JSE Reference Manual v3

for release 0.10

Jonathan Bachrach
MIT Al Lab

January 7, 2002

1 Introduction

In this manual we describe a macro facility, called the Java
Syntactic Extender (JSE) [1], with the superior power and
ease of use of Lisp macro systems, but for Java, a language
with a more conventional algebraic syntax. We have writ-
ten a Java implementation which is a preprocessor taking
as input files with Java macro definitions and uses and
producing pure Java. It uses a parser generator called
ANTLR [2] and an associated extended ANTLR Java gram-
mar to produce a Java text to code quote translator.

JSE is made available under the GNU Public License (GPL).

2 Notation

Throughout this document JSE objects are described with
definitions of the following form:

Name I | Signature

Documentation

|V]

where the rightmost kind field has a one letter code as fol-
lows:

[N || Notation ”T
,F—” Fl ag || N
|S || Static Method ||N
| C || Const ant || N
[™M |[Met hod || NV
|W ||W)rk Around || N

3 Installation

JSE is currently distributed as a gzipped tar file. Unpack
the file as follows:

zcat jse-0-9.tar.gz | tar xpf -
This will create the following directory hierarchy:

j se
antlr-2.6.0

antlr -> antlr-2.6.0
DOC
SRC

EXAMPLES

TESTS

In order to successfully install JSE, you need to make sure
your cLasspaTH includes directories with ANTLR, JSE, and
any macros you might be needing. For tcsh for example, |
put the following:

setenv
setenv

JSE_ROOT ${HOWE}/ | se
ANTLR_ROOT ${JSE _ROOT}/ antlr
setenv JSE_SRC ${JSE_ROOT}/ SRC
set env CLASSPATH \
${ANTLR_ROOT}: \
${JSE_SRC}/ EXAMPLES: \
${ISE_SRC}/ TESTS: \
/fusr/local/java: \

inmy . teshrc file. The sse_roor and the Java system directory
included in the above casspatH Will depend on your actual
Java installation.

A 2. 6.0 version of ANTLR is provided in antLRRoor. JSE will
be upgraded to work with the latest version of ANTLR in
the near future.

3.1 Building JSE

There is a makefi I e in the 3se.src directory for rebuilding the
system. Type nake in that directory to build JSE. This will
build the JSE system and all of its examples.

4 Usage

From the command line you can preprocess a JSE file with
the following command:

java JSE file.jse ...

which will translate fie. j se to file.java. Then you just run
your Java compiler on the output as follows:

javac file.java ...

which will produce fie. cl ass.

Remember that macros must be compiled before you use
them. Also make sure to remove macro class files before

recompiling their definitions.

4.1 Flags
JSE takes a few flags:
| -pretty |[off

171

pretty print output

-lineup ||on

17]

maintain source line positions

-conpile || of f

|71

.java. cl ass:

$(COWPI LER) $(COPTI ONS) $7?
.j se.java:

java JSE $?

5 Status

Information and updates will be made available on
http://ww. j bot.org/jse. A paper on JSE can be found in
http://ww.jbot.org/jseljse. pdf.

JSE is much slower than it can be made to be. Future re-
leases will include efficiency enhancements.

Currently the following are not implemented:

runs j avac on resulting java files

| tracing | -trace | w I

|-stdi0 ||off

|~]

error.
trailing [none TR4%

take input from stdin and output to stdout

- deep || on

17]

macro expands recursively

-one | of f

macro expands only one level

| -trace || of f

171

turn on very verbose tracing

4.2 Example

One simple example is to compile and test the uni ess macro:

> java JSE -compile \

EXAMPLES/ unl essSExpander. j se

> java JSE -stdio
unl ess (true) doit();
eof

if (! true) doit () ;
>

In order to recompile the unless macro you would do the

following:

> rm EXAMPLES/ unl essSExpander. cl ass

> java JSE -compile \

EXAMPLES/ unl essSExpander. j se

I am hoping to make this less cumbersome in the future.

4.3 Makefiles

You can write Makefiles to do the JSE preprocessing and
Java compilation automatically by including implicit rules
for JSE and java suffixed files. For example, in aw’s make you

include the following at the top of a Makefile:

. SUFFI XES: .java .class .j

to teach it about your new implicit rules and your actual

implicit rules at the bottom of your Makefile:

| hygi ene | genSym || w
s S en | 107
use of ...
out si de of
codeQuot es * pattern variable || w I

Please send bug reports or suggestions to j b@bot . or g.

6 API

The following is a beginning of an API to JSE.

6.1 Hierarchy

Fragment
ConpoundFr agnent
Nest edFr agment
Br acesFr agnent
Br acket sFragment
Par ensFr agnent
Pat t er nVari abl eFr agnent
Dot Dot Dot Fr agnent
SequenceFr agnment
Expansi on
Tenpl at e
Leaf Fragnent
I dentifierFragnent
Li t er al Fragnent
Char act er Fr agnment
St ri ngFr agnent
I nt eger Fr agnent
Fl oat Fr agnent
Punct uat i onFr agnent
Quest i onFr agnent
Dot Fr agnent
Separ at or Fr agnment
ComuaFr agnent
Sem col onFr agnent
Synt axExcepti on

Synt axMat chFai | ure 6.2.5 FragmentList Methods
Synt axConst r ai nt

G ammar Synt axConst r ai nt fnil ||_FragrentList |Lc]
Li st empty list
Fragnent Li st flist || Fragnent Li st (Fragnent) || S I
LooseFragment Par ser creates a one fragment list
Macr oExpander [ferr |[Fragment (inD) 1M]
PrettyStream
gets nth element
| f push || Fragment Li st (Fragnent) || M I
6.2 Methods :
pushes arg onto front of list
Here is a partial list of methods. Consult the source code | fpush || FragmentList (int) || M]
for the rest. = f push(new | nt eger Fragment (x))
| f push || Fragnent Li st (float) || M I
6.2.1 Fragment Methods = fpush(new Fl oat Fr agnent (x))
| f push || Fragnent Li st (String) || M I
out | PrettyStream () || S I
- = f push(new StringFragnent (x))
pretty printer | f push || Fragnent Li st (char) || M I
|get|nt ||int 0 I|MI —
= f push(new Char act er Fragment (X))
converts to an integer if possible fhead |[Fragnment () || M]
tStri tri)
| getstring][String O v] gets head of list
converts to a string if possible ftail |[FragrentList () || M]
t Fl oat | . .
|_get Floa |[_roat O || M gets tail of list
converts to a float if possible [fappend |[FragmentList (FragnentList) || M]
t Val j ect ;]
|_get val ue |[_opiect O |] concatenation of two lists
converts to a value if possible freverse || Fragnent Li st () || M |
t okens || List () || M I i
reverses list
returns token representation | tokens || List O || M]

col | ect Bound - :
Vari bl s [Fragment List () || M] returns token representation

. . voi d (MacroExpander, bool ean isRe-
finds all pattern variables (P

expandMacr os cursive)

expand -
Tenpl at es | void () || M
6.2.2 CompoundFragment Methods | ppri nt || void (PrettyStream || M
otlnsi de | I print I|void(PrettyStreanj || M
ragnent s | Fragnent Li st () || M I

6.2.6 LooseFragmentParser Methods
6.2.3 SequenceFragment Methods

LooseFr agnent Par ser

- LooseFr agnent |
| Fragnment Li st || SequenceFragnent () || S I Parser 29 (String filenane, bool ean isTraced)

,;mrse—” Fragnent Li st () || M
6.2.4 ldentifierFragment Methods
Identifier 6.2.7 PrettyStream Methods
Fr agnent | I ndentifierFragment (String) || S
| genSym || I'dentifierFragment (String nane) || S | PrettyStream” PrettyStream (PrintStream || S
|capita|ize ||String() ||M |getLine ||int () ||M
| equal s || bool ean (IdentifierFragment) || M | println ”VOid() || M
| equal s || bool ean (String) || M | printin ”VOid(S”i”Q) || M
| print ||void(d)ject) || M

cl ose ||V0id() I|M
|print|n ||void(iject) ||./\/l
References

[1] Jonathan Bachrach and Keith Playford. The java syn-
tactic extender. In Proceedings of OOPSLA '01, October

2001.

[2] Terence Parr. Antlr. http://ww. antir.org/, 1999.

