
Compiling IOA without Global Synchronization

Joshua A. Tauber, Nancy A. Lynch, Michael J. Tsai
MIT Computer Science and Artificial Intelligence Laboratory

{josh,lynch,mjt}@csail.mit.edu

Abstract

This paper presents a strategy for compiling distributed
systems specified in IOA, a formal language for describ-
ing such systems as I/O automata, into Java programs run-
ning on a group of networked workstations. The translation
works node-by-node, translating IOA programs into Java
classes that communicate using the Message Passing Inter-
face. The resulting system runs without any global synchro-
nization. We prove that, subject to certain restrictions on the
program to be compiled, assumptions on the correctness of
hand-coded datatype implementations, and basic assump-
tions about the behavior of the network, the compilation
method preserves safety properties of the IOA program in
the generated Java code. We model the generated Java code
itself as a threaded, low-level I/O automaton and use a re-
finement mapping to show that the external behavior of the
system is preserved by the translation. The IOA compiler is
part of the IOA toolkit which supports algorithm design, de-
velopment, testing, and formal verification using automated
tools.

1. Introduction

Reasoning about and building distributed systems is no-
toriously difficult. I/O automata provide a simple mathe-
matical basis for formally modeling and understanding dis-
tributed systems [23, 24]. Complex systems are decom-
posed into simpler interacting components whose structure
can be understood using levels of abstraction and, orthogo-
nally, parallel composition. Using a rich set of proof tech-
niques, I/O automata have been used to verify a wide va-
riety of distributed systems and algorithms and to express
and prove several impossibility results. IOA is a formal lan-
guage for describing I/O automata. The IOA toolkit is an in-
tegrated software development environment for distributed
systems that supports algorithm design, development, test-
ing, and formal verification using automated tools. The
toolkit connects I/O automata with both lightweight (syn-

tax checkers, simulators, model checkers [9, 4, 27, 6, 32,
31, 28]) and heavyweight (theorem provers) tools [18, 2].

This paper presents a strategy for compiling distributed
systems specified in IOA into Java programs running on
a group of networked workstations. The IOA toolkit and
compiler enables programmers to write their specifications
at a high level of abstraction, validate the specification us-
ing other tools in the IOA toolkit, refine the specification
to a low-level design, and then automatically translate the
design into code that runs on a collection of workstations
communicating via standard networking protocols. A ma-
jor contribution of this work is that the compiler overcomes
the existing disconnect between correctness claims for for-
mal specifications and the actual system implementation.

The translation works node-by-node, translating IOA
programs into Java classes that communicate using the Mes-
sage Passing Interface (MPI) [17, 12]. In order to use the
compiler, IOA programmers structure the specification to
be compiled as a collection of nodes communicating via re-
liable, FIFO, one-way channels. The program for each node
(or a parameterized set of nodes) is submitted individually
to the IOA compiler. The resulting collection of Java pro-
grams (one for each node) runs without any global synchro-
nization. Each node program runs in its own Java Virtual
Machine (JVM) on the designated host. Compilation adds
little communication overhead (e.g., low-level acknowledg-
ments added by MPI). The compilation process imposes no
global synchronization overhead.

We claim that under certain conditions the compilation
method preserves the safety properties of the IOA program
in the generated Java code. This result is based on the as-
sumptions that our model of network behavior is accurate,
and that our hand-coded datatype library correctly imple-
ments its semantic specification. Moreover, we require that
the system is designed so that its safety properties hold even
when inputs to any node in the system are delayed. Our cur-
rent model of network behavior does not allow for failures.
To prove this claim, we model the generated Java code it-
self as a threaded, low-level I/O automaton and use a refine-
ment mapping to show that the external behavior of the sys-
tem is preserved by the translation.

2. IOA Language and Toolkit

2.1. Input/Output Automata

An I/O automatonis a labeled state transition system.
It consists of a (possibly infinite) set ofstates(including
a nonempty subset ofstart states); a set ofactions(classi-
fied asinput, output, or internal); and atransition relation,
consisting of a set of (state, action, state) triples (transitions
specifying the effects of the automaton’s actions).1 An ac-
tion π is enabledin states if there is some triple(s, π, s′) in
the transition relation of the automaton. Input actions are re-
quired to be enabled in all states.

2.1.1. Execution of I/O Automata The operation of an
I/O automaton is described by itsexecutions, which are al-
ternating sequences of states and actions. The externally
visible behavior occurring in executions constitutes its
traces(sequences of input and output actions). The idea is
that actions describe atomic steps. While two (or many) ac-
tions may be enabled in a given state, the automaton
performs only one transition at a time. If a second ac-
tion remains enabled in the state of the automaton after a
transition, it may then occur. Thus, even though both ac-
tions were simultaneous enabled, one will be ordered
before the other in any single execution of the automa-
ton.

I/O automata admit aparallel compositionoperator,
which allows an output action of one automaton to be per-
formed together with input actions in other automata; this
operator respects the trace semantics. The result of apply-
ing the composition operator to a collection of compati-
ble automata is a new automaton semantically equivalent
to the original collection. The execution of a composi-
tion of interacting automata is also described with a global
sequence of actions. That is, the execution of the compo-
sition of a collection of automata is asingle alternating
sequence of states and actions. Thus, the execution of a con-
current system is described sequentially. Furthermore, even
though theenablingof an action is determined only by ex-
amining the state of its automaton and even though the
effectof that action is localized to the state of that single au-
tomaton, theschedulingof the action is performed globally
over the whole collection.

The I/O automaton model is inherently nondeterminis-
tic. In any given state of an automaton (or collection of au-
tomata), one, none, or many (possible infinitely many) ac-
tions may be enabled. As a result, there may be many valid
executions of an automaton. A succinct explanation of the
model appears in Chapter 8 of [22].

1 We omit discussion oftasks, which are sets of non-input actions.

2.2. IOA Language

TheIOA language[16] is a formal language for describ-
ing I/O automata and their properties. IOA serves as both a
formal specification language and a programming language.
I/O automata described in IOA may be considered either
specifications or programs. In either case, IOA yields pre-
cise, direct descriptions. States are represented by the values
of variables rather than just by members of an unstructured
set. IOA transitions are described in precondition-effect (or
guarded-command) style, rather than as state-action-state
triples. The precondition is a predicate on the state of the au-
tomaton and the parameters of the transition that must hold
whenever the transition executes. The effects clause speci-
fies the result of executing the transition.

Since the language is intended to serve both as a spec-
ification and programming language, it supports both ax-
iomatic and operational descriptions of programming con-
structs. Thus state changes can be described through imper-
ative programming constructs like variable assignments and
simple, bounded loops or by declarative predicate assertions
restricting the relation of the post-state to the pre-state.

The language also directly reflects the nondeterministic
nature of the I/O automaton model. Rather than add a few
constructs for concurrency and interaction onto a basically
sequential language, IOA is concurrent from the ground up.
One or many transitions may be enabled at any time. How-
ever, only one is executed at a time. The selection of which
enabled action to execute is a source ofimplicit nondeter-
minism. Thechooseoperator providesexplicit nondetermin-
ism in selecting values from (possibly infinite) sets. These
two types of nondeterminism are derived directly from the
underlying model. The first reflects the fact that many ac-
tions may be enabled in any state. The second reflects the
fact that a state-action pair(s, π) may not uniquely deter-
mine the following states′ in a transition relation.

2.3. Example: LCR Leader Election

We illustrate IOA by describing the LeLann-Chang-
Roberts (LCR) leader election algorithm as a composi-
tion of process and channel automata. In LCR, a finite set
of processes arranged in a ring elect a leader by commu-
nicating asynchronously. Each process sends its name to
its right neighbor. When a process receives a name greater
than its own, the process transmits the received name
to the right; other names are discarded. If a process re-
ceives its own name, it declares itself the leader [21, 3].

Figure 1 shows aChannel automaton describing com-
munication channels through which processes can send
messages. This automaton represents a reliable communi-
cation channel, which neither loses nor reorders messages
in transit. The automaton is parameterized by two indices,

automaton Channel(i, j: Int)
s i g n a t u r e

input send(m: Int, cons t i, cons t j)
output receive(m: Int, cons t i, cons t j)

s t a t e s
buffer: Seq[Int] : = {}

t r a n s i t i o n s
input send(m, i, j)

e f f buffer : = buffer ` m
output receive(m, i, j)

pre buffer 6= {} ∧ m = head(buffer)
e f f buffer : = tail(buffer)

Figure 1: Reliable FIFOChannel automaton

i andj , for the processes that communicate by the channel.
Its signature consists of input actions,send(m, i, j) ,
and output actions,receive(m, i, j) , one for each mes-
sagem. The keywordconst in the signature indicates that
i and j are terms (not variables) whose values are fixed
by the values of the automaton’s parameters. The state of
the automatonChannel consists of abuffer , which is a
sequence of messages initialized to the empty sequence.
The operators on sequences used are:{} (the empty se-
quence),` (append),head (the first element of the se-
quence), andtail (the rest of the sequence). The input ac-
tion send(m, i, j) appendsmto buffer . The output ac-
tion receive(m, i, j) is enabled whenbuffer is not
empty and has the messagemat its head. The effect of this
action is to remove the head element frombuffer .

Figure 2 describes an LCR process, which is parameter-
ized by an indexi , the number of participating processes,
and thename of the process. The automatonProcess

has two state variables:pending is a multiset of integers
and status has the enumeration typeStatus . Initially,
pending contains the name of the process, andstatus is
idle . The input actionvote setsstatus to indicate that
an election has begun. The input actionreceive may re-
sult in three different transitions depending on how the mes-
sagemreceived from theProcess automaton to the left of
automatoni compares with the its ownname. These tran-
sitions are described in three separate transition definitions.
The value of the first parameter ofreceive is constrained
by whereclauses in the first two transition definitions and is
fixed in the third. The parameterj in each of these transition
definitions is constrained to equali −1 mod ringSize by
the action signature. The automaton has two kinds of output
actions:send , which sends a message inpending to the
Process automaton to the right, andleader(i) , which
announces successful election.

A full LCR leader election algorithm is described in Fig-
ure 3 as a composition of a set of ten process automata con-
nected in a ring by reliable communication channels. The

type Status = enumerat ion o f idle, voting,
elected, announced

automaton Process(i, ringSize, name: Int)
s i g n a t u r e

input vote
i npu t receive(m: Int,

cons t mod(i-1, ringSize),
cons t i)

output send(m: Int, cons t i,
cons t mod(i+1, ringSize))
where m ≥ i,

leader(cons t i)
s t a t e s

pending: MSet[Int] : = {name},
status: Status : = idle

t r a n s i t i o n s
input vote

e f f status : = voting
i npu t receive(m, j, i) where m > name

e f f pending : = insert(m, pending)
i npu t receive(m, j, i) where m < name
i npu t receive(i, j, name)

e f f status : = elected
output send(m, i, j)

pre status 6= idle ∧ m ∈ pending
e f f pending : = delete(m, pending)

output leader(i)
pre status = elected
e f f status : = announced

Figure 2: Node automatonProcess

automaton LCR
components

P[i: Int]: Process(i, 10)
where 0 ≤ i ∧ i < 10;

C[i: Int]: Channel(i, mod(i+1, 10))
where 0 ≤ i ∧ i < 10

Figure 3:LCRsystem automaton using FIFO channels

keyword components introduces a list of named compo-
nents: oneProcess automaton,P[i] , and oneChannel

automaton,C[i] for each value ofi as constrained by the
where predicate. The componentC[i] is obtained by in-
stantiating the parametersi and j with the valuesi and
i + 1 mod 10, so that channelC[i] connects process
P[i] to its right neighbor. The output actionssend(m, i,

mod(i+1,ringSize)) of P[i] are identified with the in-
put actions send(m, i, mod(i+1, ringSize))

of C[i] , and the input actionsreceive(m, i,

mod(i+1, ringSize)) of P[i] are identified with
the output actionsreceive(m, mod(i-1,ringSize),i)

of C[mod(i-1,ringSize)] .

2.4. IOA Toolkit

In addition to verification tools, the IOA toolkit includes
a compiler that translates a restricted subset of IOA pro-
grams into Java. In systems without such a compiler, ac-
tually building a distributed system remains outside the
model. A human has to translate the designers’ require-
ments (now formally described) into a standard imperative
programming language. In essence, the system builder must
start over and recode the whole project. As a result, there is
a disconnect between the properties of the specification and
those of the actual running code. One goal in designing the
IOA language and toolkit is to eliminate this gap in existing
formal methods. This rest of this paper describes the design
of the IOA compiler and argues that the compiler bridges
the gap between specifications with formal proofs of cor-
rectness and running code by preserving the safety proper-
ties of IOA specifications in the generated Java code.

3. Structuring the Design

According to the semantics of IOA, the individual ac-
tions of the algorithm, are atomic and execute sequentially.
In the running system, each IOA atomic action is expanded
into a series of smaller steps corresponding to Java opera-
tions. The steps corresponding to different atomic actions
may execute in an interleaved fashion, or concurrently. The
IOA compiler must ensure that the effect as seen by exter-
nal users of the algorithm is “as if” the high-level actions
happened atomically.

One approach to preserving the externally visible behav-
ior of the system is to ensure atomicity by synchronizing
among processes running on different machines, thus reduc-
ing the possible sources of concurrency. This approach was
taken, for example, by Cheiner and Shvartsman [5]. Such
global synchronization is expensive. Before an automaton
at one node can execute an external action, it must coordi-
nate with the automata at one or more other nodes, requiring
extra messages and blocking the execution of the automa-
ton until synchronization is complete.

A major challenge in our work is to achieve the ap-
pearance of globally-atomic IOA stepswithout any syn-
chronization between processes running on different ma-
chines. The target environment for the IOA compiler are
networked workstations. Each host runs a Java interpreter
connected to a console and communicates with other hosts
via MPI. We are able to preserve the externally visible be-
havior of the system without synchronization overhead be-
cause we require the programmer to explicitly model the
various sources of concurrency in the system: the multiple
machines in the system, the communication channels, and
the console interface to the environment.

Automaton
Algorithm

RecvMediatorMPISendMediator

Outgoing FIFO Channel

Figure 4: Auxiliary automata mediate between MPI and al-
gorithm automata to yield a reliable, FIFO channel.

3.1. Imperative IOA programs

As mentioned in Section 2.2, IOA supports both oper-
ational and axiomatic descriptions of programming con-
structs. The prototype IOA compiler translates only impera-
tive IOA constructs. Therefore, transition effects cannot in-
cludeensuring clauses which relate pre-states to post-states
declaratively. Throughout the program, predicates must be
quantifier free. Loops must have the restrict form that ex-
plicitly specifies the set of values over which to iterate.

Later versions of the compiler may support annotations
of the IOA program to provide witnesses for certain classes
of existentially quantified predicates and iterators for cer-
tain finite types of loop or universally quantified variables.
(These annotations would be extension to the NDR lan-
guage discussed in Section 4.)

3.2. Node-Channel Form

Systems submitted to the IOA compiler must be de-
scribed innode-channelform. Specifically, a compilable
IOA program consists of a collection ofN algorithm au-
tomataconnected by up toN2 channels. Each algorithm au-
tomaton describes the computation performed at one node
in the system. As in the LCR example, distinct instances of
the same algorithm automaton may run at different nodes.

3.2.1. Abstract ChannelsWhile code generated by the
IOA compiler must interface with MPI, the intricacies of
using MPI are somewhat distracting to the distributed sys-
tem designer. So, for convenience, we specify a simplerab-
stract channelinterface that allows programmers to design
their systems assuming the existence of reliable, one-way
FIFO channels like those specified in Figure 1.

However, the compiled code must still interface with
MPI. Therefore, we define auxiliary IOA automata to me-
diate between MPI and the algorithm automaton. The
recvMediator automaton mediates between the al-
gorithm automaton and an incoming channel, while
sendMediator handles messages to outgoing chan-
nels. Each of theN node programs connects to up to2N
mediator automata (one for each of its channels). Fig-
ure 4 depicts how a mediator automaton is composed with
MPI to create an abstract channel.

SendMediator MPI

RecvMediator MPIRecvMediator MPI

SendMediator MPI

Algorithm
Automaton

Automaton
Buffer

Node Automaton

C
on

so
le

Figure 5: Node automata are submitted to the IOA compiler.

3.3. Console Interface

We divide the input actions of an algorithm automaton
into two categories.Network inputsare the actions associ-
ated with thereceive input transition which connects with
incoming channels.Console inputsare all the other input
actions.

While, the I/O automaton model requires that input ac-
tions are always enabled, we require that the safety proper-
ties of an IOA system submitted for compilation hold even
when console inputs to any node in the system are delayed
because console inputs to Java programs might not be han-
dled immediately. Furthermore, if inputs arrive too quickly
at the console, the console buffer may overflow and inputs
may be lost.

Specifically, the programmer must write IOA programs
so that the algorithm is correct even when each node au-
tomaton is composed with a buffer automaton. Each buffer
automaton interface mimics the console input actions of its
corresponding algorithm automaton. The buffer automaton
has an input action, an internal action, and an output ac-
tion corresponding to each console input action of the algo-
rithm automaton. The effect of the buffer input action is to
place a representation of the algorithm input action invoca-
tion in a finite console buffer. The internal action is enabled
when such an invocation is in the console buffer and has the
effect of moving it from the console buffer to an unbounded
internal delay queue. The corresponding buffer output ac-
tion is enabled when the delay queue is not empty and has
the effect of removing the invocation from the delay queue.

The console input action of theLCR automaton is
the unparameterized actionvote . So the buffer automa-
ton LCRBuffer has three actions in its signature and two
queues in its state. The input actionvote adds an ac-
tion to the first queue. The internal action moves the
invocation from the first queue to the second. The out-
put action removes an action from the second queue. The
code forLCRBuffer is not shown.

3.4. Composition

The completed design is called thecomposite node au-
tomatonand is described as the composition of the algo-

rithm automaton with its associated mediator and buffer au-
tomata (see Figure 5). Acomposertool [30] expands this
composition into a new, equivalent IOA program in primi-
tive form (i.e., without anycomponentsstatements). The re-
sulting node automatondescribes all computation local to
one machine. The node automaton (annotated as described
below) is the actual input program to the IOA compiler. The
compiler translates each node automaton into its own Java
program suitable to run on the target host.

automaton LCRNode(i, name:Int)
components

P: Process(i, 10, name);
RM[j:Int]: recvMediator(i,j)

where 0 ≤ j ∧ j < 10;
SM[j:Int]: sendMediator(i,j)

where 0 ≤ j ∧ j < 10;
B: LCRBuffer;

Figure 6: IOA specification for one node of anLCRsystem

The automatonLCRNode (Figure 6) is the composition
of one instance of theProcess automaton with one in-
stance of theLCRBuffer automaton and ten instances each
of the recvMediator and sendMediator interface au-
tomata. The resulting composite node is parameterized by
its name and index. The primitive form of theLCRNodeau-
tomaton output by the composer tool (the node automaton
for the LCR system) is not shown.

4. Resolving Nondeterminism

Before we can compile an IOA specification of a dis-
tributed system, we must resolve both the implicit nondeter-
minism inherent in any IOA program and any explicit non-
determinism introduced by the programmer inchoosestate-
ments. Our approach to resolving both kinds of nondeter-
minism is the same: we let the programmer do it.

4.1. Scheduling

Picking a transition to execute includes picking a transi-
tion definition and the values of its parameters. It is possible
and, in fact, common that the set of enabled actions in any
state is infinite. Furthermore, transition preconditions may
be arbitrary predicates in first-order logic. Thus, determin-
ing, for a given state of an automaton, whether there exists a
set of parameters for some transition definition that will en-
able it in that state is undecidable.

One might imagine that restricting the class of automata
accepted for compilation would admit a brute force search-
based solution to the scheduling problem. However, it is not

obvious how to formulate such restrictions without radically
restricting the expressive power of the language. Also, the
human-based scheduling solution has the additional advan-
tage of relieving the compiler designer of the burden of find-
ing a good schedule,i.e., one that makes actual progress
rather than merely executing any enabled action.

Therefore, we require the programmer to write a sched-
ule. A schedule is a function of the state of the local node
that picks the next action to execute at that node. In for-
mat, a schedule is written at the IOA level in anondeter-
minism resolution language(NDR) consisting of impera-
tive programming constructs like those used in IOA effects
clauses [27, 31]. Thefire statement schedules a transition
to run and selects the values of its parameters. Schedules
may reference, but not modify, automaton state variables.

Conceptually, adding an NDR schedule to an IOA pro-
gram changes it in three ways. The NDR schedule adds
new variables, modifies each transition to use the new vari-
ables, and provides a computablenext-actionfunction of
the augmented state. The new state variables consist of a
program counter (PC) and whatever variables the program-
mer uses in the NDR schedule program. Each locally con-
trolled action is modified in two ways. First, the precondi-
tion is strengthened so that the action is enabled only if the
PC names the action. Second, at the end of the effects the
PC is assigned the next action as computed by applying the
next-action function to the automaton state [13].

4.2. Choosing

The choosestatement introduces explicit nondetermin-
ism in IOA. When achoosestatement is executed, an IOA
program selects an arbitrary value from a specified et. For
example, the statement

num := choose n:Int where 0 ≤ n ∧ n < 3

assigns either 0, 1, or 2 tonum. As with finding parame-
terized transitions to schedule, finding values to satisfy the
where predicates ofchoosestatements is hard. So, again, we
require the IOA programmer to resolve the nondeterminism.
In this case, the programmer annotates thechoosestatement
with an NDR determinator block. The yield statement
specifies the value to resolve a nondeterministic choice. De-
terminator blocks may reference, but not modify, automaton
state variables.

5. Translating IOA into Java

The IOA compiler is applied to each node automaton
individually to produce a single Java class named for the
source node automaton. The generated class subclasses
a generic automaton class. Standard libraries include this
generic class, support for console interactions, MPI initial-
ization, and standard IOA datatypes. At run time, the node

automaton subclass must be linked with those standard li-
braries, an MPI library, and any additional implementation
classes for special datatypes. The automaton class is orga-
nized around a main loop derived from the NDR schedule
annotation to the IOA program. A second thread processes
input actions, placing them in a buffer as they arrive.

5.1. Translating State

Each state variable of the IOA program is translated into
a member variable of the generated Java automaton class.
These state variables are initialized to the initial values of
the IOA program. If the state variable is initialized with
a choose, a corresponding determinator block is translated.
The classes implementing the types of these variables must
be included in a datatype library.

5.2. Translating Datatypes

IOA has been designed to work closely with the Larch
Shared Language (LSL) [10]. All datatypes used in IOA
programs are described formally in LSL. These specifica-
tions give axiomatic descriptions of each datatype and its
operators in first-order logic. While such specifications pro-
vide sound bases for proofs, it is not easy to translate them
automatically into Java.

Therefore, the IOA toolkit includes a standard library
of hand-coded implementation classes for the standard lan-
guage datatypes. These include simple datatypes like nat-
urals, integers, and booleans, compound datatypes like ar-
rays, maps, sets, and sequences, and shorthand types like
enumerations, tuples, and unions.

Programmers are free to extend the compiler with new
datatypes or replace the standard implementations with
their own (see [31]). Each new datatype (e.g., Tree[__])
must be implemented by hand as a Java class. Each operator
(e.g., Height: Tree[__] → Nat]) is implemented as a
method by some datatype implementation. Notice that since
operators signatures may reference more than one type, it is
not obvious with which datatype to associate an operator.
The IOA compiler relies on guidance from the datatype im-
plementor to match IOA operators and datatypes to the cor-
responding Java methods and classes. This guidance is pro-
vided in the form of aregistration classassociated with each
datatype implementation class. The registration class tells
the IOA compiler which datatypes and operators to map to
the associated implementation class and its methods. The
mapping between datatypes and operators and implementa-
tion classes and methods is maintained in a datatype reg-
istry [31, 32]. The programmer specifies at compile time
which datatypes to load, and the datatype registry is initial-
ized appropriately [26].

Since the IOA framework focuses on correctness of the
concurrent, interactive aspects of programs rather than of
the sequential aspects, we do not address the problem of es-
tablishing the correctness of this sequential code (other than
by conventional testing and code inspection). Standard tech-
niques of sequential program verification (based, for exam-
ple, on Hoare logic) may be applied for such proofs.

5.3. Translating Schedules

In our translation, each IOA transition is translated into a
Java method. The result of translating the NDR schedule of
the IOA program is the main loop of the generated Java pro-
gram. On every iteration of the schedule loop, the scheduler
picks an action to fire. Tsai [31] gives the specifics of trans-
lating NDR control structures into Java. At run time, the
generated program starts from a unique initial state and it-
erates the loop that selects a method (transition definition)
together with a set of parameter values to execute.

5.4. Translating Transitions

An IOA transition definition consists of a list of parame-
ters, awhere clause, a precondition, and effects. Thewhere
clause restricts the values of the parameters. The precondi-
tion is a predicate on automaton state variables and the tran-
sition parameters that specifies when the transition is en-
abled. The effects specify how state variables change.

The transitionwhere clause and precondition are trans-
lated into Java boolean expressions. These expressions are
evaluated at run time after a schedule specifies the transi-
tion to fire . The effects clause is executed only if the pre-
condition andwhere clause evaluate to true.

The effects clause is translated to a Java method. The ba-
sic control structures of IOA have direct analogues in Java.
Thus, IOA assignments, conditionals, and loops are trans-
lated into Java assignments, conditionals, and loops. IOA
choosestatements are compiled by translating their associ-
ated NDR determinator blocks.

5.4.1. Translating MPI Transitions In our design,
the IOA interface to MPI is specified as a set of spe-
cial transition definitions. The definition of these transi-
tions is fixed inside the mediator automatasendMediator

andrecvMediator . These transitions are designed to mir-
ror the corresponding Java calls used to invoke MPI. We
use only four of the (myriad) methods provided by MPI:

Isend sends a message to a specified destination and re-
turns a handle to name the particular send.

test tests a handle to see if the particular send has com-
pleted (i.e., has freed up memory for another send).

Iprobe polls to see if an incoming message is available.

recv returns a message when available.

The first three of these are non-blocking;recv blocks until
a message is available. Our implementation callsrecv only
when it will not block (i.e., afterIprobe has returned true).

We define two IOA transitions for each of these Java
methods: one for the call and one for the return (see Fig-
ures 7 and 8). TheHandle type is used to name particular
send instances. So,resp_Isend returns a handleh that can
be used by subsequent calls totest . The booleanflag re-
turned byresp_test indicates whether the cited send has
completed. The booleanflag returned byresp_Iprobe

indicates whether a message is available. The messagemit-
self is returned byresp_recv .

output Isend(m: M, i:Int, j:Int)
output test(h:Handle, i:Int, j:Int)
i npu t resp_Isend(h:Handle, i:Int, j:Int)
i npu t resp_test(flag:Bool, i:Int, j:Int)

Figure 7:sendMediator MPI transitions

The compiler recognizes these four pairs of correspond-
ing transition definitions and treats them as special cases.
Rather than generating two methods for the effects of a pair,
the compiler generates a single method that places the rele-
vant MPI method invocation between the translations of the
effects of the output and input.

When invoked at run time, the resulting method does all
the work of the output effect, performs the MPI call, and
then does the work of the input effect. As a result, the in-
put half of the pair (theresp_* transition) does not need to
be scheduled. The input is executed without returning to the
schedule loop when the MPI call returns.

5.4.2. Translating Buffer Transitions The buffer input
and output actions described in Section 3.3 are another spe-
cial case in our translation. Since input actions are not lo-
cally controlled, the input and internal actions are run in
their own thread. The output actions are composed with
the algorithm input actions and hidden (become internal).
These actions run in the main automaton thread. The meth-
ods implementing the internal actions share access to the
delay queue across the thread boundary. To prevent corrup-
tion of the queue, the compiler uses the Javasynchronize
construct to protect queue accesses. Note this synchroniza-
tion is local to a single node program.

output Iprobe(i:Int, j:Int)
output receive(i:Int, j:Int)
i npu t resp_Iprobe(flag:Bool, i:Int, j:Int)
i npu t resp_receive(m: M, i:Int, j:Int)

Figure 8: RecvMediator MPI transitions

Node 3

Node 1 MPI Node 2

MPIMPI

System Console 1

Console 3

Console 2

Environment

Figure 9: A compiled IOA system consists of a composi-
tion of node and MPI automata interacting with the envi-
ronment.

6. Translation Correctness

We claim the distributed system created by compiling
node automata and running the resulting Java programs
linked with MPI and our datatype libraries implements the
IOA system design submitted for compilation. Schemati-
cally, the IOA compiler preserves the behavior at the bound-
ary between the System and Environment automata shown
in Figure 9. Formally, Theorem 1 asserts that the externally
visible behaviors of the compiled system are a subset of the
externally visible behaviors of the specification automata.
For this result to hold, we assume that our model of net-
work behavior is accurate (as discussed below), and that our
hand-coded datatype library correctly implements its LSL
specification (as mentioned in Section 5.2).

Notice that the correctness condition is global. We re-
quire that the system as a whole preserves external behav-
iors, not individuals nodes. That is, we must show that the
multi-threaded Java programs running on multiple concur-
rently operating nodes (and not using any global synchro-
nization) preserve the appearance of the sequential execu-
tion model of the global system I/O automaton. Our ap-
proach is to model the compiled Java code as itself being
an I/O automaton which takes many small atomic steps that
may be interleaved across threads and nodes.

6.1. MPI

While the running system links to actual MPI libraries,
we model the behavior of these libraries as an I/O au-
tomatonMPI as denoted by an IOA programMPIAut (not
shown).MPIAut makes explicit all our assumptions about
the behavior of the network. For example, MPI channels de-
liver messages in order, without loss or duplication.

As described in Section 5.4.1, we model the four MPI
methods our design invokes as pairs of input and output
actions.MPIAut details the behaviors and interactions of
these methods. For example,MPIAut outputs aresp_* ac-
tion only in response to the corresponding input action. That

is, methods do not return unless they have been invoked.
Furthermore,Isend, test, and Iprobe do not block. Thus,
resp_Isend , resp_test , andresp_Iprobe actions are
guaranteed to become enabled in a finite number of steps
even if no other inputs toMPIAut occur in the execution.

6.2. MacroSystemAut

The complete system designed by the IOA programmer
consists ofMPIAut and the scheduled IOA programs for
all the nodes. We refer to the combination of these pro-
grams as theMacroSystem program. Each of these IOA
programs denotes an I/O automaton, and the combination
denotes the composition of these automata. We call this
compositionMacroSystemAut . We also refer to the indi-
vidual node program at each host asNi and the individual
automaton it denotes asNi.

Each transition definitionT in Ni defines a set of state-
action-state triples inMacroSystemAut . The node pro-
grams also yield additional structure for the node automata.
The precondition defines a set of statesprestatesT. The ef-
fects define a computable functionfT from states to states
restricted to the domainprestatesT. SinceMacroSystem

is scheduled, the state includes a special PC variable as de-
scribed in Section 4.1 and the function of each transition
definition updates the PC. Figure 10 shows the definition of
theMacroSystem program for the LCR example. (Nameis
an unspecified integer function.)

automaton LCRSystem
components

N[i,name]: LCRNode(i,name:Int)
where 0 ≤ i ∧ i ≤ 10 ∧ name = Name(i);

M[i,j]: MPI(i,j:Int)
where 0 ≤ i ∧ i ≤ 10 ∧ 0 ≤ j ∧ j ≤ 10

Figure 10:LCRSystem automaton using MPI channels

6.3. µSystemAut

We model the compiled Java code itself as an I/O au-
tomatonµSystemAut which takes many small atomic steps
that may be interleaved across threads and nodes. For each
step MacroSystemAut takes, µSystemAut takes ase-
quenceof micro-steps. We do not specify the granularity of
these micro-steps. Rather, we assert that the micro-steps are
atomic with respect to thread interleaving and node concur-
rency. Thus, a micro-step might represent a Java statement
or a machine instruction. Each node automaton is com-
piled in such a way thatif a sequence of these micro-steps

executes without interruption or interleaving, the cumu-
lative effect of the sequence corresponds to the effect of
the corresponding action ofMacroSystemAut . By stat-
ing and proving Theorem 1 below, we are asserting
that even in the presence of interleaving, the system be-
haves correctly.

Like MacroSystemAut , µSystemAut is an I/O automa-
ton denoted by an IOA programµSystem composed of
theMPIAut program and IOA programs for each node au-
tomaton in the system. However, the IOA node programs
in µSystem are not the node programs inMacroSystem .
Rather, each node automaton inµSystem is derived from
a corresponding component ofMacroSystem . This deriva-
tion corresponds to the compilation process.

6.3.1. Deriving a micro-node from the macro-nodeFor
each node automatonNi in MacroSystem , we define a cor-
responding micro-node automatonµNi. µNi models the Java
code that implementsNi. We model the two Java threads in
the node implementation class by givingµNi two program
counters (µPC). OneµPC controls the execution of the ac-
tions inµN derived from the input actions ofNi. The other
µPC controls the execution of the actions ofµNi derived
from the locally controlled actionsNi.

Let Ni andµNi be the I/O automata denoted byNi and
µNi, respectively. For each transition definition ofT with ef-
fect functionfT of Ni, µNi has a sequence of transition def-
initions T1, T2, . . . with effect functionsf1, f2, . . . , respec-
tively. The precondition ofTi requires that theµPC (for its
thread) namesTi. Let f∗ be the composition off1, f2,

Let s ands′ be states ofNi andu andu′ be states of
µNi. Let u̇ be the projection ofu onto the state space ofNi.
If s = u̇, s′ = f(s) andu′ = f∗(u) then we require that
s′ = u̇′.

EachµPC is a pair. The first element ofµPC denotes the
micro-action sequence being executed and the second ele-
ment denotes the index in that sequence. Each function in
the sequence increments the index of itsµPC (in addition
to whatever other work it performs). The last function in
each sequence schedules the next macro-action by pointing
its µPCto the first element of the corresponding sequence.

Note, while each thread steps sequentially through a
sequence of micro-actions, the micro-actions of different
threads inµSystemAut can be interleaved with those of dif-
ferent threads (either at the same node or at others) or with
steps of theMPI automata.

Note, IOA programsµSystem andNi are only concep-
tual. No such IOA programs are ever produced. The method
of derivingµSystem from MacroSystem gives a correct-
ness condition for the relevant characteristics of the IOA
compiler. That is,if µSystem is an accurate model of the
code generated by the compiler, the compilation process
preserves safety properties of the submitted automaton.

6.3.2. Locking the delay queueWe model the synchro-
nized methods described in Section 5.4.2 by saying that the
first micro-step in the sequence for the corresponding ac-
tion grabs a lock on the delay queue. The last micro-step re-
leases it. In general we do not specify the granularity of the
micro-steps or the micro-effect functionsfi. However, we
do require that there are special micro-steps to grab and re-
lease locks. That is, locking is atomic with respect to thread
interleaving. If another action already has the lock, the func-
tion resets theµPC for its thread to itself, in effect spinning
on the lock. Note, this spinning only blocks the thread at-
tempting to grab the lock. The lock is represented as a state
variable of theµNi. So locks are local, not global.

6.4. Correctness Theorem

The compiler correctness theorem asserts that, if
µSystemAut correctly models the generated Java code,
the compiled system will exhibit only behaviors speci-
fied by the system designer inMacroSystemAut .

Theorem 1 The traces ofµSystemAut are a subset of the
traces ofMacroSystemAut .

Theorem 1 is by proved demonstrating a refinement map-
ping fromµSystemAut to MacroSystemAut in [29]. The
proof is omitted for lack of space.

7. Related Work

Goldman’s Spectrum System introduced a formally-
defined, purely operational programming language for de-
scribing I/O automata [19]. He was able to execute this
language in a single machine simulator. He did not con-
nect the language to any other tools. However, he sug-
gested a strategy for distributed simulation using expensive
global synchronizations. More recently, Goldman’s Pro-
grammers’ Playground also uses a language with formal
semantics expressed in terms of I/O automata [11].

Cheiner and Shvartsman experimented with methods for
generating code from I/O automaton descriptions [5]. They
selected a particular distributed algorithm from the litera-
ture (the Eventually Serializable Data Service of Luchangco
et al. [7]) and generated by hand an executable, distributed
implementation in C++ communicating via MPI. They de-
scribe a generalized method for generating code for I/O
automata described by operational pseudocode. Unfortu-
nately, the general implementation strategy described uses
costly reservation-based synchronization methods to avoid
deadlock and a probabilistic, exponential back-off to avoid
livelock in the reservation system itself. For certain au-
tomata, they are able to optimize this reservation system.
Their methods do not rely on a formal language to describe
I/O automata or directly connect to any verification tools.

To our knowledge, no system has yet combined a lan-
guage with formally specified semantics, automated proof
assistants, simulators, and compilers. Several tools have
been based on the CSP model [20]. The semantics of the
Occam parallel computation language is defined in CSP [1].
While there are Occam compilers, we have found no ev-
idence of verification tools for Occam programs. Formal
Systems, Ltd., developed a machine-readable language for
CSP. The FDR model checker allows the checking of a wide
range of general safety and liveness properties of CSP mod-
els [8]. The ProBE tool enables the user to “browse” a CSP
process by following events from one state to another while
resolving nondeterminism.

Cleavelandet al. have developed a series of tools based
on the CCS process algebra [25]. The Concurrency Work-
bench [14] and its successor the Concurrency Factory [15]
are toolkits for the analysis of finite-state concurrent sys-
tems specified as CCS expressions. They include sup-
port for verification, simulation, and compilation. A model
checking tool supports verifying bisimulations. A compila-
tion tool translates specifications into Facile code.

References

[1] INMOS Ltd: occam Programming Manual, 1984.
[2] A. Bogdanov. Formal verification of simulations between

I/O automata. Master’s thesis, EECS, MIT, Cambridge, MA,
Sep 2001.

[3] E. Chang and R. Roberts. An improved algorithm for de-
centralized extrema-finding in circular configurations of pro-
cesses.CACM, 22(5):281–283, May 1979.

[4] A. Chefter. A simulator for the IOA language. Master’s the-
sis, EECS, MIT, Cambridge, MA 02139, May 1998.

[5] O. Cheiner and A. Shvartsman. Implementing an eventually-
serializable data service as a distributed system building
block. In M. Mavronicolaset al., editor,Networks in Dis-
tributed Computing, volume 45 ofDIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pages
43–72. AMS, 1999.

[6] L. Dean. Improved simulation of Input/Output automata.
Master’s thesis, EECS, MIT, Cambridge, MA, Sep 2001.

[7] A. Feketeet al.. Eventually-serializable data services. In
PODC, pages 300–309, Philadelphia, PA, May 1996.

[8] A. Roscoe et al.. Hierarchical compression for model-
checking CSP or how to check1020 dining philosophers for
deadlock. In Ed Brinksmaet al., editor, TACAS, volume
1019 ofLecture Notes in Computer Science, pages 133–152.
Springer-Verlag, 1995.

[9] D. Kaynaret al.. The IOA simulator. Technical Report MIT-
LCS-TR-843, MIT LCS, Cambridge, MA 02139, Jul 2002.

[10] J. Guttaget al., editor. Larch: Languages and Tools for For-
mal Specification. Springer-Verlag Texts and Monographs in
Computer Science, 1993.

[11] K. Goldmanet al.. The Programmers’ Playground: I/O ab-
straction for user-configurable distributed applications.IEEE

Transactions on Software Engineering, 21(9):735–746, Sep
1995.

[12] M. Bakeret al.. mpiJava: A Java interface to MPI.
[13] M. Vaziri et al.. Systematic removal of nondeterminism

for code generation in i/o automata. Technical Report
MIT/LCS/TR-960, MIT LCS, Cambridge, MA, Jul 2004.

[14] R. Cleavelandet al.. The concurrency workbench: A
semantics-based tool for the verification of concurrent sys-
tems.ACM TOPLAS, 15(1), 1993.

[15] R. Cleavelandet al.. The Concurrency Factory — practi-
cal tools for specification, simulation, verification and im-
plementation of concurrent systems. InSpecification of Par-
allel Algorithms. DIMACS Workshop., pages 75–89. Ameri-
can Mathematical Society, 1994.

[16] S. Garlandet al.. IOA user guide and reference manual.
Technical Report MIT/LCS/TR-961, MIT LCS, Cambridge,
MA, Jul 2004.

[17] Message Passing Interface Forum. MPI: A message-passing
interface standard.International Journal of Supercomputer
Applications, 8(3/4), 1994.

[18] S. Garland and N. Lynch. The IOA language and toolset:
Support for designing, analyzing, and building distributed
systems. Technical Report MIT/LCS/TR-762, MIT LCS,
Cambridge, MA, Aug 1998.

[19] K. Goldman. Highly concurrent logically synchronous mul-
ticast.Distributed Computing, 6(4):189–207, 1991.

[20] C. Hoare. Communicating Sequential Processes. Prentice-
Hall International, United Kingdom, 1985.

[21] G. Le Lann. Distributed systems - towards a formal ap-
proach. In Bruce Gilchrist, editor,Information Processing
77 (Toronto, Aug 1977), volume 7 ofIFIP Congress, pages
155–160. North-Holland Publishing Co., 1977.

[22] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA, Mar 1996.

[23] N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. InPODC, pages 137–151, Vancou-
ver, British Columbia, Canada, Aug 1987.

[24] N. Lynch and M. Tuttle. An introduction to input/output au-
tomata.CWI-Quarterly, 2(3):219–246, Sep 1989.

[25] R. Milner. Communication and Concurrency. Prentice-Hall
International, United Kingdom, 1989.

[26] A. Dev Nigam. Enhancing the IOA code generator’s abstract
data types. Manuscript, 2001.

[27] J. Ramırez-Robredo. Paired simulation of I/O automata.
Master’s thesis, EECS, MIT, Cambridge, MA, Sep 2000.

[28] E. Solovey. Simulation of composite I/O automata. Master’s
thesis, EECS, MIT, Cambridge, MA, Sep 2003.

[29] J. Tauber. Verifiable Compilation of I/O Automata with-
out Global Synchronization. PhD thesis, EECS, MIT, Cam-
bridge, MA, Sep 2004.

[30] J. Tauber and S. Garland. Definition and expansion of com-
posite automata in IOA. Technical Report MIT/LCS/TR-
959, MIT LCS, Cambridge, MA, Jul 2004.

[31] M. Tsai. Code generation for the IOA language. Master’s
thesis, EECS, MIT, Cambridge, MA, Jun 2002.

[32] T. Ne Win. Theorem-proving distributed algorithms with dy-
namic analysis. Master’s thesis, EECS, MIT, Cambridge,
MA, May 2003.

	1 Introduction
	2 IOA Language and Toolkit
	2.1 Input/Output Automata
	2.1.1 Execution of I/O Automata

	2.2 IOA Language
	2.3 Example: LCR Leader Election
	2.4 IOA Toolkit

	3 Structuring the Design
	3.1 Imperative IOA programs
	3.2 Node-Channel Form
	3.2.1 Abstract Channels

	3.3 Console Interface
	3.4 Composition

	4 Resolving Nondeterminism
	4.1 Scheduling
	4.2 Choosing

	5 Translating IOA into Java
	5.1 Translating State
	5.2 Translating Datatypes
	5.3 Translating Schedules
	5.4 Translating Transitions
	5.4.1 Translating MPI Transitions
	5.4.2 Translating Buffer Transitions

	6 Translation Correctness
	6.1 MPI
	6.2 MacroSystemAut
	6.3 SystemAut
	6.3.1 Deriving a micro-node from the macro-node
	6.3.2 Locking the delay queue

	6.4 Correctness Theorem

	7 Related Work

