LP Decoding Achieves Capacity

Jon Feldman
 Cliff Stein

Columbia University

Thank you: Alexander Barg, David Karger, Ralf Koetter,
Tal Malkin, Rocco Servedio, Pascal Vontobel,
Martin Wainwright, Gilles Zémor.

Codes, Noisy Channels, Achieving Capacity

Encoder

Noise

Decoder
$\stackrel{\downarrow}{y^{\prime} \in C}\left(y^{\prime}=y\right.$? $) ~$

■ Noise: probabilistic (Gaussian).

- Word Error Rate (WER) =

$$
\operatorname{Pr}_{\text {noise }}\left[y^{\prime} \neq y\right]
$$

- Channel "capacity" \mathcal{C} : highest rate $(r=k / n)$ s.t. \exists code family, decoder, with WER $\leq 2^{-\Omega(n)}$.
- Shannon: characterized capacity for many channels.

■ "Achieving capacity:" code family, decoder, with WER $\leq 2^{-\Omega(n)}$ for all $r<\mathcal{C}$.

Achieving Capacity with Poly-time Decoders

- Forney ('66):
- ML/BD decoder
- Concatenated codes (OPT \diamond Reed-Solomon)
- Barg/Zémor ('02):
- ML/message-passing decoder
- Expander codes [SS '96][BZ '01-'04][GI '01-'04]
- This paper:
- Linear Programming (LP) decoder
- Same expander codes as Barg/Zémor
- New feature: "Maximum-Likelihood (ML) Certificate" property: if codeword output, it maximizes $\operatorname{Pr[correct].~}$

Application to Practical Codes

- Turbo [BGT '93], low-density parity-check (LDPC) [Gal '63] codes:
- Practical construction/encoding, moderate length
- Perform well (experimentally) under message-passing decoder
- Most successful theory: density evolution [RU, LMSS, RSU, BRU, CFDRU, ..., '99...present].
- Non-constructive, assumes "local tree" structure.
- LP decoding bounds:
- No tree assumption.
- Bounds relevant for finite lengths.
- Performance of message-passing is closely related [FKW 02, Fel02, KV02, KV04a, KV04b] $]_{\text {ane }}$

Maximum-Likelihood (ML) Decoding

■ "Memoryless" channel: each y_{i} is affected by noise indpendently.

- Example: Gaussian, where $\hat{y}_{i}=\mathcal{N}\left(2 y_{i}-1, \sigma^{2}\right)$.
- Cost function γ_{i} : log-likelihood ratio of \hat{y}_{i}.

$$
\gamma_{i}=\ln \left(\frac{\operatorname{Pr}\left[\hat{y}_{i} \mid y_{i}=0\right]}{\operatorname{Pr}\left[\hat{y}_{i} \mid y_{i}=1\right]}\right)
$$

- If y_{i} more likely $0 \Longrightarrow \gamma_{i}>0$
- If y_{i} more likely $1 \Longrightarrow \gamma_{i}<0$

ML Decoding: Given corrupt codeword \hat{y}, find $y \in C$ such that $\sum_{i} \gamma_{i} y_{i}$ is minimized.

LP Decoding [FK '02, Fel '03]

■ LP variables y_{i} for each code bit, relaxed $0 \leq y_{i} \leq 1$.
■ Alg: Solve LP. If y^{*} integral, output y^{*}, else "error."

- ML certificate property

Using a Dual Witness to Prove Success [FMSSW '04]

- Assume 0^{n} is transmitted (polytope symmetry); assume unique LP optimum (no problem). success \Longleftrightarrow Point 0^{n} is LP optimum $\Longleftrightarrow \exists$ dual feasible point w/ value 0
- Take LP dual, set dual objective $=0$: polytope \hat{P}. success $\Longleftrightarrow \hat{P}$ non-empty
- Buys "analytical slack:"
- With no noise $\Longrightarrow \hat{P}$ is large.
- Noise increases $\Longrightarrow \hat{P}$ shrinks.
- Trade off strength of result with ease of analysis.
- Prove result for LDPC codes, adversarial channel [FMSSW '04]

Tanner Graph Codes

- Bipartite "Tanner" graph G :
- n "variable" \bigcirc nodes
- m "check" \square nodes
- Subcode C_{j} for each check j.
- Overall codeword: setting of bits to var nodes s.t.:
- $\forall j$, bits of $N(j)$ in code C_{j}.
- LDPC codes: special case w/ const. degree, $C_{j}=$ single parity check code.
- Ex: G is (3,6)-regular, $C_{j}=$ $\{000000,111000,000111,111111\}$.

LP Relaxation for Tanner Codes [FWK '03]

LP Relaxation for Tanner Codes

Dual Polytope: Tanner Codes

- Polytope \hat{P} for general Tanner codes:

- Edge weights $m_{i j}$.
- For all code bits (left nodes) i,

$$
\sum_{j \in N(i)} m_{i j} \leq \gamma_{i} .
$$

- For all checks j, codewords $c \in C_{j}$,

$$
\sum_{i \in \sup (c)} m_{i j} \geq 0
$$

Dual Polytope: Tanner Codes

- No noise in the binary symmetric channel...

- Edge weights $m_{i j}$.
- For all code bits (left nodes) i,

$$
\sum_{j \in N(i)} m_{i j} \leq \gamma_{i}
$$

- For all checks j, codewords $c \in C_{j}$,

$$
\sum_{i \in \sup (c)} m_{i j} \geq 0
$$

Dual Polytope: Tanner Codes

■ A bit of noise...

Edge weights $m_{i j}$.

- For all code bits (left nodes) i,

$$
\sum_{j \in N(i)} m_{i j} \leq \gamma_{i}
$$

- For all checks j, codewords $c \in C_{j}$,

$$
\sum_{i \in \sup (c)} m_{i j} \geq 0
$$

Using Expansion to Set Edge Weights

- Code built from Ramanujan graph [SS '96, BZ '02].
- Top nodes: strong codes, rate $r+\epsilon$
- Bottom nodes: GV-bound codes, rate $1-\epsilon$
- Initial weighting: all "top" edges $m_{i j}=\gamma_{i}$, bottom edges $m_{i j}=0$.

Using Expansion to Set Edge Weights

Error region

- "Error region:" checks w/ violated dual constraints.
- Use expansion to spread out excess weight among neighbors... details interesting but omitted.
- Maintain $m_{i j}+m_{i j^{\prime}}=\gamma_{i}$, check constraints.

Using Expansion to Set Edge Weights

Error region

Thm: For any memoryless symmetric LLRbounded channel with capacity \mathcal{C}, and any rate $r<\mathcal{C}$, there exists a code family of rate r for which the word error rate of LP decoding is $2^{-\Omega(n)}$.

■ Turbo codes: natural "flow-like" LP [FK '02][Fel '03]

- RA(1/2) codes: WER $=n^{-\Omega(1)}$ [FK '02][EH '03]
- Can we get WER $=2^{-\Omega\left(n^{\epsilon}\right)}$? (e.g., rate $1 / 3 R A$)

Future work: LP Decoder Applications/Extensions

■ Turbo codes: natural "flow-like" LP [FK '02][Fel '03]

- RA(1/2) codes: WER $=n^{-\Omega(1)}$ [FK '02][EH '03]
- Can we get WER $=2^{-\Omega\left(n^{\epsilon}\right)}$? (e.g., rate $1 / 3 \mathrm{RA}$)
- Tighter relaxation (lift and project)?

■ ML decoding using IP (branch and bound)?

- Deeper connections to message-passing?
- More efficient algorithm to solve LP?
- Achieve capacity, decoding time poly $\left(n, \frac{1}{C-r}\right)$.
- All previous capacity results:

Explicit ML decoding of poly $\left(\frac{1}{\mathcal{C}-r}\right)$-length codes.

- This result:

Representation of $\operatorname{ch}\left(\operatorname{poly}\left(\frac{1}{\mathcal{C}-r}\right)\right.$-length codes)

- Achieve capacity, decoding time poly $\left(n, \frac{1}{\mathcal{C - r}}\right)$.
- All previous capacity results:

Explicit ML decoding of poly $\left(\frac{1}{c-r}\right)$-length codes.

- This result:

Representation of $\operatorname{ch}\left(\operatorname{poly}\left(\frac{1}{\mathcal{C}-r}\right)\right.$-length codes)

- Achieve near-capacity rates for LDPC codes without the tree assumption.
- "Small cycles are bad": fact of fiction?
- Expansion: to limited?

