Linear Programming (LP) Decoding Corrects a Constant Fraction of Errors

Jon Feldman

Columbia University

Joint work with Tal Malkin, Cliff Stein, Rocco Servedio (Columbia);

Martin Wainwright (UC Berkeley)

Binary error-correcting codes

Transmitter with encoder

Receiver with decoder

Basic Coding Terminology

- A code is a subset $C \subseteq \{0,1\}^n$, where $|C| = 2^k$. If $y \in C$, then y is a codeword.
- \blacksquare Dimension = k = info bits in each codeword.
- Length = n = size of a codeword.
- Rate = k/n = info per transmitted code bit.
- (Minimum) distance $\Delta = \min_{y,y' \in C} \Delta(y,y')$. Relative (minimum) distance $\delta = \Delta/n$.
- Word error rate (WER) = probability of decoding failure = Pr_{noise} [transmitted $y \neq decoded y$]. Practical measure of performance.
- Goals: high rate, large distance, low WER, low (construction, encoding, decoding) complexity.

Correcting a constant fraction of error

- A code *family* is an infinite set of codes C_1, C_2, \ldots of increasing length $n_1 < n_2 < \ldots$
- One major goal of coding theory: construct a family of codes and a decoder, where:
 - ♦ The codes have constant rate r.
 - The decoder runs in time poly(n).
 - ♦ The decoder succeeds if $\leq \alpha n$ bits flipped, where α constant. (Note: \Longrightarrow WER $\leq 2^{-\Omega(n)}$.)
- Achieved by GMD [F], iterative bit-flipping [G, SS, BZ], list decoding [GI].
- This talk: LP decoding [FK '02] corrects a constant fraction of errors, using expanding LDPC codes.

- Codebit nodes 1 . . . n.
- Check nodes $1 \dots m$.
- Codewords: $y \in \{0,1\}^n$ where all check neighborhoods have even parity w.r.t. y.
- Rate $\geq 1 m/n$.
- Low density: constant degree.
- Codeword examples:
 - **•** 0000000

- Codebit nodes 1 . . . n.
- Check nodes 1...m.
- Codewords: $y \in \{0,1\}^n$ where all check neighborhoods have even parity w.r.t. y.
- Rate $\geq 1 m/n$.
- Low density: constant degree.
- Codeword examples:
 - ◆ 0000000, 1110000

- Codebit nodes 1 . . . n.
- Check nodes $1 \dots m$.
- Codewords: $y \in \{0,1\}^n$ where all check neighborhoods have even parity w.r.t. y.
- Rate $\geq 1 m/n$.
- Low density: constant degree.
- Codeword examples:
 - ◆ 0000000, 1110000, 0100110

- Codebit nodes 1...n.
- Check nodes $1 \dots m$.
- Codewords: $y \in \{0,1\}^n$ where all check neighborhoods have even parity w.r.t. y.
- Rate $\geq 1 m/n$.
- Low density: constant degree.
- Codeword examples:
 - 0000000, 1110000, 0100110, 0101001

Turbo codes and low-density parity-check (LDPC) codes

- Turbo codes [BGT '93], LDPC codes [Gal '62], with message-passing algs: lowest WER (in practice).
- Most successful theory: density evolution [RU, LMSS, RSU, BRU, CFDRU, ..., '99...present].
 - Non-constructive, assumes local tree structure.
- "Finite-Length" analysis:
 - ML decoding finds most likely codeword; sub-optimal decoding finds most likely pseudocodeword.
 - Combinatorially understood pseudocodewords:
 - Deviation sets [Wib '96, FKV '01],
 - Tail-biting trellises [FKKR '01],
 - Stopping sets (erasure channel) [DPRTU '02].

LP relaxation on the factor graph [FKW '03]

LP relaxation on the factor graph [FKW '03]

LP relaxation on the factor graph [FKW '03]

Unifying other understood pseudocodewords

Tail-biting trellis PCWs [FKMT '01]

Rate-1/2 RA code promenades [EH '03]

BEC stopping sets [DPRTU '02]

PCWs of graph covers [KV '03]

Success conditions: find zero-valued dual point

Assume 0^n is transmitted (polytope symmetry); assume unique LP optimum (no problem).

```
success \iff Point 0^n is LP optimum \iff \exists dual feasible point w/ value 0
```

- Take LP dual, set dual objective = 0: polytope \hat{P} . success \iff \hat{P} non-empty
- Main result:

Theorem: Suppose G (regular left-degree c) is an $(\alpha n, \delta c)$ -expander, where $\delta > 2/3 + 1/(3c)$. Then the LP decoder succeeds if $< \frac{3\delta-2}{2\delta-1}\alpha n$ bits are flipped by the channel.

New generalization to expander codes.

Edge weights

Polytope \hat{P} for LDPC code relaxation:

- Edge weights m_{ij} (free).
- For all code bits (left nodes) i,

$$\sum_{j \in N(i)} m_{ij} \le \gamma_i.$$

For all checks j, pairs $i, i' \in N(j)$,

$$m_{ij} + m_{i'j} \ge 0.$$

Edge weights

Polytope \hat{P} for LDPC code relaxation:

$$+1 \bigcirc \qquad \qquad \vdots$$

- Edge weights m_{ij} (free).
- For all code bits (left nodes) i,

$$\sum_{j \in N(i)} m_{ij} \le \gamma_i.$$

For all checks j, pairs $i, i' \in N(j)$,

$$m_{ij} + m_{i'j} \ge 0.$$

Edge weights

Polytope \hat{P} for LDPC code relaxation:

- Edge weights m_{ij} (free).
- For all code bits (left nodes) i,

$$\sum_{j \in N(i)} m_{ij} \le \gamma_i.$$

For all checks j, pairs $i, i' \in N(j)$,

$$m_{ij} + m_{i'j} \ge 0.$$

Weighting scheme: node sets S, U, U'

Weighting scheme: "The matching" M

- \blacksquare Find edge set M:
 - Nodes in S inc. to $\frac{3c}{4}$ M-edges.
 - Checks inc. to $\leq 1 M$ -edge.
- $(\alpha n, \delta)$ -expander: every set of size $\leq \alpha n$ expands by a factor of $\geq \delta$.
- $(\alpha n, \frac{3c}{4})$ -expander
 - \exists matching M for all S, $|S| \leq \alpha n$.

- For all checks j with incident red M-edge (i, j):
 - Set $m_{ij} = -x$;
 - Set all other incident edges $m_{i'j} = +x$.

• Set all other $m_{ij} = 0$.

■ Case 1: Node in *U*.

Node has $\frac{3}{4}c$ M-edges, each with weight -x, so

$$\sum m_{ij} \leq \frac{1}{4}cx - \frac{3}{4}cx$$

$$= -3/2$$

$$< -1.$$

• Case 2: Node in U'.

Node has $\frac{3}{4}c$ M-edges, each with weight 0, so

$$\sum m_{ij} \leq \frac{1}{4}cx$$

$$= 3/4$$

$$< +1.$$

• Case 3: Node in \overline{S} .

Node has $\frac{3}{4}c$ edges *not* incident to N(U). Each such edge has weight 0, so

$$\sum m_{ij} \leq \frac{1}{4}cx$$

$$= 3/4$$

$$< +1. \square$$

Expander codes

- General version of expander codes [SS, BZ]:
 - Each "check" node j has subcode C_j .
 - Overall codeword: setting of bits to left nodes s.t. each check nbhd N(j) is a codeword of C_j .
 - ♦ LDPC codes: special case where C_j = single parity check code.
- Ex: G is (3,6)-regular, C_j = {000000, 111000, 000111, 111111}.

LP Relaxation for general expander codes

Edge weights for general expander codes

Polytope \hat{P} for general expander codes:

- lacksquare Edge weights $m_{ij}.$
- For all code bits (left nodes) *i*,

$$\sum_{j \in N(i)} m_{ij} \le \gamma_i.$$

For all checks j, codewords $c \in C_j$,

$$\sum_{i \in \sup(c)} m_{ij} \ge 0$$

Code construction

- Let G be (2, d)-regular (edge-incidence graph of d-regular expander). Fix some $0 < \epsilon < 1$.
- Set d sufficiently large s.t. C_j lies on GV-bound
 - Code C_j has distance ϵ , rate $1 H(\epsilon)$.
 - Rate of overall code $\geq 1 2H(\epsilon)$.
- Weighting scheme: also benefits from expansion.
- Using Ramanujan graphs, Alon/Chung:

Theorem: The LP decoder succeeds if $<\frac{\epsilon^2}{4}n$ bits are flipped by the channel.

- Sipser/Spielman: it. decoding corrects $\epsilon^2/48$ errors.
- Barg/Zemor: diff. algorithm, corrects $\epsilon^2/4$ errors.

Future Work #1

Improve results for LDPC codes, explain difference in performance.

Future Work #2

Explain weird situation using LDPCCs on AWGN:

- AWGN channel: $y_i \in \{-1, +1\}$ transmitted, $y_i + \mathcal{N}(0, \sigma^2)$ received.
- Log-likelihood ratio: set γ_i = received value.
- Koetter/Vontobel [03]: Using LLRs γ_i , LP decoding has WER = $2^{-O(n^{1-\epsilon})}$ for some $\epsilon > 0$.
- But, if you *quantize* first (set $\gamma'_i = \text{sign}(\gamma_i)$), you get BSC, and using our result, get WER = $2^{-\Omega(n)}$.
- In other words, it is sometimes *good* to throw out information.
- Optimal decoders do not have this property; somehow this sub-optimal decoder does.

Future Work #3-#8

- Using more general codes, compete with best known results on rate vs. fraction corrected (Forney, Barg/Zemor, Guruswami/Indyk).
- Find more general weighting scheme → use more general graph-theoretic properties than expansion.
- Prove something better for turbo codes.
- Deepen connection to iterative algorithms (sum-product).
- Use non-linear optimization.
- Consider non-binary codes.