message-passing de-
coders for LDPC codes, incorporating soft-information
decoding as well as irregular degree distributions.

Channel capacity for memoryless symmetric chan-
nels, under polynomial-time decoding, was first
achieved by Forney [15] using concatenated codes and
generalized minimum-distance (GMD) decoding.

2 Background

2.1 Coding, channel models. A binary code � of
length � is a subset of "*������&  , where �������.��� . The
code � is used to transmit information in the presence
of noise. An information word 	 ��"*������&
� is encoded
to a unique codeword #-��� , and sent over a noisy
channel. A corrupt codeword �# is received, and the
decoding task is to recover the transmitted codeword # .
The rate of the code is  ��� . The distance of the code is
the minimum Hamming distance � � # � #�� � between any
two distinct codewords # � # � ��� . The relative distance
is the distance divided by the length of the code. A
binary linear code ��� "*������&� is a linear subspace of�   ; i.e., �� ��� , and for all codeword pairs # � # � ��� ,
we have � #���#�� � ��� .

We will consider both adversarial and probabilistic
noise. In the adversarial model, the channel flips some
of the bits arbitrarily. A decoder is said to “correct
an � fraction of error” if, for any set of at most
��� bits flipped by the channel, the decoder recovers
the original codeword. For the probabilistic model,

we will consider an arbitrary binary-input memoryless
symmetric LLR-bounded (MSB) channel, which we
now define. Associated with the channel is an alphabet�

representing the set of possible symbols output by the
channel. (Note that this could be a continuous set, such
as the reals.) The channel being memoryless means that
the noise affects each bit transmitted over the channel
independently; therefore, the channel is completely
specified by transition probabilities � � �!� " � for each � ��

and " � "*������& , where � � �#� " � denotes the probability
that symbol � is output by the channel, given that the
bit " is transmitted. (In continuous alphabets, � � �!� " � is
a p.d.f.) The channel being symmetric means that the
noise affects input 0’s and 1’s symmetrically; formally,�

can be partitioned into pairs � � �$� � � where � � �!� � �%�
� � ��� � �*� and � � �!� �*���&� � �'� � � � . (We also allow for a
single “erasure” symbol to be its own pair.) Finally, we
define the log-likelihood ratio (LLR) ( $ of a received bit
�# $ to be ( $ �*),+�-/.
021354 6 758.
021354 6 9:8<; The channel is LLR-bounded
is there is some number = where �/= >?( $ >@= for
all possible received symbols �# $ � �

.
One common example of an MSB channel is the bi-

nary symmetric channel (BSC) where each bit is flipped
independently with probability � . In the BSC, we have� � "*������& , ( � �A� � �B�C( � �D� �*�B�E� , and ( � �A� �*�B�
( � �D� � �F�)� �G� . We will use the BSC as a running exam-
ple. An important example of an unbounded memory-
less symmetric channel is the additive white Gaussian
noise (AWGN) channel, where

� �&H , and for each
transmitted bit # $ , we have �# $ ��� � � ��# $ ���JI)� ���5K *� ,
where I)� ���5K  � is a zero-centered Gaussian with vari-
ance K  . In practice, we could truncate the tails of the
Gaussian, and get an MSB channel.

A decoder is a Maximum-likelihood (ML) decoder
if it always outputs the codeword # that maximizes the
likelihood of receiving �# , given that # was transmitted.
Equivalently, it outputs the codeword # that minimizes
the quantity L $ ( $ # $ . In the BSC, the ML decoder finds
the codeword that is closest in Hamming distance to the
received word. The word error rate M err of a decoder is
the probability, taken over the noise in the channel, that
the decoder succeeds (outputs the codeword # that was
originally transmitted).

2.2 Channel Capacity. A code family is a set of
codes of a particular fixed rate N , but increasing length
� . A major goal in coding theory is to define a code



family (and accompanying decoder) with as high a
rate as possible such that M err + ��� � 0  8 . For any
memoryless channel, this is achieved by a random
code using ML decoding, as long as the rate N is
strictly less than the capacity

�
of the channel [26, 18].

Furthermore, this property is not possible if N�� �
(see [18]). The capacity

�
is a function only of the

channel model (and its associated parameters). For
example, the capacity of the binary symmetric channel
with crossover probability � is equal to � � ��� � � , where
� is the binary entropy function.

The random coding exponent � � N � is a standard
lower bound on the expectation of � � ),+�- M err � ��� under
ML decoding, taken over a random choice of codes
of rate N . This random coding exponent [18] has the
property that � � N � � � for all rates N > �

, and has been
studied extensively for different channel models.

2.3 Expander codes. Let � � ��� �	� � be a 
 -regular
graph with � ����� � nodes and  ��� � � edges. For a
node � ��� , we � ��� � be the set of 
 edges incident to� . We will choose a graph � that is an expander, but we
do not need this property to define the code.

An expander code [27] (see also [2]) is a code
based on � , defined as follows.4 For each node ����� ,
let ��� be a binary linear code with length 
 , rate N�� ,
and relative distance 	�� . For each node �,��� , define
an arbitrary (but fixed) ordering of the edges incident
to � . The expander code EC ��� � " ���%&���� is defined as
the settings of bits #�� to the edges � ��� such that for
every node � ��� , the bits "�#�� & ��� � 0 � 8 (when considered
in their fixed ordering) form a codeword of �!� . For a
codeword " �B� � , and some edge � ��� ��� � , let " ��� � �
"*������& be the bit assigned to edge � in the codeword" . By counting the number of linear constraints on the
code, it is easily seen that the rate # of the overall
expander code � is at least � �,� �:L � � � � N��*� � �$� .

3 LP decoding with expander codes

In this section we define an LP decoder for an arbitrary
expander code. This decoder is a natural generalization
of the one for LDPC codes given in [14].

The decoding LP contains a variable %���& � for
every edge in the graph, indicating the value of the
code bit #'� . The LP objective is to minimize L � ((��%)� ,

4We use the definition in [2]; more general expander codes, to which LP
decoding can also be applied, can be found in [29].

where ( � is a function of the channel model, and the
received word �# . For probabilistic channels, (*� is
defined to be the LLR ( � � ),+�- .
0 13	+$6 758.
0 13 + 6 9:8 of the code
bit associated with edge � , as discussed in Section 2.1.
For adversarial channels, where �# � "*������&-, , we set
((� � � � if �#.� � � , and ((�*� � � if �#'� � � .
This makes the LP objective, for all integral solutions% � � "*������& , , equal to � �/% � � �# � � � L � �# � , an adjusted
Hamming distance from the received word. We also
have auxiliary variables 01��2 34& � defined for each
node � and local codeword "-� ��� , indicating that
node � is satisfied by the local codeword " . When05��2 3 � � it should be the case that the edges � �� ��� � take on values %-� �6" ��� � . The LP constraints
enforce consistency between the % and 0 variables in
the natural way, specified in the LP below:

798;:'8<798;=�>@?BADC A	EFA@G�H IJH
K'L9MONQP ?RTSFU�VBWYX[Z RY\�]

K(^ \`_ L PaL b�cdMOefP E A \ ?RTSFU VTgRTh Aai�jlk WYXTZ
Rm\ ?RTSFU Von gRTh Apiqj*k WYX

n Z R

We claim that solutions �/% �r0 � to this LP where%���"*������& , must have %���� . To see this, consider a
single node � ��� . By the LP constraints, the variables
" % � & �	�B� 0 � 8 must represent a convex combination of
local codewords " � ��� . However, since %'��� "*������&
for all � , the convex combination must put all its weight
on a single local codeword. Therefore, since this holds
for all � , we have %,� � . This also shows that this LP
decoder has the ML-certificate property.

Another property we will need is that the decoding
polytope is � -symmetric (see [11, 9]). We include
the a proof of this fact in the full version. The � -
symmetry of the decoding polytope allows us to assume
(for the purposes of analysis) that � , is the transmitted
codeword.

3.1 Bounding the word error rate using a dual
witness. In this section we describe the method of
proving a word error rate bound using a zero-valued
dual feasible point. This method was first described
in [13] in order to show that LP decoders correct a
constant fraction of error using LDPC codes.

When we assume ��, is transmitted, our LP decoder
succeeds if it outputs a solution where % ���(, . There



is only one feasible setting of the "�0 �	2 3 & variables when% ��� , ; namely, 0 �	2 7�� � � for all � , and all other05�	2 3/� � . We refer to this setting of the 0 �	2 3 variables
as 0 � , and so our LP decoder succeeds if � � , �r0 � �
is the unique LP optimum. (If there are multiple LP
optima, we assume failure.) The solution � � , �r0 � � is
always feasible, and always has value zero. Therefore,
a necessary and sufficient condition for � �(, �r0 � � to
be optimal is the existence of a dual feasible solution
with value zero. Furthermore, a sufficient condition for
� � , �r0 � � to be the unique optimum is the existence of
zero-valued dual feasible solution with slack in every
dual constraint associated with variables % � . (This
follows from complementary slackness.) Our strategy
for proving decoding success will be to find such a dual
solution.

If we take the LP dual, set the objective value
equal to zero, enforce slack in the edge constraints, and
simplify, we get the following (open) polytope, defined
over variables "�� �	2 � & ������2 ��� � 0 � 8 :��
	 K-L9M NQP��1M� X P ?A S���� X �

��� ^������ A Z X ��� (3.1)

K ^ \ _ LFPaLBb cdM efP�� A Z X � �
A
Z X n! C A (3.2)

Any feasible point � � �M is a proof of the fact that ��,
is the unique primal LP optimum.

As an sanity check, suppose we transmitted over
an adversarial channel, and there were no errors; i.e.,
( � � � � for all � �`� . Then, if we set all �F��2 � ��� ,
we get a point in �M . Thus if there are no errors, the de-
coder succeeds. In later sections, we will demonstrate
feasible points in �M for more interesting situations.

4 Graph expansion and " -orientations

In this section we state some graph-theoretic definitions
and lemmas that we need to construct points in the
polytope �M , for both probabilistic and adversarial error.
Proofs are given in the full version.

DEFINITION 4.1. A 
 -regular graph � is a � � �$# � -
expander if, for all vertex–induced subgraphs � ���
��� � �	� � � with ��� � � + � ��� � , we have � � � ��+%#�
 ��� � � .

LEMMA 4.1. In a 
 -regular � � �$# � -expander � �
��� �	� � , if some subgraph � � � ��� � �	� � � has � � � �/+
�&# 
!��� � , then ��� � � & � � � � ���'#�
 � .

DEFINITION 4.2. Let a # -orientation of a subgraph� � �-���%� �	��� � of a 
 -regular graph � be an assignment
of directions to every edge in � � such that each node in��� contains at most # 
 incoming edges from � � .

LEMMA 4.2. If a 
 -regular graph � is a � � �$#�� -
expander, where # 
 is an integer, then all subgraphs� ��� ��� �!�	� � � where � � � � + �(#�
 ��� � contain a # -
orientation.

THEOREM 4.1. (Alon-Chung[1]) Let � ����� �	� � be a
 -regular graph such that all eigenvalues other than 

have absolute value at most ) . Let * be a subset of the
vertices of � of size ( ��� � . Then, the number of edges
contained in the subgraph induced by * in � is at most

( ��� ��+-,$. �0/  � � � ( �21 ;

For a particular value # , we can use Theorem 4.1 to
construct a 
 -regular graph that is an � � �$# � -expander,
where �J� �3# � �4) �B
 � .
5 Probabilistic error: achieving capacity

In this section we assume an arbitrary MSB channel
with capacity

�
and LLR bound = . Our task is to come

up with an expander code family of some given rate# > �
such that the word error rate under LP decoding

decreases exponentially in the code length  � � � � .
5.1 The parameters of the code. The expander code
family we present here is essentially the same as that of
Barg and Zémor [2], with some of the parameters set
differently. We let � be a balanced bipartite 
 -regular
Ramanujan graph with second-largest eigenvalue )B�5 �46 
�� , as used in [2]. Since � is bipartite, we have�E� "�7 ��8 & , with � 7 � � � 8 �F� � ��� . We use two
codes �:9 and �<; , and set ���%�@�:9 for all ���=7 , and
�m� ���>; for all � �?8 . Let # be some target rate of
our overall code. We let N A, the rate of code �<9 , be any
rate greater than # , and set N B, the rate of the code �@; ,
to be equal to N B � # � N A � � . Note that since N A � # ,
we have N B > � . The overall code will have rate at least
� �,� � L � N � � �$� �?N A � N B �0� � # , as required.

Let 	 A and 	 B be the relative distance of the code �@9
and �>; , respectively. We use the following definition
to further characterize the code �@9 :

DEFINITION 5.1. For a particular memoryless sym-
metric channel, a binary linear code � of length � is



��� ��� � -robust if, with probability at least � � � ���  �� 9
over the noise in channel, all non-zero codewords # �
� have cost L $ ( $ # $ &���� .

For now we assume that �<9 is ��� ��� � -robust for some� ��� �(� . We will show later that this can be achieved
for rates N A less than capacity. We define # � �(	 B ��� � �
	 B ��	 A �@=��	� � . We let # be any number where # 
 is
an integer, and #�� ��� + # + #A� . By Theorem 4.1, we
can make � a � � �$#�� -expander, where � � �3#/�,�4) �B
 � .
(Note that we may need to increase 
 in order to define# , and to make ���0� .)

We use the notation � prob to represent a particu-
lar expander code EC ��� � " �>9 &����39�
 " �>; &�� � ; � as de-
scribed above. (The specific parameters will be clear
from context.)

5.2 Finding a point in �M . We use the LP decoder
from Section 3 on the code � prob, and this defines a
polytope �M . Our goal is to construct a point in �M ,
as long as some high-probability event occurs. Such
a point is a dual witness to the optimality of �  in
the primal decoding LP, and therefore a proof that the
decoder succeeds.

We assume a particular received word �# , and the
resulting edge costs ( ��� ),+�- .
0213 + 6 758.
0213	+ 6 9:8 , where �/= >
( �/>?= . The cost ( �a" � of a local codeword "/� �5� for
some node � is equal to ( �a"�� � L �	�B� 0 � 8 "���� �,( � .Suppose we have that for every �)� 7 , all non-
zero codewords " ����� have positive cost. In this case,
finding a point in �M is simple: just set ����2 � � ((� � � for
all � � 7 , and set ���	2 � � � for all � ��8 , for some small
� � � . When some non-zero codewords have non-
positive cost, we need to be more careful about how we
set the variables �F�	2 � , which we will refer to as “edge
weights.” If a node has a negative-cost local codeword,
then we need to bias the incident edge weights to be
positive in order to satisfy the node constraints (3.1)
of �M ; on the other hand, if a node has all its non-
zero codewords with positive cost, then it can afford
to “absorb” some incident excess negative weight.

This motivates the following definition: let * � 7
be the nodes in 7 that have an incident non-zero local
codeword with cost less than or equal to �Q
 . Formally,* �."�� � 7���(" � �m� s.t. L ��� � 0 � 8 " ��� ��� ( � +��Y
 & .These are the “bad” nodes in 7 , the ones that cannot
afford to absorb positive weight, and therefore must be
treated carefully. Note that since we made the code � 9

�����������������������������������������������
�
�������
�
������������������������ �����������������������������������������������
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Figure 1: Setting the edge weights y +{z | for each node � and incident edge��� � 0 � 8 to satisfy the constraints of 1} . The weights are set according to
the “bad” nodes ~ , their neighbors � 0 ~ 8 , and the orientation of each edge.

robust, it will be unlikely for a node in 7 to be bad.
Let t � * � be nodes in the neighborhood of * ; note

that t � */� � 8 , since the graph is bipartite. Our
weighting scheme is given in the proof of the following
theorem (also see Figure 1):

THEOREM 5.1. If � *�� t � * � � + �d� , then the LP
decoder succeeds (outputs the transmitted codeword).

Proof. We show the LP decoder succeeds by providing
a point in �M . To set the edge weights �F��2 � , we first
define a direction for each edge in the graph. All edges
that are not incident to * are directed toward the nodes7 . Edges incident to * are directed according to a# -orientation of the subgraph induced by � *�� t � * � � .
This is possible using Theorem 4.2, since � *�� t � * � � +
�d� by assumption, and so � "F� ��� � & ��� ~ � +*�(#�
 � by
expansion.

We will give each edge � � ����� � � � a “tail-
weight” ����2 � and a “head-weight” � ��2 ��� . To satisfy
the edge constraints (3.2) of �M , the sum of these two
weights should be strictly less than ( � . We give the
assignment in detail below (also in Figure 1), where
� �0� is a small constant to be specified later:
(i) For all edges leaving * , set the tail-weight to� �
	 B ��	 A � and the head-weight to � = ��� �
	 B ��	 A � . Note

that the sum is � = , which is strictly less than (*� by
definition of = .
(ii) For all edges going into * , set the head-weight to
�/= �x� and the tail-weight to � , and again the sum is
�/= > ((� .
(iii) For all edges � incident to t � * � but not * , set the

tail weight to � , and the head weight to ( � ���/� � . Note
that these edges are all directed away from t � * � . The
sum of the edge weights is ( � � � > ( � .
(iv) For all other edges (those not incident to either* or t � * � ), set the head-weight to ( � ��� and the tail-



weight to � . Recall that these edges are all directed
toward 7 . The sum of these two edge weights is also
( � �,� > ((� .

We show that this weight assignment satisfies the
node constraints (3.1) of �M using three cases:

(i) For a node ��� * , we have at most #�
�+ # � 
 in-
coming edges � with weight � ��2 � � �/= � � ; the re-
maining (outgoing) edges have weight � �
	 B ��	 A � . Each
non-zero codeword " �B� � has a support set of size at
least 	 A 
 , and so for all " � ��� we have L �	�B� 0 � 8 " ��� � �� �	2 � & # � 
 � � = �x� � � �
	 A � # � �[
 � �
	 B ��	 A �G� � ;
(ii) For a node � � t � */� , we have at most #�
 + # � 


incoming edges � with weight � �	2 � ��� = �x� �
	 B ��	 A � ,
and the remaining (outgoing) edges have weight � .
Therefore, similar to the previous case, every non-
zero codeword "�� ��� has L ��� � 0 � 8 "���� � � � �	2 �@&#A� 
 � � = �x� �
	 B ��	 A � ��� �
	 B ��# � �[
 �J� � ;
(iii) For a node � � � 7 ��* � , every incident edge � is

incoming, and has weight �F��2 � equal to either ( � � �
or ((� � �(� � . In the worst case and wlog, they
all have weight ����2 � � ((� � � � � , and so every
non-zero codeword ",� � � has L �	�B� 0 � 8 "���� � � � ��2 � &
� L �	�B� 0 � 8 " ��� � �<( � � ��
 ��� �0��� ; By the definition of * ,
we have L � � 3�� ����� 9 ( � � �Q
 � and so there exists � ���
such that L � � 3�� ����� 9 � ��2 �9&0� .
(iv) For a node � � � 8(� t � */� � , we have �F��2 � � � for

all � � � ��� � . �
The main theorem of the section says that if � 9

is robust, then the word error rate of LP decoding
decreases exponentially in  � � � � . In the next section
we use this theorem to attain capacity.

THEOREM 5.2. If the code �<9 is ��� ��� � -robust, for
some � ��� ��� , then there exists a sufficiently large
degree 
 such that the word error rate of LP decoding
using the code � prob is at most � � � 0 , 8

.

Proof. By Theorem 5.1 the LP decoder succeeds as
long as � * � t � * � � + �d� . Using � t � * � � + 
!� * � ,
we have success if � * ��+ �d� ���a
�� �*� , which is
equivalent to � * � + �/� ���%� �
��� ���a
�� �*� � , i.e., if the
fraction of bad nodes in 7 is at most �  � �	, � 9 &
�
 �, � 9 �  /, 0 , � 9:8<; Since the code �>9 is ��� ��� � -robust, we

have that the probability of a node being bad is at most
����� , � 9

, and so the expected fraction of bad nodes is
at most � ��� , � 9

. Note that �  decreases linearly in 
 ,
whereas the expected fraction of bad nodes decreases

exponentially in 
 . Thus, for sufficiently large 
 ,
we have ����� , � 9 > �  . Each node in 7 is bad
independently, since the edges adjacent to them are
disjoint. A Chernoff bound implies a word error rate
of at most � � � 0

� 8
= � � � 0 , 8

, since 
 is constant. �
We note that for the binary symmetric channel, the

error exponent (the constant in the  ) is not as good
as the one proved by Barg and Zémor [2] using a bit-
flipping decoder; in particular, it has an unfortunate
inverse dependence on 
 . It would be interesting to see
if a different method of setting the edge weights could
yield stronger results; since LP decoding performs
better than bit-flipping decoders (at least on LDPC
codes), one would expect this to be possible.

5.3 Achieving capacity. In this section we will need
the following theorem, proved in the full version, which
is in essence a slight generalization of Shannon’s noisy
coding theorem:
LEMMA 5.1. For any memoryless symmetric channel
with capacity

�
, for sufficiently large � , any rate N > �

,
and any � where � > �C> � � N , there exists a
��� �r� � N � � � � -robust binary linear code � with length
� , rate N , and minimum distance at least � � 9 � � � N � ,
where � is the random coding exponent.

We now define the code � cap that will achieve
capacity. We use a particular case of the code � prob.
We set N A to some number where # > N A > �

, and� to some number where � > � > � �BN A. We then
invoke Lemma 5.1 above (with NJ� N 9 ) to obtain the
code �:9 . Thus, the code �<9 is ��� �r� � N�9 � � � � -robust.
Note that the random coding exponent � � N 9 � � � � �
since N�9 � �@> �

. We also have 	 A � �D� 9 � �/� N A � .
Furthermore we make 	 B ��� � 9 � � � N B � by using a
code � ; on the Gilbert-Varsharmov bound (see [18]).

We note that any constants 	 A and 	 B would suffice
to achieve capacity; the fact that the codes are on the
GV bound only affects the error exponent (the constant
in front of  in the exponent). In theory, we use
exhaustive search to construct the codes � 9 and �<; ,
which takes constant time, since 
 is constant. (In
practice, note that any codes � 9 and � ; with decent
parameters give exponentially small word error rate for
rates close to capacity, just by using Theorem 5.2.)
Theorem 5.2 gives the following:

THEOREM 5.3. The word error rate of LP decoding
using code � cap is at most � � � 0 , 8

for all rates # > �
.



6 Adversarial error

A dual witness can also be used to give bounds for
the adversarial channel. In the probabilistic channel
we gave a condition on the error pattern that implied
a dual witness, and then proved that this condition was
likely to hold. In the adversarial channel, we give a
dual witness assuming a bound on the number of bits
flipped by the channel. Specifically, we will show that
LP decoding succeeds if � � # � �# � + �Q , where # is
the transmitted codeword, �#0� "*������&� is the received
word, and � is as high a fraction as possible. In this
section, our edge costs ( � are defined so that the LP
minimizes the Hamming distance from the received
word �# , as explained in Section 3: we set ( ��� � �
if �# � � � , and ( � � � � if �# � � � , and so we have
L � ((� #��� � � � # � ���# � � L � �#'� for all codewords # � � � .

To prove that LP decoding succeeds, we find a point
in the polytope �M , as in the previous section. (We
may assume that ��, is transmitted, since the LP is � -
symmetric, which we prove in the full version.) We first
show, in Section 6.1, a general result for an arbitrary
expander code, giving a purely combinatorial necessary
condition for the LP decoder to fail. We follow this up
in Sections 6.2 and 6.3 with a specific construction of
an expander code that takes advantage of this condition.

6.1 Necessary combinatorial failure condition: er-
ror cores. We define � core � EC ��� � " � � &�� to be an
arbitrary expander code built on a 
 -regular graph �
where each code ��� has relative distance at least 	 .
Note that � core assumes nothing about the expansion
of the graph. The following combinatorial object will
be key to our results in this section:

DEFINITION 6.1. A # -error core is a subgraph ��� �
��� � �	� � � where (i) �#.� � � for all ��� � � , and (ii)� ��� ��� � � &%# 
 for all � ��� � .
For an edge � to be in an error core, the code bit # � must
be flipped by the channel, and both endpoints of � must
be incident to at least # 
 edges � � that are also in the
error core. This can become quite restrictive. We now
state the main theorem in this section, which will later
lead to a bound on the adversarial channel.

THEOREM 6.1. If the LP decoder fails in the adversar-
ial channel using code � core, then there exists an �
	���� � -
error core in the graph � .

This theorem should be of independent interest,
since it does not rely on graph expansion; it is merely
a graph-theoretic necessary condition for decoding fail-
ure. This type of characterization is often referred to as
a “pseudocodeword,” since it is an object that “fools”
a sub-optimal decoder. (For example, the “stopping
sets” of an LDPC code represent pseudocodewords for
belief-propagation in the binary erasure channel [8].)

The rest of this section is devoted to proving Theo-
rem 6.1. For some received vector �# , let � 7

be the set
of edges with an error; i.e., � 7 �-" � � � ��((� � � ��& .
Define sets � 9�� �  � ; ; ; and * 9�� *  � ; ; ; in-
ductively as follows: Let * $ � � be the set of nodes
with at least �
	���� �[
 incident edges in � $ � 9

. Now de-
fine � $ ��� $ � 9

to be the set of edges in � $ � 9
induced

by * $ . Note that this definition could produce an infi-
nite sequence of sets (e.g., if � 7 � � ).

LEMMA 6.1. If � $ � � for some finite � , the LP
decoder succeeds.

Proof. We show decoding success by constructing a
point in �M . We set edge weights � �	2 � as follows, where
� �0� is a small constant that we specify later:

(i) For all � �����%� � � �
	��� 7 : set � ��2 � � � ��2 � � ���*��� � � .
Since � ���� 7

, we have ( �/� � � , and so � ��2 � � � ��2 � ���
� �,� � > ((� .
(ii) For all � , and edges � � ��� � � � � �� $ but not in
� $ � 9

: By definition of * $ � 9
, at most one endpoint of �

is in * $ � 9
. If neither endpoint is in * $ � 9

, set the two
weights ����2 � and � ��2 � � to �*��� � � and ���%��� arbitrarily. If
one endpoint (say � ) is in * $ � 9

, set � ��2 � � �*��� ��� for
that endpoint, and � ��2 � � �����%��� for the other endpoint.
In both cases, we have �F��2 �A��� ��2 � � � � � � � > � � � ((� .

Since � $ ��� for some finite � , all edges fall into
one of the two cases above. We claim that � is a feasible
point in �M . We have already argued that the edge
constraints (3.2) of �M are satisfied, and so it remains
to show that the node constraints (3.1) are satisfied.

We first show that every node � has fewer than
�
	���� �[
 incident edges � with �F��2 � �)���%��� . (i) Consider
a node ��	� * 9

. This node is incident to fewer than
�
	���� �[
 edges in � 7

, and these are the only edges �
that could possibly have �F��2 ��� ���%��� . (ii) Consider
a node � � * 9

. Since � $ ��� for some � , we have� � � * $ �%* $ � 9 � for some � . Since ��	� * $ � 9
, there

are fewer than �
	���� �[
 edges in � ��� ����� $ . If some edge



� 	��� $ , then � �	2 � � �*��� � � . Therefore, fewer than
�
	���� �[
 incident edges have �F��2 � �)���%��� .

Thus, there is some � � ��� such that every node �
has at most �
	���� � �5� �[
 edges ��� � ��� � with ����2 � �
���%��� . Since code ��� has relative distance 	 , we have,
for all � and " ����� , L ��� � 0 � 8 " ��� � � � ��2 �f& � ���%���%� �
	���� �
� � �[
 � � �*��� �,��� � � 	���� �[
 ��� � � � ��� � � 	�� ��� �[
 ; Setting
� + � �5� ��	 , we get L ��� � 0 � 8 " ��� � ��� �	2 �f& � . �
LEMMA 6.2. If there is no �
	���� � -error core in the
graph � , then � $ � � for some finite � .
Proof. Suppose there is no finite � where � $ � � . Then,
for some � , � $ � � $ � 9 	� � , and so * $ � * $ � 9

. This
implies, by definition of * $ � 9

, that every node in * $ � 9
has at least �
	���� �[
 incident edges in � $ ��� $ � 9

. Since
the edges � $ � 9

are all induced by * $ � 9
, and � $ � 9 � � 7 ,

we have that � * $ � 9 � � $ � 9 � is a �
	���� � -error core. �
Theorem 6.1 follows from Lemmas 6.1 and 6.2.

6.2 Using expansion in the error core. Even if the
graph contains an error core, it may be possible to
assigning legal edge weights. If the graph expands, then
we can use a # -orientation to assign the edge weights.

THEOREM 6.2. Suppose � ����� �	� � is a � � � 	���� � � � � -
expander, for some � � � � where 
 �
	���� � � � � is an
integer. Then, if the LP decoder fails, there exists a
�
	���� � -error core � � � ��� � �	� � � where � � � ���?� �
	���� �
� � �[
�� .

Proof. (Sketch) If the LP decoder fails, then by Theo-
rem 6.1 we have an �
	���� � -error core � � � ��� � �	� � � in
the graph � . Suppose � � � � + � �
	���� � � � �[
 � . We show
decoding success by constructing a point in �M . For the
edges not in � � , set the edge weights as in the proof of
Theorem 6.1, using some value � ��� that we specify
later. Since � is a � � � 	���� �,� � � -expander, 
 �
	���� ��� � �
is an integer, and � � � � + � �
	���� �0� � �[
 � , there exists
a �
	���� � � � � -orientation of � � (by Theorem 4.2). Set
weights of edges ��� � � � � � � � according to this ori-
entation by setting ����2 � �)�*��� � � and � �	2 � � �)���%��� .

This setting of the edge weights clearly satisfies the
edge constraints of �M . Also, using the argument from
Theorem 6.1 and the # -orientation definition, we have
that each node � has fewer than �
	���� � � � � �[
 incident
edges � with weight �F��2 � � ���%��� , for some �5� � � � .
Setting � + � � � � ��	 , we have L ��� � 0 � 8 " ��� � �3� �	2 � & � for
all nodes � and non-zero codewords " ���5� . �

6.3 Correcting a 	  ��� fraction of errors. In order to
use Theorem 6.2, we define an expander code � adv �
EC ��� � " � &���� using any 
 -regular Ramanujan graph �
with second-largest eigenvalue ) � 5 � 6 
 � . The codes
�m� for each node � will be identical codes � on the G-
V bound, of length 
 and relative minimum distance 	 .
(We make 
 sufficiently large to reach the G-V bound.)
The overall code � adv thus has rate # �)� � �����
	�� .
THEOREM 6.3. For any � � � , there exists a suffi-
ciently large degree 
 such that using the code � adv,
LP decoding corrects a 	  ��� � � fraction of errors in
an adversarial channel.

Proof. (Sketch) As before, using Theorem 4.1, we have
that � is a � � �$#�� -expander, where � � �3# � �4) �B
 � .
Setting #@� �
	���� � � � � (we later specify � � � � s.t.
 �
	���� � � �!� is an integer), we get �J� 	���� � � � � ���4) �B
�� .
By Theorem 6.2, for the LP decoder to fail, there must
be an error core with more than � �
	���� � �$� �[
�� edges.
All edges in an error core represent errors, and so there
must have been at least � �
	���� � � � �[
�� �.�
	 ��� � � �
��) �B
 � �
	���� � � � �[ errors in the channel. This can be
made greater than �
	  ��� �(� �[ by increasing 
 and
decreasing �5� , maintaining 
 �
	���� � � � � an integer. �
7 Conclusions and Future work

We have showed that LP decoding is a strong enough
technique to achieve the capacity of an arbitrary MSB
channel by using expander codes. However, we still
have a lot to learn about the impressive empirical
performance of more practical codes like turbo codes
and LDPC codes. Since LP decoders apply to these
codes (see [9]), we should be able use the techniques
developed here to answer the following open questions.

(1) Can we prove capacity (or near capacity) results
for LP decoding on LDPC codes? (2) Can we achieve
capacity with LP decoding with complexity that does
not depend exponentially on the gap to capacity? (3)
Can we give a turbo-like code where LP decoding has
a word error rate of �(� � 0  

� 8
( ��> � > � ), for rates close

to capacity?
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