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Abstract

The ability to position a small subset of mesh vertices and produce a
meaningful overall deformation of the entire mesh is a fundamental
task in mesh editing and animation. However, the class of meaning-
ful deformations varies from mesh to mesh and depends on mesh
kinematics, which prescribes valid mesh configurations, and a se-
lection mechanism for choosing among them. Drawing an anal-
ogy to the traditional use of skeleton-based inverse kinematics for
posing skeletons, we define mesh-based inverse kinematics as the
problem of finding meaningful mesh deformations that meet speci-
fied vertex constraints.

Our solution relies on example meshes to indicate the class of
meaningful deformations. Each example is represented with a fea-
ture vector of deformation gradients that capture the affine transfor-
mations which individual triangles undergo relative to a reference
pose. To pose a mesh, our algorithm efficiently searches among all
meshes with specified vertex positions to find the one that is closest
to some pose in a nonlinear span of the example feature vectors.
Since the search is not restricted to the span of example shapes,
this produces compelling deformations even when the constraints
require poses that are different from those observed in the exam-
ples. Furthermore, because the span is formed by a nonlinear blend
of the example feature vectors, the blending component of our sys-
tem may also be used independently to pose meshes by specifying
blending weights or to compute multi-way morph sequences.
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1 Introduction

The shape of a polygon mesh depends on the positions of its many
vertices. Although such shapes can be manipulated by displacing
every vertex manually, this process is avoided because it is tedious
and error-prone. Existing mesh editing tools allow the modeler to
sculpt a mesh’s shape by editing only a few vertices and use gen-
eral numerical criteria such as detail preservation to position the re-
maining ones. In animation, the class of meaningful deformations
cannot be captured by simple numerical criteria because it varies
from mesh to mesh. The mesh kinematics—how the vertices are
allowed to move—as well as a mechanism for choosing one out
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Figure 1: A simple demonstration of MESHIK. Top row: Two
examples are given, shown in green in the left column. By fixing
one cap in place and manipulating the other end, the bar bends
like the examples. Bottom row: If a different example bend is
provided, MESHIK generates the new type of bend when the mesh
is manipulated.

of many kinematically valid meshes must be considered when pos-
ing a mesh in a meaningful way. Skeleton-based articulation is of-
ten used in animation to approximate mesh kinematics compactly.
However, skeletons cannot easily provide the rich class of defor-
mations afforded by sculpting techniques and only allow indirect
interaction with the mesh via the joint angles of the skeleton. Our
method allows the user to directly position any subset of mesh ver-
tices and produces a meaningful deformation automatically. Com-
plex pose changes can be accomplished intuitively by manipulating
only a few vertices. In analogy to traditional skeleton-based inverse
kinematics for posing skeletons, we call this general problem mesh-
based inverse kinematics, and our example solution MESHIK.

Our MESHIK algorithm learns the space of meaningful shapes
from example meshes. Using the learned space, it generates new
shapes that respect the deformations exhibited by the examples,
yet still satisfy vertex constraints imposed by the user. Although
the user retains complete freedom to precisely specify the position
of any vertex, for most tasks, only a few vertices need to be ma-
nipulated. MESHIK uses unstructured meshes—triangle meshes
with no assumption about connectivity or structure—that can be
scanned, hand-sculpted, designed with free-form modeling tools,
or computed with arbitrarily complex procedural or simulation
methods. As a result, MESHIK provides a tool that simplifies
posing tasks even when traditional animation or editing methods
do not apply. The animator can pose the object by moving only
a few of its vertices or bring it to life by key-framing these vertex
positions. Furthermore, the user always retains the freedom to
choose the class of meaningful deformations for any mesh, as
demonstrated by Figure 1.

MESHIK represents each example with a feature vector that de-
scribes how the example has deformed relative to a reference mesh.
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The feature space, defined as a nonlinear span of the example
feature vectors, describes the space of appropriate deformations.
When the user displaces a few mesh vertices, MESHIK positions
the remaining vertices to produce a mesh whose feature vector is
as close as possible to the feature space. This ensures that the re-
constructed mesh meets the user’s constraints exactly while it best
reproduces the example deformations.

Our primary contribution is a formulation of mesh-based inverse
kinematics that allows meaningful mesh deformations and pose
changes to be achieved in an intuitive manner with only a small
amount of work by the user. We present an efficient method of
nonlinear, multi-way interpolation of unstructured meshes using a
deformation-gradient feature space. We demonstrate an efficient
optimization technique to search for meshes that meet user con-
straints and are close to the feature space. Our method allows
interactive manipulation of moderately sized meshes with around
10,000 vertices and 10 examples.

2 Related Work

Mesh editing allows the user to move a few vertices arbitrarily
and employs some numerical objective such as detail preserva-
tion or smoothness to place the remaining ones. Subdivision and
multi-resolution techniques achieve detail-preserving edits at vary-
ing scales with representations that encode mesh details as vertex
offsets from topologically [Zorin et al. 1997; Kobbelt et al. 2000]
or geometrically [Kobbelt et al. 1998; Guskov et al. 1999] simpler
base meshes.

Other editing methods use intrinsic representations such as
Laplacian (also called differential) coordinates [Alexa 2003; Lip-
man et al. 2004; Sorkine et al. 2004] or pyramid coordinates [Shef-
fer and Kraevoy 2004]. Since each vertex position is encoded by
its relationship to its neighbors, local edits made to the intrinsic
representation propagate to the surrounding vertices during mesh
reconstruction. The editing technique of Yu and colleagues [2004]
solves a Poisson equation discretized over the mesh. We use the
deformation-gradient representation [Sumner and Popović 2004],
which describes affine transformations that individual triangles un-
dergo relative to a reference pose, and discuss this choice in Sec-
tion 3.1. All of these intrinsic methods have high-level similarities
but differ in the details. For example, we also solve a Poisson equa-
tion since the normal-equations matrix in our formulation amounts
to a form of a Laplacian, and the feature vector to a guidance field.

The differences between inverse kinematics and editing are
best illustrated through the typical use of both techniques. Editing
sculpts meshes to create new objects, while inverse kinematics
manipulates such objects to enliven them. The main implication
of this difference is that editing concentrates on an object’s shape
(how it looks) while inverse kinematics concentrates on an object’s
deformation (how it moves). In the absence of a convenient
numerical objective (e.g., detail preservation, smoothness) that
describes how an arbitrary object moves, inverse kinematics on
meshes must learn the space of desirable mesh configurations.
Such a general approach is not necessary in special cases (e.g.,
when a skeleton expresses the space of desired configurations),
but for cloth, hair, and other soft objects, the general approach
of MESHIK, which infers a meaningful space from a series of
user-provided examples, is required.

Work has been done in the animation community on the compact
representation of sets, or animation sequences, of meshes. Alexa
and Müller [2000] compress animation sequences using principal
component analysis (PCA). This approximates the set by a linear
subspace of mesh space. Similarly, Hauser, Shen, and O’Brien
[2003] use modal analysis of linear elastic equations to infer a struc-
ture common to all linear elastic materials. Modal analysis uses
eigen-analysis of mass and stiffness matrices to extract a small set
of basis vectors for the high-energy vibration modes [Pentland and

Figure 2: We compare our nonlinear feature-space interpolation
scheme with our implementation of the as-rigid-as-possible method
for two 2D interpolation sequences. The result of our boundary-
based method is displayed as the red line segment while the as-
rigid-as-possible interpolation is shown as the black triangulated
region. The body of the snake and the trunk of the elephant de-
form in a similar, locally rigid fashion for both methods. However,
our method is numerically much simpler as we only consider the
boundary rather than the compatible dissection of the interior.

Williams 1989]. However, while both are well-understood and sim-
ple to implement, their inherently linear structure makes them inap-
propriate for describing nonlinear deformations. For example, lin-
ear interpolation of rotations will shorten the mesh. Furthermore,
PCA works well for compression of existing meshes, but is less
appropriate for guiding the search outside the subspace described
by the principle components. Hybrid approaches avoid the prob-
lems associated with linear interpolation in the special case that
the nonlinearities can be expressed in terms of skeletal deforma-
tion [Lewis et al. 2000; Sloan et al. 2001]. MESHIK generalizes
these approaches with a nonlinear combination of example shapes.

This nonlinear blend can be thought of as an n-way boundary-
based version of as-rigid-as-possible shape interpolation [Alexa
et al. 2000]. Rather than performing a two-way interpolation based
on the compatible dissection of the interior of two shapes, MESHIK
interpolates the boundary of n shapes. The practical implication of
this reformulation is significant. MESHIK interpolation is faster be-
cause it solves for fewer vertices and easier to apply because com-
patible dissection of n shape interiors is difficult without adding
an extremely large number of Steiner vertices. An experimental
comparison of the two methods is shown in Figure 2 and demon-
strates that, for 2D polygonal shapes, MESHIK interpolation be-
haves reasonably despite ignoring the interior. The remaining re-
sults in the paper and our experience with MESHIK indicate that
the same holds for 3D meshes. Concurrent with our work, Xu
and colleagues have developed a boundary-based mesh interpola-
tion scheme similar to our nonlinear feature space method [2005].
However, while Xu and colleagues focus on interpolation with pre-
scribed blending weights, our primary contribution is a formulation
of mesh-based inverse kinematics that hides these weights from the
user behind an intuitive interaction metaphor.

Techniques closest to our approach are those that learn skeleton
or mesh configurations from examples. The first such system learns
the space of desirable skeleton configurations by linearly blending
example motions [Rose et al. 2001]. FaceIK [Zhang et al. 2004]
uses a similar approach on meshes to generate new facial expres-
sions by linearly blending the acquired face scans. These linear
approaches exhibit the same difficulties as those discussed above.
Furthermore, every mesh or skeleton is confined to the linear span
of the basis shapes. MESHIK blends nonlinearly and does not re-
strict a mesh to be in the nonlinear span of example shapes. Instead,
it favors meshes that are close to, but not necessarily in, this nonlin-
ear space. These design choices, at the cost of slower performance,
allow MESHIK to generate compelling meshes even when they dif-
fer significantly from the example shapes. When linear blending
suffices, the same principle can be used to improve its generaliza-
tion outside the space explored by examples. Style-based inverse
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kinematics [Grochow et al. 2004] describes an alternative nonlinear
approach which learns a probabilistic model of desirable skeleton
configurations. However, bridging the gap between 60 degrees of
freedom in a typical skeleton and 30,000 degrees of freedom in a
moderate mesh is the main obstacle to applying this promising tech-
nique to meshes.

Ngo and colleagues [2000] introduce configuration modeling as
a fundamental problem in computer graphics and present a solution
for describing the configuration space of two-dimensional draw-
ings. James and Fatahalian [2003] use a similar approach to pre-
compute numerical simulations for the most common set of control
inputs. MESHIK fits in naturally with these configuration models
by enhancing the reparameterization map [Ngo et al. 2000], which
prescribes how to extrapolate and generalize from such example
drawings and precomputed states.

3 Principles of MeshIK

MESHIK uses the example meshes provided by the user to form
a space of meaningful deformations. The definition of this space
is critical as it must include deformations representative of those
exhibited by the examples even far from the given data. The key to
designing a good space is to extract, from each example, a vector
of features that encodes important shape properties. We use feature
vectors that encode the change in shape exhibited by the examples
on a triangle-by-triangle basis.

The simplest feature space is just the linear span of the feature
vectors of the example poses. Although this space is not what we
will ultimately use, we describe it first because it is simple, fast, and
may still be valuable in applications where linearity assumptions
are sufficient [Blanz and Vetter 1999; Ngo et al. 2000] or where
artifacts can be avoided by dense sampling [Bregler et al. 2002].
Our more powerful nonlinear span is required in the general case
when the natural interpolation of the example deformations is not
linear (e.g., for rotations).

An edited mesh can be reconstructed from a feature vector by
solving a least squares problem for the free vertices while enforcing
constraints for each vertex that the user has positioned. Because the
feature vector is an intrinsic representation of the mesh geometry,
the error incurred by fixing some vertices as constraints will prop-
agate across the mesh, rather than being concentrated at the con-
strained vertices. Our algorithm couples the constrained reconstruc-
tion process with a search within feature space so that it finds the
position in feature space that has the minimal reconstruction error.

3.1 Feature Vectors

An obvious and explicit way to represent the geometry of a tri-
angle mesh is with the coordinates of its vertices in the global
frame. However, this representation, while simple and direct, is
a poor choice for any mesh editing operation as the coordinates in
the global frame do not capture the local shape properties and rela-
tionships between vertices [Sorkine et al. 2004].

For manipulating meshes, it is more useful to describe a mesh
as a vector in a different feature space based on properties of the
mesh. The components of the feature vector relate the geometry of
nearby vertices and capture the short-range correlations present in
the mesh. MESHIK uses deformation gradients or, as Barr [1984]
refers to them, local deformations, as the feature vector. Defor-
mation gradients describe the transformation each triangle under-
goes relative to a reference pose. They were used by Sumner and
Popović [2004] to transfer deformation from one mesh to another
and are similar to the representation used by Yu et al. [2004].

Deformation Gradient Given a reference mesh P0 and a de-
formed mesh P, each containing n vertices and m triangles in the
same connectivity structure, we would like to compute the feature

vector f corresponding to P. A deformation gradient of a triangle of
P is the Jacobian of the affine mapping of the vertices of the triangle
from their positions in P0 to their positions in P. Since the positions
of the triangle’s vertices in P0 and P do not uniquely define an affine
mapping in R

3, we add to each triangle a fourth vertex, as proposed
by Sumner and Popović [2004]. This strategy ensures that the affine
map scales the direction perpendicular to the triangle in proportion
to the length of the edges. For simplicity, when we discuss matrix
dimensions in terms of the variable n, we mean for n to include
these added vertices.

Denote by Φ j the affine mapping of the j-th triangle that operates
on a point p ∈ R

3 as follows:

Φ j(p) = T jp+ t j.

The 3 × 3 matrix T j contains the rotation, scaling, and skewing
components, and the vector t j defines the translation component of
the affine transformation.

The deformation gradient is the Jacobian matrix DpΦ j(p) = T j,

which is computed from the positions of the four vertices {v̄ j
k} and

{v j
k}, (1 ≤ k ≤ 4), in P0 and P respectively:

T j =
[

v j
1 −v j

4 v j
2 −v j

4 v j
3 −v j

4

]

·
[

v̄ j
1 − v̄ j

4 v̄ j
2 − v̄ j

4 v̄ j
3 − v̄ j

4

]−1
. (1)

Transformation T j is linear in the vertices {v j
k}. Thus, assuming

the vertices of the reference pose are fixed, the linear operator G
extracts a feature vector from the deformed mesh P:

f = Gx. (2)

The vector x = (x1, ..,xn,y1, ..,yn,z1, ..,zn)∈R
3n stacks the coordi-

nates of mesh vertices {vi}n
i=1 of P. The coefficients of G depend

only on the vertices of the reference mesh P0 and come from the
inverted matrix in Eq. (1). The matrix G is built such that the fea-
ture vector f ∈ R

9m that results from the multiplication Gx will be
the unrolled and concatenated elements of the deformation gradi-
ents T j for all m triangles. Hence, the expression Gx is equivalent
to evaluating Eq. (1) for each triangle and packaging the resulting
3×3 matrices for each of the m triangles into one tall vector.

The linear operator G is a 9m × 3n matrix. But, because the
computation is separable in the three spatial coordinates, G has a
simple block-diagonal structure:

G =

[

G
G

G

]

.

Each block G is a sparse 3m× n matrix with four nonzero entries
in each row corresponding to the four vertices referenced by each
application of Eq. (1).

Mapping a feature vector f of some mesh P back to its global
representation x involves solving Eq. (2) for x, or inverting G. But,
because our feature vectors are invariant to global translations of
the mesh, one vertex position must be held constant to make the
solution unique. This results in the following least squares problem:

x = argmin
x

‖G̃x− (f+ c)‖. (3)

The modified operator G̃ is void of the three columns that multiply
the fixed vertex, and the constant vector c contains the result of
this multiplication. In fact, the least-squares inversion in Eq. (3)
may be applied when constraining an arbitrary number of vertices.
Additional vertex constraints only affect G̃ and c. In what follows,
however, we drop the distinction between G̃ and G for notational
simplicity.
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This inversion provides a general method for editing unstruc-
tured triangle meshes by constraining a subset of vertices to desired
locations and inverting a feature vector to compute the edited shape.
For example, we can retrieve the reference mesh with an identity
feature fid of m unrolled and concatenated 3× 3 identity matrices.
More generally, Yu and colleagues [2004] describe an algorithm to
set the features by propagating the transformation of a handle curve
across the mesh. Similarly, Sumner and Popović [2004] enable
deformation transfer between source and target meshes by recon-
structing the target with feature vectors extracted from the source.

Alternatives We choose deformation gradients over alternatives
because they are a linear function of the mesh vertices and lead to
a natural decomposition into rotations and scale/shears which fa-
cilitates our nonlinear interpolation. Pyramid coordinates [Sheffer
and Kraevoy 2004] provide a promising representation and edit-
ing framework, but the required nonlinear reconstruction step is too
slow for our interactive application. Laplacian coordinates [Lipman
et al. 2004] are a valid alternative since they are linear in the mesh
vertices and efficiently inverted. However, an interpolation scheme
for Laplacian coordinates that generates natural-looking results is
needed. The encoding scheme used by the Poisson mesh editing
technique [Yu et al. 2004] is an alternative to ours that may perform
well for our problem since it was successfully used for mesh inter-
polation [Xu et al. 2005]. These issues indicate that the design of a
more compact and efficient feature space is an area of future work.

3.2 Linear Feature Space

A feature space defines the space of desirable deformations. The
simplest feature space is the linear span of the features extracted
from the example meshes. A member fw of this space is parameter-
ized by the coefficients in the vector w:

fw = Mw,

where M is a matrix whose columns are the feature vectors di cor-
responding to the example meshes (1 ≤ i ≤ l).

In practice, our algorithm computes the mean d̄ and uses the
mean centered feature vectors {d̄i}:

Mw = d̄+
l−1

∑
i=1

wid̄i.

Note that the linear dependence introduced by mean centering im-
plies using l −1 example features and weights instead of the l fea-
tures and weights used in the non-centered linear combination.

Given only a few specified vertex positions, linear MESHIK
computes the pose x∗ whose features are most similar to the closest
point Mw∗ in the linear feature space:

x∗,w∗ = argmin
x,w

‖Gx− (Mw+ c)‖. (4)

Recall that G and c are built such that the minimization will satisfy
the positional constraints on the specified vertices. This equation
replaces the feature vector in Eq. (3) with a linear combination of
example features Mw. Because the linear space extrapolates poorly,
this metric can be further augmented to penalize solutions that are
far from the example meshes:

argmin
w,x

‖Gx− (Mw+ c)‖+ k‖w‖. (5)

The second term k‖w‖ favors examples close to the mean d̄ by pe-
nalizing large weights.

The value of k, which weights the penalty term, can be chosen in
a principled fashion by considering the Bayesian interpretation of
our linear model: It maximizes the likelihood of the parameter vec-
tor w with respect to the example poses. Accordingly, our method

Figure 3: Our nonlinear feature space is used to perform a three-
way blend between the green meshes, producing the blue ones.

can be improved by compressing the matrix M using its principal
components and selecting an appropriate value for the weighting
parameter k as a function of the variance lost during PCA [Tipping
and Bishop 1999].

An alternative to this linear Gaussian model is a nonlinear
Gaussian-process–latent-variable model [Grochow et al. 2004] in
which each component of the feature vector is an independent
Gaussian process. This implies that one should carefully param-
eterize the feature space to match this independence assumption.
For skeletons, exponential maps or Euler angles accomplish this
task but introduce a nonlinear mapping between the independent
parameters and the user-specified handles. Applying a similar strat-
egy on meshes will also produce nonlinear constraints and make it
difficult to solve for thousands of vertices interactively.

3.3 Nonlinear Feature Space

Since the MESHIK feature vectors are linear transformations of
pose geometry vectors, linear blending of feature vectors amounts
to naı̈ve linear blending of poses, which is well known to result
in unnatural effects if the blended poses have undergone rotation.
In our setting, this means that linear blending will suffice only if
the example set is dense enough that large rotations are not present.
However, dense sampling is not the typical case and generalizations
of the examples beyond small deformations are not possible. To
avoid artifacts due to large rotations, which are typical in most non-
trivial settings, we require a “span” of the example features which
combines rotations in a more natural way. Our approach is based on
polar decomposition [Shoemake and Duff 1992] and the matrix ex-
ponential map. Figure 3 demonstrates our nonlinear feature space
used to interpolate between three different meshes. By setting the
weights directly, rather than solving for them within the IK frame-
work, the nonlinear feature space can create multi-way blends.

First, we decompose the deformation gradient Ti j for the j-th
triangle (1 ≤ j ≤ m) in the i-th pose (1 ≤ i ≤ l) into rotational and
scale/shear components using polar factorization:

Ti j = Ri jSi j.

We then use the exponential map to combine the individual rota-
tions of the different poses. The scale and shear part can be com-
bined linearly without further treatment.

We implement the exponential map using the matrix exponential
and logarithm functions [Murray et al. 1994]. These provide a map-
ping between the group of 3D rotations SO(3) and the Lie algebra
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so(3) of skew symmetric 3× 3 matrices. A practical approach to
interpolating rotations is to map them to so(3) using the matrix log-
arithm, interpolate linearly in so(3), and map back to SO(3) using
the matrix exponential [Murray et al. 1994; Alexa 2002]. This leads
to the following expression for the nonlinear span of the deforma-
tion gradient of the j-th triangle:

T j(w) = exp

(

l

∑
i=1

wilog
(

Ri j
)

)

·
l

∑
i=1

wiSi j. (6)

The matrix exponential and logarithm are evaluated efficiently us-
ing Rodrigues’ formula [Murray et al. 1994].1 We also experi-
mented with exponential and logarithm functions for general matri-
ces [Alexa 2002] which do not require factorization into rotations
and scales. However, the singularities of this approach prevented a
stable solution of our minimization problem.

We chose to use the matrix exponential and logarithm because
we can easily take derivatives of the resulting nonlinear model with
respect to w. For later use in Section 4.1, we note that the partial
derivatives of T j(w) are given by

Dwk T j(w) = exp

(

l

∑
i=1

wilog
(

Ri j
)

)

log
(

Rk j
)

l

∑
i=1

wiSi j

+ exp

(

l

∑
i=1

wilog
(

Ri j
)

)

Sk j. (7)

4 Numerics

In this section we show how to solve the following nonlinear analog
of the linear inversion in Eq. (4):

x∗,w∗ = argmin
x,w

‖Gx− (M(w)+ c)‖, (8)

where M is now a function that combines the feature vectors nonlin-
early according to Eq. (6). This is a nonlinear least-squares prob-
lem which can be solved using the iterative Gauss-Newton algo-
rithm [Madsen et al. 2004]. At each iteration, a linear least-squares
system is solved which involves solving the normal equations by
Cholesky decomposition and back-substitution. We now elaborate
on the key stages of this procedure.

4.1 Gauss-Newton Algorithm

In MESHIK, the Gauss-Newton algorithm linearizes the nonlinear
function of the feature weights which defines the feature space:

M(w+δδδ ) = M(w)+DwM(w)δδδ .

Then, each Gauss-Newton iteration solves a linearized problem to
improve xk and wk—the estimates of the vertex positions and the
weight vector at the k-th iteration:

δδδ k,xk+1 = argmin
δδδ ,x

‖Gx−DwM(wk)δδδ − (M(wk)+ c)‖ (9)

wk+1 = wk +δδδ k.

The process repeats until convergence, which we detect by moni-
toring the change in the objective function fk = f (wk), the gradient

1Note that the matrix logarithm is a multi-valued function: each rotation
in SO(3) has infinitely many representations in so(3). In some cases, inter-
polation may require equivalent rotations in a different range which can be
computed by adding multiples of 2π . However, our implementation of the
matrix logarithm always returns rotation angles between −π and π .

of the objective function, and the magnitude of the update vector
δδδ k [Gill et al. 1989]:

‖ fk − fk−1‖∞ < ε(1+ fk)

‖Dw f (w)‖∞ <
3
√

ε(1+ fk)

‖δδδ k‖∞ <
2
√

ε(1+‖wk‖∞).

In our experiments, the iteration converges after about six iterations
with ε = 1.0×10−6.

Solving the linear least-squares problem in Eq. (9) leads to a
system of normal equations:

A>A
[

x
δδδ

]

= A> (M(wk)+ c) , (10)

where A is a sparse matrix of size 9m× (3n+ l) of the form

A =

[

G −J1
G −J2

G −J3

]

.

Recall that G is also a very sparse matrix, having only four entries
per row. As we will see in Section 4.2, this permits efficient numer-
ical solution of the system despite its size. The three blocks Ji are
the blocks of the Jacobian matrix DwM(w) partitioned according to
the three vertex coordinates.

4.2 Cholesky Factorization

Without a special purpose solver, the normal equations in Eq. (10)
in each Gauss-Newton iteration can take a minute or longer to solve.
This is much too slow for an interactive system, which, in our ex-
perience, requires at least two solutions for every second of interac-
tion. The key to accelerating the solver is to reuse computations be-
tween iterations. A direct solution with a general purpose method
(e.g., Cholesky or QR factorization [Golub and Loan 1996]) will
not be able to reuse the factorization from the previous iteration be-
cause A continually changes. And, despite the very sparse matrix
A>A, conjugate gradient converges too slowly even with a variety
of preconditioners.

Our solution uses a direct method with specialized Cholesky fac-
torization. We exploit the block structure of the system matrix:

A>A =









G>G −G>J1
G>G −G>J2

G>G −G>J3
−J>1 G −J>2 G −J>3 G ∑3

i=1 J>i Ji









. (11)

The three G>G blocks, each sparse n × n matrices, are constant
throughout the iterations. If these blocks are pre-factored, the re-
maining portion of the Cholesky factorization may be computed
efficiently.

First, symbolic Cholesky factorization U>U = A>A reveals the
block structure of the upper-triangular Cholesky factor:

U =







R −R1
R −R2

R −R3
Rs







where
R>R = G>G.

We precompute R by sparse Cholesky factorization [Toledo 2003]
after re-ordering the columns to reduce the number of additional
non-zero entries [Karypis and Kumar 1999].
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The only equations that remain to be solved in every iteration (to
compute the remaining blocks of U) are:

R>Ri = G>Ji, 1 ≤ i ≤ 3 (12)

R>
s Rs =

3

∑
i=1

J>i Ji −R>
i Ri. (13)

In Eq. (12), backsubstitution with the precomputed R computes the
blocks R1,R2,R3 by solving three linear systems. These blocks are
in turn used on the right-hand side of Eq. (13) to compute the l × l
matrix whose dense Cholesky factorization yields the last block Rs.
For a large number of examples, this factorization step will eventu-
ally become the bottleneck. In our experiments, however, with l=20
or fewer examples, the solution of Eq. (12) for three dense n× l
blocks and their use in the computation of R>

i Ri dominates the cost.

5 Experimental Results

We have implemented MESHIK both as an interactive mesh ma-
nipulation system as well as in an offline application that uses key-
framed constraints to solve for mesh poses over time. In our in-
teractive system, the user can select groups of vertices that become
“handles” which can be interactively positioned. As the handles are
moved the rest of the mesh is automatically deformed.

Figure 5 demonstrates the power of MESHIK. Given a cylindri-
cal bar in two poses (5 A), one straight, and one smoothly bent, the
user constrains the left cap to stay in place and manipulates one ver-
tex on the right cap. Using the nonlinear feature space, our system
is able to generalize to any other bend of the bar in the same plane
(5 B). In contrast, the linear feature space (5 C) interpolates the two
examples poorly (the tip of the bar collapses in between the exam-
ples) and extrapolates even more poorly. If the end of the bar is
dragged perpendicular to the example bend (5 D), it deforms differ-
ently since no example has demonstrated how to deform in this di-
rection. Given an additional example, the bar can bend in that plane
(5 E) as well as the space in between (5 F). In Figure 1, we show that
by supplying a different example, the bar bends differently. Thus,
MESHIK does not prescribe one type of deformation but instead
derives the appropriate class of deformations from the examples.

In Figure 6 we demonstrate how MESHIK can be used to pose a
character. Ten example poses, shown in green in the top row, were
used for this demonstration. Two handle vertices are selected as
constraints on the front and back foot of the reference pose (6 A).
By dragging the front foot forward, the lion bends its front legs at
the hip and stretches its body forward. The position of the lion’s
paw can be precisely controlled by the user. In (6 B) the paw has
been pulled farther forward than its position in any example. The
body of the lion deforms realistically to meet the constraints so that
there is no discernible distortion. In order to pose only the front
right leg and keep the rest of the body fixed (6 C), we select the
unwanted region (shown in red) and remove it from the objective
function by building a feature space that ignores the deformation
gradients of the selected triangles. This region remains fixed in
place, but does not contribute to the error as the optimal weights are
computed. This allows the user to pose the front leg independent
of the rest of the body. After performing the same operation for
the tail (6 D), the user has achieved a novel pose different from all
those shown in the example set.

Figure 7 demonstrates how MESHIK can pose a mesh whose
deformations have no obvious skeletal representation: a flag blow-
ing in the wind. The input for this demonstration is fourteen flag
examples from a dynamic simulation, shown in the top row. Start-
ing with an undeformed flag (7 A), the user arbitrarily positions the
four corners of the flag (7 B–D). The interior deforms in a cloth-like
fashion. By key-framing the position of the constraints over time,
we can even create an animation of a walking flag (7 E–F).

Mesh Verts Tris Ex Factor Solve Total
Bar 132 260 2 0.000 0.000 0.015
Flag 516 932 14 0.016 0.015 0.020
Lion 5,000 9,996 10 0.475 0.150 0.210
Horse 8,425 16,846 4 0.610 0.105 0.160
Elephant 42,321 84,638 4 13.249 0.620 0.906

Table 1: Number of vertices, triangles, and example meshes as well
as timing data for the demonstrated results.
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Figure 4: Solve time as a function of the number of examples for
the horse and elephant meshes.

Figure 8 shows our system used to produce a galloping anima-
tion. Four example poses of a horse were used as input, and one
vertex on each foot of the horse was key-framed to follow a gal-
lop gait. The positions of the remaining vertices of the horse were
chosen by our system for each frame, resulting in a galloping ani-
mation. If we replace the four horse poses with those of an elephant
and use the same key-framed foot positions, we compute a gallop-
ing elephant.

When generating animations with our offline application, tempo-
ral coherence is important. Since our deformation system is nonlin-
ear, a small change in the constraints may result in a large change in
the resulting deformation. In order to achieve temporal coherence,
we add the additional term p||w−w0|| to the objective function in
Eq. (8). This encourages the new blending weights w to be similar
to the ones from the previous frame of animation w0. We used a
value of 100 for the factor p in all animations.

The conference DVD-ROM contains live recordings of interac-
tive editing sessions with the bar example from Figure 5 and the
lion from Figure 6, as well as the flag animation from Figure 7 and
the horse and elephant animations from Figure 8.

Table 1 gives statistics about the meshes used in our results in-
cluding the number of vertices, the number of triangles, the number
of examples, and the running times. The timing was measured on
a 3.4 GHz Pentium 4 PC with 2GB of RAM. The “factor” col-
umn indicates the time required to compute the Cholesky factor-
ization of G>G. This computation is a preprocess as the factoriza-
tion does not change for a particular choice of handle vertices. The
“solve” column indicates the time required to perform one iteration
of the Gauss-Newton algorithm described in Section 4. After each
iteration, the user-interface is updated and new positions for the
constrained handle vertices are queried by the solver. This allows
our system to remain interactive during the nonlinear optimization.
The “total” column includes the solve time plus additional unop-
timized bookkeeping that is performed during each iteration. Fig-
ure 4 graphs the solve time as a function of the number of examples
for the horse and elephant meshes.
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B C D E FA

Figure 5: Using MESHIK to pose a bar: (A) Two example poses superimposed on top of each other. (B) The left cap of the unbent bar is
constrained to stay in place while a single vertex on the right side is manipulated. Three edits using our nonlinear feature space are shown.
Note that MESHIK generalizes beyond the two examples and can create arbitrary bends in the plane. (C) In contrast, the linear feature space
interpolates and generalizes poorly. (D) In this top down view, moving the constrained vertex perpendicular to the bend causes a shear since
no examples were provided in this direction. (E)–(F) Providing one additional example in the perpendicular direction allows MESHIK to
generalize to bends in that direction as well as in the space in between.

A B C D

Figure 6: Top row: Ten lion example poses. Bottom row: A sequence of posing operations. (A) Two handle vertices are chosen. (B) The
front leg is pulled forward and the lion continuously deforms as the constraint is moved. (C) The red region is selected and frozen so that
the front leg can be edited in isolation. (D) A similar operation is performed to adjust the tail. The final pose is different from any individual
example.

A B C D E F

Figure 7: Posing simulated flag. Top row: Fourteen examples of a flag blowing in the wind created with a cloth simulation. (A) An
undeformed flag is used as the reference pose. (B)–(D) By positioning only the corners of the flag, we create realistic cloth deformations
without requiring any dynamic simulation. (E)–(F) Two frames from an animation in which the constraints on the corners were key-framed
to produce a walking motion.

... ... ......

Figure 8: Galloping horse and elephant animations were created using only four examples of each along with the same key-framed motion of
one vertex on each foot.
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6 Conclusion

Intuitive manipulation of meshes is a fundamental technique in
modeling and animation: modelers use it to edit shapes and anima-
tors use it to pose them. MESHIK is an easy-to-use manipulation
tool that adapts to each task by learning from example meshes. It
provides a direct interface for specifying the shape by allowing the
user to select and adjust any subset of vertices. It relieves the user
from having to adjust every vertex by extrapolating from examples
to position the remaining vertices automatically.

Current limitations of our method direct us to areas of future
work. The time required to solve the nonlinear optimization lim-
its interactive manipulation to meshes with around 10,000 vertices
and 10 examples. Different mesh representations, such as subdi-
vision surfaces or multiresolution hierarchies, may allow a more
efficient formulation of MESHIK for complex objects. Experimen-
tation with other feature vectors and numerical methods for their in-
version may also yield improvement. Different feature vectors may
capture the essential shape properties more compactly or yield a dif-
ferent inversion process with a more efficient numerical solution.

MESHIK describes a feature space with a nonlinear blend of all
example shapes. This choice is effective for a small number of ex-
amples, but describing complex mesh configurations may require
using many example shapes. Although this decreases the interactiv-
ity of our present system, new representations of the feature space
could be designed when examples are plentiful. The linear feature
space we describe is a possible starting point for such examination.

Perhaps the most exciting extension of our system would cap-
ture dynamic effects such as inertia and follow-through. Our only
experiment in this arena was the simple extension of the objective
function to encourage small weight changes between successive an-
imation frames. A comprehensive treatment would introduce dy-
namic features and a mechanism for matching both static and dy-
namic feature vectors. Such a system might ultimately provide a
practical compromise between the automation offered by physical
simulations and the control provided by key-framing techniques.
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