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Abstract

We consider the problem of using a multicast network code to transmit infor-
mation securely in the presence of a “wire-tap” adversary who can eavesdrop on
a bounded number of network edges. Cai & Yeung (ISIT, 2002) gave a method
to alter any given linear network code into a new code that is secure. However,
their construction is in general inefficient, and requires a very large field size; in
many cases this is much greater than the field size required by standard network
code construction algorithms to achieve the min-cut capacity (without a security
guarantee).

In this paper we generalize and simplify the method of Cai & Yeung, and
show that the problem of making a linear network code secure is equivalent to
the problem of finding a linear code with certain generalized distance properties.
We show that if we give up a small amount of overall capacity, then a random
code achieves these properties using a much smaller field size — in some cases a
field of constant size suffices — than the construction of Cai & Yeung. We add
further support to this approach by showing that if we are not willing to give up
any capacity, then a large field size may sometimes be required to achieve security.

1 Introduction

1.1 The Network Coding Model. An instance of the multicast linear network coding
problem consists of a directed acyclic graph G = (VG, EG), a source node sG, a set TG

of sink nodes, a message length n, and a field Fq of size q. The edges of G are used to
transmit information through the graph; each edge carries one element of Fq per time
step.

The goal in network coding is to design a scheme whereby an arbitrary message vector
m ∈ Fn

q , which originates at the source node sG, may be communicated over this network
so that each sink can recover the entire vector m. Such a scheme, which we refer to as a
solution to the network coding problem, is said to be feasible if two conditions are met:
(i) For each edge (u, v) the symbol transmitted over (u, v) is some function of the symbols
that are available at node u. If u is the source, the entire message vector m is available;
otherwise the symbols transmitted on edges (w, u) into node u are available. (ii) For each
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sink node in TG there must be some function which, if applied to the symbols received
at that node, yields the original message m.

In a linear network code, each of the functions described above is a linear function.
Thus a linear solution to the network coding problem is given by a list of vectors (v[e])e∈EG

describing which linear combination of the messages is transmitted on each edge (the
symbol v[e] · m is carried on edge e). Feasibility implies that for all edges (u, v), the
symbol v[u, v] ·m may be computed as a linear combination of the symbols v[w, u] ·m
carried on edges (w, u) into node u.

It is now well-known that given an instance of the multicast linear network coding
problem with q ≥ |TG|, a feasible solution exists if and only if the minimum cut between
the source and each sink is of size at least n [1, 13]; moreover, efficient algorithms are
known for constructing feasible solutions [9].

1.2 Security Against a Wire-Tap Adversary. In this paper, we consider the fol-
lowing problem: we are given an instance of the multicast linear network coding problem
as described above, and a feasible solution. Our task is to make this solution secure
against an eavesdropping adversary. Throughout the paper we assume a computation-
ally unbounded “wire-tap” adversary against the network code. This adversary has access
to the symbols which are transmitted over some unknown set of at most k edges of the
network. Additionally, the adversary has full knowledge of the network code itself and
of whatever protocol we use for security. We would like to transmit some information x
over the network in a way that is information-theoretically secure against this adversary;
roughly speaking, information-theoretically secure means that no matter which set of k
edges the adversary accesses, she should gain no information about the information x.
(We give a precise definition later.)

The study of secure network coding in general, and our model in particular, are well
motivated. We first note that by the results of [9], given an instance of the problem,
a feasible solution can be efficiently constructed. Thus, it is quite reasonable for us to
assume that a feasible solution is already given to us, and we just need to transform it
to a secure one. Network coding in general has the appealing advantage of being able
to increase the throughput of a given network, and has been suggested as a practical
tool for use in content distribution networks over the Internet, as well as ad-hoc wireless
networks [3]. Because of the insecure nature of such networks, it is important to consider
security issues in network coding. While there are many possible definitions of security,
we feel that our framework—in which no assumptions are made about which k edges
have been compromised and we strive for information-theoretic, i.e. perfect, security—is
a strong and natural one to study.

1.3 Related Work. Network coding was introduced by Ahlswede et al. [1], and has
since received a lot of attention (e.g., [11, 6, 12]). The problem of making a linear network
code secure was first studied by Cai & Yeung [2], who considered a “wire-tap” adversary.
We give more details of their work throughout the paper. Jain [10] also considers this
model, and gives more precise security conditions for the case of a single sink. Ho et
al. [7] consider the related problem of network coding in the presence of a Byzantine
attacker which can modify data sent from a node in the network.

Given a network code with message length n, and a wire-tap adversary that is capable
of looking at sets of at most k < n edges, Cai & Yeung [2] suggest using a linear
“secret-sharing” method to provide security in the network. Instead of sending n message
symbols, the user sends k random symbols and n − k message symbols. Additionally,



the code itself undergoes a certain linear transformation. Cai & Yeung give sufficient
conditions for this transformation to guarantee security. They also show that as long
as the field size q >

(|EG|
k

)
, a secure linear transformation exists.1 Unfortunately, this

lower bound is much greater than the q ≥ |TG| lower bound required for constructing
the code itself without a security guarantee [13]. Also, their construction of the linear
transformation takes at least

(|EG|
k

)
time steps. This complexity, as well as the required

lower bound on the field size q, is quite restrictive when k is large.

1.4 Our Results. Cai & Yeung achieve security by altering the code (using a linear
transformation) on each edge. We take a somewhat different approach: we only modify
the input, while leaving the code unchanged. Although it is easily shown that our method
is equivalent in power to that of Cai & Yeung, it has the advantage that the code itself
does not need modification to be used securely.

We adapt and simplify the proof of Cai & Yeung showing that certain independence
conditions are sufficient for the linear transformation to yield a secure code; in addition,
we show that these same conditions are also necessary.

We then prove that a secure linear transformation exists if and only if there is a
solution to a certain generalized (classical) code construction problem. With this new
coding-theoretic characterization, we are able to give a positive result based on methods
similar to proving the Gilbert-Varshamov bound (see [8]). We show that if one is willing
to give up a little bit of capacity—namely, sending (1 + ε)k random symbols and n −
(1+ ε)k message symbols—then a random linear transformation will be secure with high
probability, as long as (roughly) q ≥ Θ(|EG|1/ε). This is superior to the bound q ≥

(|EG|
k

)
in most cases, and allows a trade-off between capacity and field size. For very large
k = Θ(|EG|), our lower bound becomes q > 2Ω(1/ε), a constant independent of |EG|.

We also give a negative result, supporting the need to give up capacity in order to
achieve security with a small field size. Using a result [5] on the covering radius [4] which
linear codes can achieve, we show that if one insists upon sending n−k message symbols,
then there are cases where the field size must be almost as large as |EG|

√
k. (We give

more precise statements of both our positive and negative results later in the paper.)

2 Preliminaries

Throughout the paper all vectors v are row vectors unless otherwise indicated, and we
write vT to denote the corresponding column vector. If v is an n-dimensional row vector
and w is an m-dimensional row vector we write (v, w) to denote the (n+m)-dimensional
row vector obtained by concatenating v and w.

Given x ∈ FN
q , the ball of radius d around x is the set of all vectors in FN

q which differ
from x in at most d coordinates. We write Volq(d,N) to denote the number of vectors
in this ball.

2.1 Secure Linear Network Coding. As in Section 1, we assume that we have a
(not necessarily secure) network code which can be used to transmit a message m ∈ Fn

q .
Our goal is to transform the code into one allowing secure transmission of some input
information, in the presence of a wire-tapping adversary. To do this, we apply an initial
linear encoding E : Fn−`

q ×F`
q → Fn

q to the input information x ∈ Fn−`
q and some randomly

1Their lower bound is actually q > |A|, where A is the set of possible subsets of edges available to
the adversary. In our model we assume no knowledge of which set of k edges the adversary may have
infiltrated, so A consists of all sets of k edges and we have |A| =

(|EG|
k

)
.



chosen r ∈ F`
q; the vector m = E(x, r) is then transmitted as normal, using the original

(deterministic) network code. This approach (as opposed to changing the code itself) is
natural, and can be used in applications where the sender does not have control over the
network code, yet wants to achieve security.

By the feasibility of the network code, the entire message vector m = E(x, r) can be
recovered at the sinks, and so E(x, r) must uniquely define the information x. Formally,
we say E is sound if, for all x, x′ where x 6= x′, we have E(x, r) 6= E(x′, r′) for all r, r′.

The capacity of the network code is n− `, the dimension of the information vector x.
The security condition we impose (which is equivalent to the one given by Cai &

Yeung) is that for any set of at most k edges in the network, knowing the values sent
across those edges gives no information about the information word x. Formally, for any
P = {e1, . . . , ek′} ⊆ EG where |P | = k′ ≤ k, for any a = (a1, . . . , ak′) ∈ Fk′

q , and for any
x ∈ Fn−`

q , let

R(x, a) = {r ∈ F`
q : E(x, r) · v[ei] = ai for i = 1, . . . , k′}. (1)

That is, R(x, a) is the set of all possible vectors r such that when m = E(x, r) is sent,
the observed information on P is a.

The encoding E is secure if for all P, a as above, and for all x, x′ ∈ Fn−`
q , we have

|R(x, a)| = |R(x′, a)|. Note that the definition implies that when r is chosen uniformly
at random, whatever symbols (a1, . . . , ak′) the adversary sees on the edges she controls
gives no information about the transmitted x.

2.2 Connection to Secret Sharing. We note that the problem, as defined above, is
a generalization of the cryptographic concept of secret sharing. Indeed, in the degenerate
case of a network code consisting of two nodes, a source and a sink, with n parallel edges
between them, our problem becomes an instance of secret sharing: We need to find a way
to encode a secret into n “shares” so that no k of the shares give any information about
the secret, but getting all shares allows recovery of the secret. For general networks, we
have |EG| linear combinations of the n shares, and the requirement is that no subset
of at most k of these linear combinations gives any information about the secret, while
knowing all n shares (which are computable by the feasibility of the given code) allows
recovery of the secret.

3 Necessary and Sufficient Conditions for Secure Coding

In this section we describe a general family of linear encoders E(x, r), and show necessary
and sufficient independence conditions for such encoders to be secure. One direction
(sufficiency) of the proof in this section is implicit in work of Cai & Yeung [2]. We offer
a simpler presentation, a generalization to the case ` ≥ k, and a proof that the condition
given is also necessary.

Let x = (x1, . . . , xn−`) be an information vector, and r = (r1, . . . , r`) be a random
vector, where n > ` ≥ k. (Recall that k is the bound on the adversary). Let y = (x, r)
be the concatenation of the information and the random vectors. Our secure encoding
function is E(x, r) = yM−1, where M is an invertible n-by-n matrix. So, each edge of
the network carries the symbol (yM−1) · v[e], where v[e] is given by the network code.
Since M is invertible, we have that the encoding is sound.

The encoding is secure under the following conditions on M :



Theorem 1 For an invertible n-by-n matrix M , the encoding E(x, r) = (x, r)M−1 is
secure if and only if any set consisting of

(a) at most k linearly independent vectors from {v[e]}e∈EG
, and

(b) any number of vectors from the first n− ` columns of M

is linearly independent.

Proof: We first show that the encoding is secure if the independence condition is met.
Suppose the adversary has access to a set P of edges, where k′ = |P | ≤ k. Let V = V (P )
be a n-by-k′ matrix where the columns of V are the vectors {vT [e]}e∈P . We may assume
that V has rank k′, since otherwise the adversary could drop an edge and not lose any
information. When y is sent over the network, the adversary sees (yM−1vT [e]) for each
edge e ∈ P ; in other words, the adversary sees the length-k′ vector a = yM−1V .

Given an information vector x̂ ∈ Fn−`
q , the set R(x̂, a) (as defined in (1)) has one

member for every solution to the system of n− `+ k′ equations in n unknowns described
by ŷV ′ = (x̂, a), where ŷ ∈ Fn

q is unknown, and V ′ is the following n by (n − ` + k′)
coefficient matrix:

V ′ =

[
In−`

0

∣∣∣∣ M−1V

]
.

Now suppose that V ′ has full rank; then, for all (a, x̂) pairs on the right hand side, the
system of equations has exactly the same number of solutions. It follows that for all a, we
have R(x, a) = R(x′, a) for all distinct information vectors x, x′, and thus the encoding
is secure.

To prove that V ′ has full rank, we consider the matrix MV ′ (recall that M has full
rank by definition). This matrix MV ′ has its first n − ` columns matching the first
n − ` columns of M , and the last k columns are the matrix MM−1V = V . Thus, if
the conditions on M in the theorem hold, the matrix MV ′ has full rank for all possible
choices of V , and thus the encoding is secure.

For the other direction, suppose the independence condition is not met. This means
that there is some nontrivial linear combination of some l.i. set {v[e]}e∈P of at most
k edge vectors which equals some nontrivial linear combination of the first n − ` (l.i.)
columns of M . If we define V and V ′ in terms of P as above, then this is equivalent to
saying that MV ′ is not full rank, and thus V ′ is not full rank, since M is full rank by
assumption. We may conclude that V ′(z1, z2)

T = 0 for some z1 ∈ Fn−`
q , z2 ∈ Fk′

q . Also,
we know that z1 6= 0 and z2 6= 0 by looking at the structure of V ′ (using the fact that

In−`, V and M are all full rank). So, we have

[
In−`

0

]
zT
1 + M−1V zT

2 = 0.

Fix some information vector x ∈ Fn−`
q and random vector r ∈ F`

q. Let a = (x, r)M−1V
be the vector of observed symbols on the edges P . Since a is the result of a possible
choice of r, we have that R(x, a) > 0. Note that

a · z2 = (x, r)M−1V zT
2 = −(x, r)

[
In−`

0

]
zT
1 = −x · z1.

In fact, the relation a · z2 = −x · z1 holds for any pair of possible information vectors x
and observed vectors a which satisfy R(x, a) > 0.

Let x′ = x + ei where i is an index such that (z1)i 6= 0. Thus we have that x′ · z1 6=
x · z1 = −a · z2. We conclude that a is not a possible observed vector for x′, and thus
R(x′, a) = 0. We have demonstrated an a, x, x′ where R(x, a) 6= R(x′, a), so the encoding
is not secure.



3.1 The Existence of a Secure Matrix. We say that a matrix M which meets the
conditions of Theorem 1 is secure. Implicit in the work of Cai & Yeung [2] is a proof
that a secure matrix M exists with ` = k, as long as the field size q satisfies q >

(|EG|
k

)
.

However, the algorithm they give in their proof for finding such a matrix M takes at
least

(|EG|
k

)
time steps. Also, having an alphabet of this size may well be prohibitive for

certain networks.

4 Finding a Secure Linear Network Code is a Coding Problem

In this section we give our result showing that finding a secure matrix M meeting the
independence conditions of Theorem 1 is equivalent to finding a linear code with certain
generalized distance properties. Roughly speaking, the code we are looking for must
have all its codewords far away from any word in a linear subspace defined by the vectors
{v[e]}e∈EG

. In Sections 5 and 6 we will use this equivalence to establish upper and lower
bounds on the field size required for secure network coding.

4.1 Preliminaries. We henceforth write N for |EG|. Let Z be an n×N matrix whose
columns are the vectors {v[e]}e∈EG

in some fixed (arbitrary) order. By construction of
the network code, since there must be n linearly independent vectors v[e] in every source-
sink cut, the matrix Z must have rank n. Let A be an (N − n) × N generator matrix
for the null space of Z. (Equivalently, A is the parity-check matrix if Z is regarded as a
generator for a code.)

We will henceforth use the notation M to mean the first n−` columns of the invertible
square matrix “M” in Theorem 1. With this new notation, a matrix M is secure2 iff

MxT + ZwT 6= 0 for all x ∈ Fn−`
q , w ∈ FN

q s.t. x 6= 0, |w| ≤ k. (2)

We define a notion of “distance” between two matrices that is (roughly) the minimum
distance between two vectors in the span of their rows. More precisely, for an α×n matrix
P and a β × n matrix Q, we define

δ(P, Q) ≡ min
x∈Fα

q ,y∈Fβ
q ,y 6=0

∆(xP, yQ),

where ∆ is the Hamming distance. Note the slight asymmetry in the treatment of P and
Q, namely that x can be 0α but y cannot be 0β; this makes the minimum distance of the
code generated by Q an upper bound on δ(P, Q).

4.2 Main Theorem. Now we present our main theorem relating the above notion of
distance to the existence of a secure matrix M :

Theorem 2 Given the matrix A as defined above, there exists a secure n×(n−`) matrix
M if and only if there exists an (n− `)×N matrix B with δ(A, B) > k.

Proof: Suppose there is some n − ` × N matrix B with δ(A, B) > k. Let M = ZBT .
Note that B must have rank n− `, since otherwise it could not have δ(A, B) > 0.

Because δ(A, B) > k, and A generates the null space of Z, we have that ∆(yT , BT xT ) >
k for all x ∈ Fn−`

q , x 6= 0 and y : ZyT = 0. Therefore, Z(BT xT +wT ) 6= 0 for all x ∈ Fn−`
q ,

2Since the security of “M” (as in Theorem 1) depends only on its first n− ` columns, we may extend
a matrix M from (2) to be square and invertible using an arbitrary extension of M to a basis, as in [2].



x 6= 0 and w ∈ FN
q where |w| ≤ k. This implies ZBT xT + ZwT = MxT + ZwT 6= 0 for

all such x, w, which are exactly the security conditions in (2).
For the other direction, if we suppose there is a secure M , we construct B as follows.

For each column Mi of M , let the ith column of BT be an arbitrary member of the coset
{y ∈ FN

q : Zy = Mi}. Note that we again have M = ZBT .
Since M is secure, we have Mx + Zw 6= 0 for all x 6= 0, |w| ≤ k (from (2)), and

so Z(BT x + w) 6= 0 for all such x, w. Thus for all y : Zy = 0, and x 6= 0, we have
∆(BT x, y) > k. This implies δ(A, B) > k.

Thus the question of whether there exists a secure M is equivalent to the question of
whether there exists a matrix B with good distance from A, the generator for the null
space of Z.

4.3 A Generalized Coding Problem. Having proved Theorem 2, our interest is now
in the following problem:

Span Distance Problem: Given an α-by-N matrix A with rank α,
whose entries belong to Fq, find a β-by-N matrix B over Fq such that
δ(A, B) > k.

We can regard this question as a generalization of the classical code construction
problem: if {xB}x∈Fβ

q
is regarded as a code, then every non-zero codeword must have

good distance not only from the all-zeros codeword, but also from every other word
generated by A.

In the following sections, we consider the Span Distance Problem abstractly. When
we apply this problem to Theorem 2, we have α = N − n and β = n− `. Setting ε such
that ` = (1 + ε)k, we are now interested in the case of the span distance problem where
k = N−α−β

1+ε
. The parameter ε represents the amount of capacity we are willing to give

up in order to reduce the field size necessary to achieve security.

5 A Positive Result: giving up capacity to save on field size

The main theorem in this section is the following:

Theorem 3 Let A be an arbitrary α-by-N matrix with rank α over Fq, and let B be
a random β-by-N matrix over Fq. Let k, ε be such that k = N−α−β

1+ε
. Then we have

δ(A, B) > k with probability at least 1− PBAD, where

PBAD = q−(1+ε)kVolq(k,N). (3)

Proof: The argument follows along the same lines as the classical argument that random
linear codes meet the Gilbert-Varshamov bound. Let BAD be the set of words in FN

q

with distance at most k from some linear combination of the rows of A. Using the
bound |BAD| ≤ qαVolq(k,N), we have that for a particular x1 ∈ Fβ

q , the probability

(over choices of B) that x1B ∈ BAD is at most qαVolq(k,N)

qN . Applying a union bound

over x1 ∈ Fβ
q , we have the probability of some x1B being in BAD is at most PBAD ≤

qα+β−NVolq(k, N) = q−(1+ε)kVolq(k,N).



5.1 Applying Theorem 3. Here we show that Theorem 3 allows us to use fields of
quite modest size and still achieve a good probability bound in (3). We have

Volq(k,N) =
k∑

i=0

(q − 1)i

(
N

i

)
. (4)

We consider two different ranges of values for k (these are k = o(N) and k = Θ(N)) and
use different upper bounds on Volq(k,N) in these two cases. We use the following facts
in the bounds.

Fact 4 [8] For any q ≥ 2, if 0 < k < (1− 1/q)N , then

(a) the largest term in the sum (4) is the i = k term,

(b) log Volq(k,N)

log q
= (Hq(k/N)± o(1))N, where

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ). (5)

We first consider the case k = o(N). In this case, from Fact 4(a), it follows that
Volq(k, N) ≤ (k +1)qkNk, and so (3) implies that the probability 1−PBAD is positive as
long as q > (k + 1)1/(εk) ·N1/ε. To obtain a high probability result such as PBAD < N−c

for some constant c > 0, it suffices to take q > (k + 1)1/(εk) · N (1+c/k)/ε. These lower
bounds on q are easily seen to be much less restrictive than the q >

(
N
k

)
lower bound of

Cai & Yeung, at the cost of only a small loss in capacity (number of information symbols
we can transmit). As one example, if we take ε = 1 then we achieve capacity n− 2k (as
opposed to Cai & Yeung’s n− k), but we require only that the field size q be (roughly)
at least N1+c/k which is close to N for moderate k and small constant c. (Of course, even
smaller lower bounds on q can be achieved by taking ε > 1.) Thus, if k satisfies both
k = ω(1) and k = o(N), we lose only a (1 − o(1)) factor in capacity while obtaining a
superpolynomial savings in field size.

We now consider the case k = Θ(N), and show that here we can achieve even more
dramatic savings in field size. Taking k = δN where δ = Θ(1) is some constant and
plugging Fact 4(b) into (3), we have that PBAD ≤ q−(1+ε)δNqN(Hq(δ)+o(1)). It is easy to see
from (5) that Hq(δ) < δ + 1

log q
, and thus (5) implies that PBAD < q(−δε/2+o(1))N provided

that δε/2 > 1/ log q, i.e. q > 22/(δε). Since δ is a fixed constant independent of N, the
field size lower bound is 2Ω(1/ε) which is independent of N . (We remind the reader that
in order to construct a multicast linear network code efficiently [9], it must be the case
that q > |TG|.)

6 A Negative Result: communicating securely at capacity can
require large field size

The main result in this section is the following theorem:

Theorem 5 Let α = N − log N
log q

− log Volq(k,N)

log q
+ 2 log N + log q + log ln q. If α, β satisfy

k + β < N − α =
log N

log q
+

log Volq(k, N)

log q
− 2 log N − log q − log ln q (6)

then there is an α ×N matrix A over Fq such that there is no β ×N matrix B over Fq

for which δ(A, B) > k.



In words, this theorem says that for certain values of α and β, if q is too small then
there exists an α ×N matrix A over Fq for which the span distance problem cannot be
solved if we take k = N − α− β. Since k = N − α− β corresponds to taking ε = 0, this
means that if we do not give up some capacity then there need not exist a secure matrix
M unless the field size q is quite large.

6.1 Using a Code with Good Covering Radius. To establish Theorem 5, we need
to find a full-rank α-by-N matrix A which is such that for all full-rank β-by-N matrices
B, there is a point x1B, x1 6= 0 and a point x2A where ∆(x1B, x2A) ≤ k = N − α− β.

For the case β = 1, this is exactly a question of constructing a code A with small
covering radius. The covering radius [4] of a code is the minimum value d such that the
union of the spheres of radius d around the points in the code cover the entire space
Fn

q . Suppose A had covering radius of at most N − α − β. Then, no matter what B is
(B is a single vector, since β = 1), it has distance at most N − α − β to some point
x2A. Now suppose A has covering radius d > N − α − β. Then there is some vector B
where ∆(B, x2A) > N −α−β for all x2. Furthermore, any scalar multiple of B will also
have distance at least d from any x2A (to see this, note that if ∆(aB, x2A) < d, then
∆((1/a)aB, (1/a)(x2A)) < d, and so ∆(B, ((1/a)x2)A) < d, a contradiction).

Thus for β = 1, a construction of A with covering radius of at most N − α − β is
necessary and sufficient for a negative result. Additionally, for β > 1, showing that there
exists an α × N matrix A with covering radius at most N − α − β is sufficient for a
negative result.

Cohen and Frankl [5] gave upper bounds on the covering radius of linear codes over
Fq. Their analysis can be used to obtain the following result:3

Theorem 6 For any value 1 ≤ d ≤ N, there is a D-dimensional linear code over Fq

with block length N (i.e. a vector subspace of FN
q ) which has covering radius at most d,

where

D ≡ N − log N

log q
− log Volq(d,N)

log q
+ 2 log N + log q + log ln q.

Combining Theorem 6 with the discussion at the beginning of this section gives The-
orem 5.

6.2 Applying Theorem 5. We give one example here of how Theorem 5 can be
applied. Other interesting examples are possible, but we omit them for space reasons.

Let τ be any constant satisfying 0 < τ < 1/2. Let c = N τ , let k = σc2 log N (we
will specify σ shortly) and let q = N c. By Fact 4(a), we can get a fairly good lower
bound on Volq(k,N) just by considering the last term of the sum. We have Volq(k,N) ≥
(q−1)k

(
N
k

)
≥ (q/2)k

(
N
k

)k
. We thus have that log Volq(k,N)

log q
≥ k+ −1+k log N−k log k

log q
. Plugging

the above parameter settings for k and q into Equation (6) (but not substituting in yet
for c), we have that Equation (6) is satisfied if

σc2 log N + β <
1

c
+ σc2 log N +

−1 + σc2 log2 N − σc2 log N log(σc2 log N)

c log N

−2 log N − c log N − log(c ln N).

3The expression for D in Theorem 6 is slightly different from the result as stated in [5]. Their analysis
implicitly assumes that the field size q is independent of N ; however this assumption need not hold for
us. We give a complete derivation of Theorem 6 in the full version of the paper.



This inequality is equivalent to

β <
1

c
− 1

c log N
+ σc log N − σc log(σc2 log N)− (c + 2) log N − log(c ln N).

Now since c = N τ , it can be verified that taking σ = 2
1−2τ

(a fixed constant since
0 < τ < 1/2 is a fixed constant) makes the right-hand side of this last inequality at least
(c − 3) log N (for sufficiently large N), so β can be any value smaller than this bound.
This example shows that for a wide range of values of k the lower bound on field size
required for this method of secure multicast linear network coding, if no capacity is given
up, can be as large as NΩ(

√
k/ log k). It is interesting to contrast this lower bound with the

upper bound of
(

N
k

)
of Cai & Yeung.

7 Future Work

Several interesting directions for future research suggest themselves. Can quantitative
improvements on our results for secure network coding be achieved, perhaps by studying
nonlinear network coding schemes? Can network codes for information transmission
problems other than multicast be made secure using our techniques? Another natural
direction is to consider secure network coding in a framework where only statistical
security or security against computationally bounded adversaries is required, as opposed
to the information-theoretic security criterion we studied.
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