
Linear Programming (LP) Decoding

Corrects a Constant Fraction of Errors

Jon Feldman
Columbia University

Joint work with Tal Malkin, Cliff Stein, Rocco Servedio (Columbia);

Martin Wainwright (UC Berkeley)

Binary error-correcting codes

110011101001010011

Transmitter with encoder

010011 110011101001 11001 1010 10 1

corrupt codeword

Receiver with decoder

Binary Symmetric Channel: Flip each bit w/ probability p < 1/2

Information: "lg. pepperoni"

"lg. pepperoni"

"lg. pepperoni"

"lg. pepperoni"

codeword()

codeword()

PSfrag replacements

� �

� ��

��� � � �� � �

�

� � � � � � � � � �� � �
J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.1/29

Basic Coding Terminology

�

A code is a subset

��� � � ���

, where

	 	
 � �
. If

 � , then is a codeword.

�

Dimension =

�

= info bits in each codeword.

�

Length = � = size of a codeword.

�

Rate =

� � � = info per transmitted code bit.

�

(Minimum) distance = � ����� �� ��� � � � �� .
Relative (minimum) distance

 � �.

�

Word error rate (WER) = probability of decoding
failure = Pr !" #%$& ')(* +� , � �((- .
 . -/0 . - . 1 .
Practical measure of performance.

�

Goals: high rate, large distance, low WER, low
(construction, encoding, decoding) complexity.

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.2/29

Correcting a constant fraction of error

�

A code family is an infinite set of codes � � � � � � �

of increasing length � � � � � � � � � .

�

One major goal of coding theory: construct a family
of codes and a decoder, where:

�

The codes have constant rate �.

�

The decoder runs in time poly(�).

�

The decoder succeeds if � � bits flipped,
where � constant. (Note:
 WER

��� 	
� �

.)

�

Achieved by GMD [F], iterative bit-flipping [G, SS,
BZ], list decoding [GI].

�

This talk: LP decoding [FK ’02] corrects a constant
fraction of errors, using expanding LDPC codes.

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.3/29

Low-density parity-check codes, factor graphPSfrag replacements

� � �

�

� �

�

�

Codebit nodes
�

� � � �.

�

Check nodes
�

� � � �.

�

Codewords: � �� � � � �

where all check
neighborhoods have
even parity w.r.t. .

�
Rate

��� � � �.

�

Low density: constant degree.

�

Codeword examples:

�

0000000

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.4/29

Low-density parity-check codes, factor graphPSfrag replacements

� � �

�

� �

�

�

Codebit nodes
�

� � � �.

�

Check nodes
�

� � � �.

�

Codewords: � �� � � � �

where all check
neighborhoods have
even parity w.r.t. .

�
Rate

��� � � �.

�

Low density: constant degree.

�

Codeword examples:

�

0000000, 1110000

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.5/29

Low-density parity-check codes, factor graphPSfrag replacements

� � �

�

� �

�

�

Codebit nodes
�

� � � �.

�

Check nodes
�

� � � �.

�

Codewords: � �� � � � �

where all check
neighborhoods have
even parity w.r.t. .

�
Rate

��� � � �.

�

Low density: constant degree.

�

Codeword examples:

�

0000000, 1110000, 0100110

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.6/29

Low-density parity-check codes, factor graphPSfrag replacements

� � �

�

� �

�

�

Codebit nodes
�

� � � �.

�

Check nodes
�

� � � �.

�

Codewords: � �� � � � �

where all check
neighborhoods have
even parity w.r.t. .

�
Rate

��� � � �.

�

Low density: constant degree.

�

Codeword examples:

�

0000000, 1110000, 0100110, 0101001

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.7/29

Turbo codes and low-density parity-check (LDPC) codes

�

Turbo codes [BGT ’93], LDPC codes [Gal ’62], with
message-passing algs: lowest WER (in practice).

�

Most successful theory: density evolution [RU,
LMSS, RSU, BRU, CFDRU, ..., ’99...present].

�

Non-constructive, assumes local tree structure.

�

“Finite-Length” analysis:

�

ML decoding finds most likely codeword;
sub-optimal decoding finds most likely
pseudocodeword.

�

Combinatorially understood pseudocodewords:

� Deviation sets [Wib ’96, FKV ’01],

� Tail-biting trellises [FKKR ’01],

� Stopping sets (erasure channel) [DPRTU ’02].
J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.8/29

LP relaxation on the factor graph [FKW ’03]

PSfrag replacements

ILP: vars �� � �� � � �
.

� ��� � �� � s.t.
For all checks

�

,� �� � � � � � � � � � .

��

�

if 0 rec.

� �

if 1 rec.

�� � � �� �
	 � � �

 � �
� ��
� 	 � �

� � �
�� �

� � �

� � �

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.9/29

LP relaxation on the factor graph [FKW ’03]

PSfrag replacements

LP: � �� � ��
� s.t.

For all checks

�

,�
� � � � � � � � � � .

� : Parity Polytope [Y,J]
� �

,

� � �
, and

�� � � �� �
	 � � �

 � �
� ��
� 	 � �

� � �
�� �

� � �

� � �

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.10/29

LP relaxation on the factor graph [FKW ’03]

PSfrag replacements

� Algorithm:
1) Solve LP
2) Output if integral

� ML certificate

� Success lowest
cost vertex = trans.

�� � � �� �
	 � � �

 � �
� ��
� 	 � �

� � �
�� �

� � �

� � �

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.11/29

Unifying other understood pseudocodewords

PSfrag replacements

Vertices(polytope)

Tail-biting trellis
PCWs [FKMT ’01]

= trellis “flow”
polytope [FK ’02]

Rate-1/2 RA code
promenades [EH ’03]

= LDPC code
polytope [FKW ’03]

BEC stopping sets
[DPRTU ’02]

PCWs of graph
covers [KV ’03]

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.12/29

Success conditions: find zero-valued dual point

�

Assume

��

is transmitted (polytope symmetry);
assume unique LP optimum (no problem).
success Point

��

is LP optimum

�

dual feasible point w/ value

�

�

Take LP dual, set dual objective = 0: polytope

�

.
success

�

non-empty

�

Main result:
Theorem: Suppose

�

(regular left-degree �) is an

��� ���
	 �
 -

expander, where

	 � � � � � � � �
 . Then the LP decoder
succeeds if � � ��� �

� ��� � � � bits are flipped by the channel.

�

New generalization to expander codes.

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.13/29

Edge weights

�

Polytope

�

for LDPC code relaxation:
...

...

...
...

PSfrag replacements

� �
� �

��
�� � �

��

� � �

�

�

Edge weights � � �

(free).

�

For all code bits (left
nodes)

�

,
�� �
 � �

� � � �� �

�

For all checks

�

,
pairs

� � � � � � � �

,

� � � � � � � �
�

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.14/29

Edge weights

�

Polytope

�

for LDPC code relaxation:
...

...

...
...

PSfrag replacements

+1

+1

+1

+1

+1

�
� � �

�
� �

�

Edge weights � � �

(free).

�

For all code bits (left
nodes)

�

,
�� �
 � �

� � � �� �

�

For all checks

�

,
pairs

� � � � � � � �

,

� � � � � � � �
�

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.15/29

Edge weights

�

Polytope

�

for LDPC code relaxation:
...

...

...
...

PSfrag replacements

+1

+1

-1

+1

-1

-

�
�

-

�
�

+

�
�

+

�
�

-

�
�

+

�
�

+

�
�

�

Edge weights � � �

(free).

�

For all code bits (left
nodes)

�

,
�� �
 � �

� � � �� �

�

For all checks

�

,
pairs

� � � � � � � �

,

� � � � � � � �
�

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.16/29

Weighting scheme: node sets

�

, ,

�

PSfrag replacements

: flipped bits

()

�

: nodes inc. to

� �
� green edges

edges inc. to

� �

,
but not inc. to

Edges inc. to

(is �-left-regular)

�
�

�

� �

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.17/29

Weighting scheme: “The matching”

�

Find edge set :

�

Nodes in

�

inc.
to

���
� -edges.

�

Checks inc. to�

-edge.

� � � � � �

-expander:
every set of size

� � expands by a
factor of

.

� � � � �
���

�
�

-expander

�

matching for
all

�

,

	 � 	 � �.

...

...

PSfrag replacements
: flipped bits

()
: nodes inc. to

green edges
edges inc. to ,

but not inc. to
Edges inc. to

�

�

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.18/29

Weighting scheme: weight values

�
 �
�

+x +x

+x
+x

0

0
0

0
0

0

00

0

00

0
0 0

0

0

0

0
00

−x �

For all checks
�

with incident
red -edge

� � � � �
:

�

Set � � �
 � �;

�

Set all other incident edges� � � �
 �.

�
Set all other � � �
 �

.

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.19/29

Weighting scheme: weight values

�
 �
�

+x +x

+x
+x

0

0
0

0
0

0

00

0

00

0
0 0

0

0

0

0
00

−x

�

Case 1: Node in .

−x

−x

−x

0 / +x−1

Node has
�

� � -edges, each
with weight� �, so

� � �

�
� � ��

�
� � �

 � � � �

� � �
�

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.20/29

Weighting scheme: weight values

�
 �
�

+x +x

+x
+x

0

0
0

0
0

0

00

0

00

0
0 0

0

0

0

0
00

−x

�

Case 2: Node in

�

.

0 / +x

0

0

0 +1

Node has
�

� � -edges, each
with weight

�

, so

� � �

�
� � �

 � � �

� �
�

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.21/29

Weighting scheme: weight values

�
 �
�

+x +x

+x
+x

0

0
0

0
0

0

00

0

00

0
0 0

0

0

0

0
00

−x

�

Case 3: Node in

�

.

0 / +x

0

0

0

+1

Node has
�

� � edges not
incident to

� �

. Each such
edge has weight

�

, so

� � �

�
� � �

 � � �

� �
�

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.22/29

Expander codes

...
...

...
...

�

General version of expander
codes [SS, BZ]:

�

Each “check” node
�

has
subcode � .

�

Overall codeword: setting of
bits to left nodes s.t. each
check nbhd

� � �

is a
codeword of � .

�

LDPC codes: special case
where � = single parity
check code.

�
Ex: is (3,6)-regular, � =� �

.
J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.23/29

LP Relaxation for general expander codes

PSfrag replacements

LP: � �� � �� � s.t.
For all check nodes

�

,� �� � � � � � � � � ch

�
�

�

.

ch
�

�
�

= convex hull
of local codewords.

�� � � � �
	 � � ch

�
�

�

 � �
� ��
� 	 � �

� � �
�� �

� � �

� � �

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.24/29

Edge weights for general expander codes

�

Polytope

�

for general expander codes:
...

...

...
...

PSfrag replacements

� �
� �

��
�� � �

��

� � �

�

�

Edge weights � � � .

�

For all code bits (left
nodes)

�

,
�� �
 � �

� � � �� �

�

For all checks

�

,
codewords � � � ,

� � sup

� �
� � � �

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.25/29

Code construction

�

Let be

� � � ��

-regular (edge-incidence graph of

�

-regular expander). Fix some

� � � � �
.

�

Set

�

sufficiently large s.t. � lies on GV-bound

�

Code � has distance �, rate
��� � �� .

�

Rate of overall code

�� � � �� .

�

Weighting scheme: also benefits from expansion.

�

Using Ramanujan graphs, Alon/Chung:

Theorem: The LP decoder succeeds if � � �
� � bits

are flipped by the channel.

�

Sipser/Spielman: it. decoding corrects � � � ��

errors.

�

Barg/Zemor: diff. algorithm, corrects � � � �

errors.
J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.26/29

Future Work #1

Improve results for LDPC codes, explain difference in
performance.

10-4

10-3

10-2

10-1

100

10-310-210-1

w
or

d
er

ro
r

ra
te

bit-flip (crossover) probability

Spielman decoding vs. LP decoding (random length 150, (3,6)-regular LDPC code)

Spielman decoding
LP decoding

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.27/29

Future Work #2

Explain weird situation using LDPCCs on AWGN:

�

AWGN channel: � � �� � � � �

transmitted,

�� �� � �
� �

received.

�

Log-likelihood ratio: set ��
 received value.

�

Koetter/Vontobel [03]: Using LLRs �� , LP decoding
has WER
 �� �
� ��� � �

for some � � �

.

�

But, if you quantize first (set � ��
 sign

� ��
�

), you get
BSC, and using our result, get WER =

� � 	
� �

.

�

In other words, it is sometimes good to throw out
information.

�

Optimal decoders do not have this property;
somehow this sub-optimal decoder does.

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.28/29

Future Work #3-#8

�

Using more general codes, compete with best
known results on rate vs. fraction corrected
(Forney, Barg/Zemor, Guruswami/Indyk).

�

Find more general weighting scheme use more
general graph-theoretic properties than expansion.

�

Prove something better for turbo codes.

�

Deepen connection to iterative algorithms
(sum-product).

�

Use non-linear optimization.

�

Consider non-binary codes.

J. Feldman, LP Decoding Corrects a Constant Fraction of Errors – p.29/29

	Binary error-correcting codes
	Basic Coding Terminology
	Correcting a constant fraction of error
	Low-density parity-check codes, factor graph
	Low-density parity-check codes, factor graph
	Low-density parity-check codes, factor graph
	Low-density parity-check codes, factor graph
	Turbo codes and low-density parity-check (LDPC)
codes
	LP relaxation on the factor graph [FKW '03]
	LP relaxation on the factor graph [FKW '03]
	LP relaxation on the factor graph [FKW '03]
	Unifying other understood pseudocodewords
	Success conditions: find zero-valued dual point
	Edge weights
	Edge weights
	Edge weights
	Weighting scheme: node sets $S $, $U $, $Udot $
	Weighting scheme: ``The matching'' M
	Weighting scheme: weight values
	Weighting scheme: weight values
	Weighting scheme: weight values
	Weighting scheme: weight values
	Expander codes
	LP Relaxation for general expander codes
	Edge weights for general expander codes
	Code construction
	Future Work #1
	Future Work #2
	Future Work #3-#8

