Simple and Efficient Subclass Tests
Draft for ECOOP-02 — v22 — 27NOV01

Jonathan Bachrach
Artificial Intelligence Laboratory
Massachussetts Institute of Technology
Cambridge, MA 02139

jrb@ai.mit.edu

ABSTRACT

Fast subclass tests are crucial for the performance of object-
oriented languages, especially those with dynamic typing.
Unfortunately, fast constant time subclass encodings to date
present a difficult tradeoff: either choose a simple encod-
ing with 0(n~2) space requirements (where n is the num-
ber of classes) or a more complicated and slower to con-
struct encoding with better space properties. In this paper,
we present a new subclass test encoding, called the Packed
Vector Encoding (PVE), that is fast, simple and requires
average case 0(n log n) space.

1. INTRODUCTION

Subclass tests determine whether one class is a subclass of
another class. They are used throughout the implementa-
tion of an object-oriented language including in the com-
piler and often in the runtime. For example, they can be
used for typechecks, downcasts, typecases, and method se-
lection. Optimizing them can greatly improve the overall
performance of object-oriented systems.

When designing a subclass test algorithm (subclass?), there
are four important measures to consider:

The speed of the subclass? predicate,

the speed of the construction of subclass? data,

the space of necessary subclass? data, and

the support for, and cost of incremental changes (i.e.,
class (re)definitions).

Ll ol

Note that if the speed of construction is high enough then a
full reconstruction could serve as an acceptable mechanism
for supporting incremental changes.

This paper introduces a new subclass test encoding, called
the Packed Vector Encoding (PVE). We start by formalizing

Figure 1: An example class hierarchy.

the problem in Section 2. Then we discuss previous work in
Section 3. From there, we introduce the PVE in Section 4.
Next, in Section 5, we present PVE results and compare it
against relavent algorithms. Finally, we present a summary
and some recommendations in Section 6 and some remaining
work in Section 7.

2. DEFINITIONS AND EXAMPLE

A class hierarchy is a partial order of classes. Figure 1
shows a class hierarchy (taken from [16]) drawn as a directed
acyclic graph (DAG). This hierarchy will be used as a run-
ning example throughout the remainder of this paper. The
conventions used in these class hierarchy figures are that
parents are drawn above their children and that children
point to their parents above.

We introduce the important properties of class hierarchies
by defining them in Dylan [12] as shown in Figure 2. We
chose to present algorithms and definitions in Dylan because
it is high-level, object-oriented, and executable. We assume
that regardless of the actual implementation language, that
the properties defined in Figure 2 will be available to the
subclass? test algorithm (e.g., level, ancestors, and descen-
dents). We use the class name <klass> to avoid name con-
flicts with Dylan’s <class> class.

We assume objects as shown in Figure 3 having direct access

define constant <buf> = <stretchy-object-vector>;
define constant <vec> = <simple-object-vector>;
define constant <int> = <integer>;

define constant <mat> = <array>;

define constant <bit> limited(<int>, min: 0, max: 1);
define constant <intvec> = limited(<vec>, of: <int>);
define constant <bitset> = limited(<set>, of: <bit>);

define constant $no-id = -1;
define class <klass> (<object>)

slot parents :: <buf>;
slot children :: <buf> = make(<buf>, 0);

slot level :: <int> = 0;
slot id :: <int> = $no-id;
end class;

define method initialize
(k :: <klass>, #key parents, #all-keys)
next-method();
k.parents := as(<buf>, parents);
for (parent in parents)
parent.children := add(parent.children, k);
end for;
end method;
define method assign-level (k :: <klass>)
for(child in c.children)
child.level := max(child.level, k.level + 1);
end for;
for (child in c.children)
compute-level(child);
end for;
end method;

define generic subclass?

(x :: <klass>, y :: <klass>) => (well?);
define method ancestors (k :: <klass>) => (res :: <buf>)

remove-duplicates

(add(reduce(cat, #(), map(ancestors, k.parents)), k))

end method;
define method descendents (k :: <klass>) => (res :: <buf>)
remove—duplicates

(add(reduce(cat, #(), map(descendents, k.children)), k))

end method;

define method multiple-inheritance? (k :: <klass>) => (well?)
size(k.parents) > 1 | any?(multiple-inheritance?, k.children)

end method;

define method single-inheritance? (k :: <klass>) => (well?)
“multiple-inheritance? (k)

end method;

define method depth (k :: <klass>) => (well?)

reduce(max, k.level, map(level, k.children))
end method;

Figure 2: The basic klass structure, methods, and
properties.

define class <objekt> (<object>)
slot object-klass :: <klass>,
required-init-keyword: klass:;
repeated slot object-slots,
size-getter: slot-size, size-init-keyword: size:;
end class;
<klass>) => (well?)

define function isa? (x :: <objekt>, k ::

subclass?(object-klass(x), k)
end function;

Figure 3: The basic object class and instance of test.

<klass>) => (well?)

define method subclass? (x ::
member?(x, y.ancestors)
end method;

<klass>, y ::

Figure 4: The linear lookup subclass? algorithm.

to their class object. Typechecks can be performed with the
isa? function. Again, we use the class name <objekt> to
avoid name conflicts with Dylan’s <object> class.

3. PREVIOUS WORK

The problem of efficient subclass? tests has been a long-
standing challenge problem. Consult the surveys of Vitek et
al. [13] and Zibin and Gil [16] for further information.

3.1 ThelLinear Lookup Algorithm

The simplest subclass? algorithm is to simply search a class’
cached list of ancestors as shown in Figure 4. Unfortunately,
this algorithm is O(n), but because of its simplicity and
modest space requirements it is often used in language im-
plementations (e.g., [15]). Unfortunately, the linear lookup
subclass? test is too large to inline into a call-site, and by
its very nature does not yield predictable performance.

3.2 The Bitmatrix Algorithm

The bitmatriz algorithm is the simplest constant time algo-
rithm. The n classes are numbered, and their numbers are
used as indices into an n X n bitmatrix. The bitmatrix sub-
class? test, necessary additional klass slots, and construction
algorithm are shown in Figure 6. We assume that the bit-
matrix is represented by storing a bitvector row per klass.
Note that the bit twiddling complexity is hidden by imple-
menting the operations in terms of bitvectors.

As an example consider the example class hierarchy from
Figure 1 with nine classes. The classes are labeled using con-
secutive nonnegative integer birth dates starting with zero
as shown in Figure 7. A 9x9 bitmatrix is then constructed
and populated as in Figure 6. The resulting bitmatrix is
shown in Figure 5.

The advantages of the bitmatrix algorithm are that its sub-
class? test is constant time, it is fast to construct, works for
multiple inheritance, and is generally very simple. These
advantages make it appealing enough that many implemen-
tors use it as their mechanism of choice ([5] and [9]). The

X

N

ololololo|lo]lolo]r]|o| >
ololololo|lo]olr]olrr | w
ololololo]lo|r]~]rINio
ololololo|r]|olr]r|lw O
ololololr|o]lolr]olr~m
olololr|olo]lr]|r]r|u|m
olo|r|o]lolr]lrlrlrlo o
olr|ololr|r]|olr]r|~N| T
—lolololr]|ololr]|o]|lx|—

TIIZIOIM MO0 m| >I<
o NN w N RO

Figure 5: Bitmatrix for class hierarchy from Fig-
ure 7.

define class <klass> (<object>)

slot row ::
end class;

<bitvec>;

define method subclass? (x :: <klass>) => (well?)
y.row[x.id] = 1

end method;

<klass>, y ::

define method fab-subclass-encoding (klasses :: <vec>)
let n = size(klasses);
for (y in klasses)
y.row := make(<bitvec>, n);
for (child in y.children)
y.rowl[child.id] := 1;
end for;
end for;
end method;

Figure 6: The bitmatrix subclass? predicate.

Figure 7: The example class hierarchy labeled with
birth date ids.

define class <klass> (<object>)

slot row ::
end class;

<intvec>;

define method subclass? (x :: <klass>, y :: <klass>) => (well?)

x.level < y.level & x.row[y.level] = y.id
end method;

Figure 8: The Cohen subclass? algorithm.

define class <klass> (<object>)

slot bucket :: <int>;

slot row :: <intvec>;
end class;

<klass>) => (well?)

define method subclass? (x ::
x.row[y.bucket] = y.id
end method;

<klass>, y ::

Figure 9: The PE subclass? algorithm.

big disadvantage is that the size of the bitmatrix grows as
O(n?).

3.3 Cohen’s Algorithm

The first nontrivial constant time subclass? algorithm was
proposed by Cohen ([4]). In this algorithm, classes are as-
signed unique integer ids and allocated a row containing its
ancestor ids. A class x can then determine whether it is a
subclass of another class y by looking to see whether y’s id
is found in its row at the index corresponding to y’s level.
Figure 8 shows the Cohen subclass? algorithm and its neces-
sary additional klass support structure. Zibin and Gil ([16])
suggested that the range check can be removed by packing
these rows into a single vector.

The advantages of Cohen’s algorithm are that it is simple,
fast, constant time, and requires modest space. The main
disadvantage is that it only works for single-inheritance hi-
erarchies.

3.4 The (B)PE Algorithm

Vitek et al. [13] generalized Cohen’s algorithm to multi-
ple inheritance and called it the Packed Encoding (PE).
The general insight is that columns of the bitmatrix can
be shared for unrelated classes. These shared columns are
called buckets and a bucket assignment algorithm deter-
mines to which bucket a class belongs and the number of
buckets required for a given class hierarchy. The general
principle is that classes in the same bucket can not have
common subclasses and must have distinct ids. Figure 9
shows the PE specific additional klass slots and PE’s sub-
class? predicate.

The PE subclass? algorithm gives good compression over the
bitmatrix algorithm, has a very fast constant time subclass?
test, and is reasonably quick to construct. The big disad-
vantage is that, compared to the bitmatrix algorithm, it is

define class <klass> (<object>)

slot min-id :: <int>;

slot max-id :: <int>;
end class;

define method subclass? (x :: <klass>, y :: <klass>) => (well?)
y.min-id <= x.id & x.id <= y.max-id

end method;

define function assign-ids (root :: <klass>, base :: <int>)
local method descend (klass :: <klass>, this-id :: <int>)
if (klass.id == $no-id)

klass.id = this-id;
let min-id* = klass.id;
let max-id* = klass.id;

let next-id this-id + 1;
for (sub in klass.children)

next-id := descend(sub, next-id);
min-id* := min(min-id*, sub.min-id);
max-id* := max(max-id*, sub.max-id);
end for;
klass.min-id := min-idx;
klass.max-id := max-idx;
next-id;
else
this-id
end if;
end method;
descend(root);

end function;

Figure 10: The relative numbering subclass? algo-
rithm.

still relatively complicated to understand and to implement
efficiently.

3.5 Relative Numbering

One very efficient encoding of a class hierarchy is based on
storing two additional values per class, a min-id and max-id
value, which represent the min and max ids of a class and it’s
descendents. Figure 10 shows the necessary additional class
slots, and how, in one preorder pass, classes are numbered
and their min/max’s are calculated. In a single inheritance
class hierarchy, the relative numbering subclass? test works
out to be a simple range test as shown in Figure 10.

The relative numbering algorithm is incredibly simple, has
fast constant time algorithm, and exhibits O(n) space re-
quirements. As with Cohen’s algorithm, the big problem is
that it only works with single inheritance class hierarchies.

3.6 The PQ Encoding

Zibin and Gil [16] have generalized the relative numbering
algorithm for multiple inheritance class hierarchies. Their
encoding, called PQE, combines the ideas of relative num-
bering with the bucket idea of Vitek et al. [13] as shown in
Figure 11. Buckets are assigned and rows initialized using
PQ-trees [1].

The algorithm produces the best space results for any con-
stant time multiple-inheritance capable algorithm. The PQE
subclass? test is also very fast and compares well to the
best constant time subclass? instruction sequence. Unfor-
tunately, the PQE construction algorithm is complex and is

define class <klass> (<object>)

slot min-id :: <int>;

slot max-id :: <int>;

slot bucket :: <int>;

slot row :: <intvec>;
end class;

<klass>) => (well?)

define method subclass? (x ::
let id = row[x.bucket];
y.min-id <= id & id <= y.max-id
end method;

<klass>, y ::

Figure 11: The PQE subclass? algorithm.

define class <klass> (<object>)

slot code ::
end class;

<bitset>;

define method subclass? (x :: <klass>, y :: <klass>) => (well?)

subset?(x.code, y.code)
end method;

Figure 12: The Hierarchical Encoding subclass? al-
gorithm.

slower to run than both the bitmatrix and PE construction
algorithms.

3.7 Hierarchical Encodings

Hierarchical encodings perform subclass? tests by represent-
ing classes as sets of integers, typically a bitset. A class
x is a subclass of y if x’s bitset is a subset of y’s. Fig-
ure 12 shows the necessary additional class slots and the
subclass? test. Simple bitsets that obey this constraint are
the rows of the bitmatrix representation. Of course the
problem is that this representation still has O(n?) space
requirements. Constructing an optimal bitset is NP-hard,
but several researchers([10] and [2]) have devised heuristics
for building bitset representations that have more modest
space needs. Unfortunately, their construction algorithms
are complicated. Furthermore, their subclass? tests require
varying number of instructions.

3.8 Other RelatedWork

Eric Kidd [8] presents a related scheme for compressing
method dispatch matrices. The idea is that each row can
be better compressed by removing the initial and trailing
zero’s by recording the offset of the first and last nonzero
entries.

Several researchers ([3], [11]) have utilized class numbering
for method dispatch. The usual scheme is to number classes
such that ids for classes and their children form a dense
interval. Lists of relavent ranges are then constructed and
are searched using code generated decision trees.

4. THE PACKED VECTOR ENCODING
This paper introduces the Packed Vector Encoding (PVE),
a fast and simple subclass? encoding. The basic idea is to

define function assign-ids
(root :: <klass>, base ::
local method descend (klass ::
if (klass.id == $no-id)
klass.id := this-id;
let next-id = this-id + 1;
for (sub in klass.children)
next-id := descend(sub, next-id);
end for;
next-id;
else
this-id;
end if;
end method;
descend(root, base);
end function;

<int>) => (res :: <int>)
<klass>, this-id :: <int>)

Figure 13: A simple preorder class numbering

scheme.

define function assign-min/max-ids

(root :: <klass>, klasses :: <vec>)

local method descend (klass :: <klass>)
when (klass.min-id == $no-id)

let min-idx* = klass.id;

let max-idx* = klass.id;
klasses[klass.id] := klass;

for (sub in klass.children)
descend (sub) ;
min-id* := min(min-id*, sub.min-id);
max-id* := max(max-id*, sub.max-id);
end for;
klass.min-id
klass.max-id
end when;
end method;
descend(root);
end function;

min-idx;
max—idx;

Figure 14: A min/max id assignment numbering
procedure.

compress the sparse bitmatrix information into a vector us-
ing simple class numbering and range compression. The
tradeoff is simplicity for slightly increased but manageable
space characteristics.

4.1 Preorder ClassNumbering

The strategy for class numbering is to choose class ids such
that for each row the “ones” are moved into a single dense
clump. The simplest class numbering algorithm with this
property is a preorder depth first scheme shown in Figure 13,
which tends to force the ids for a given class and its chil-
dren into the densest possible interval. Figure 14 shows the
algorithm for computing the minimum and maximum ids
for a class and its children and collecting each class into a
vector indexed by class id. Figure 15 shows the resulting
labeling after running this simple class numbering algorithm
on the class hierarchy from Figure 1. Figure 16 shows the
clumps in the resulting bitmatrix. Note that this class num-
bering results in a far “clumpier” result than the birth date
based class numbering scheme used to create the bitmatrix
in Figure 5.

4.2 The Packed Vector Encoding

Figure 15: Results of simple preorder class number-
ing.

x|Aalc[F[G|D[H[B[E]I
ylidlo|1]/2|3/4|5|6|7 |8
Alofif1]1]1]1]1folo]o0
cli|ofi]1]1folo|o]0]0
Fl2[olof1fo]olololo]0
Gg/3fofoof1fo]olofo [0
Dlafolojof1|[1]1fo]0]0
H|s5[o]o]o]of1fo/o]0]0
Blefof1]1|1|1|1 /1|11
El7[o]ojoo|[of10]1]1
I |sfojojo]o]ojo|0|0f2

Figure 16: The bitmatrix constructed using a pre-
order assignment of class ids.

define function assign-offsets
(klasses :: <vec>) => (res :: <int>)
let off = 0;
for (klass in klasses)
let range = klass.max-id - klass.min-id + 1;
klass.base := off;
off := off + range;
end for;
off
end function;

Figure 17: A procedure for assigning base offsets
into the packed subclass vector.

define function fill-pv
(klasses :: <vec>, pv-len ::
let pv = fill(make(<intvec>, size: pscv-len),
for (klass in klasses)
for (super in klass.ancestors)
let offset = super.base - super.min-id;
pvlklass.id + offset] := 1;
end for;
end for;

<int>) => (res :: <intvec>)
$no-id) ;

pv
end function;

Figure 18: A procedure for populating a packed bit
vector.

This bitmatrix can now be usefully compressed by packing
the clumps into a single vector. Each class can easily record
its base offset into this vector by summing the ranges of all
lower numbered classes as shown in Figure 17, and the ones
can be stored in the appropriately sized PVE as shown in
Figure 18. The resulting packed bitmatrix vector is shown
in Figure 19, and the corresponding subclass? predicate is
shown in Figure 20. Unfortunately, this results in many
more instructions than the bitmatrix subclass? algorithm of
Figure 6.

4.3 Avoiding the RangeChecks

Fortunately, we can improve this subclass? predicate by
avoiding the range checks using a row unique “one” value,
knowing that out of range accesses will be guaranteed to in-
nocuously read invalid ids. The simplest choice is to just use
a given row’s class id as its unique key. Making this modifi-
cation produces the subclass matrix shown in Figure 21, and
the PVE shown in Figure 22. The new subclass? predicate
is shown in Figure 23.

We can further improve this predicate by combining the
min-id and base constants to form a single constant, called
offset, which can be precomputed during assign-offsets.

y: A C F GD H B E |

x ACFGDHCFGFGGDHHCFGDHBEI DHBE!

o 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Il\l\l\l\l tfafafafafafafafafaafafafafafs]s]a]a]o]a]a]s]

Figure 19: A packed bit subclass vector.

define class <klass> (<object>)

slot min-id :: <int>;

slot max-id :: <int>;
slot base :: <int>;
end class;

define variable *pv* :: <intvec> = make(<intvec>, size: 0);

define function subclass?
(x :: <klass>, y :: <klass>) => (well?)

y-min-id <= x.id & x.id <= y.max-id
& *pv*[y.base — y.min-id + x.id] =
end function;

Figure 20: The naive PVE subclass predicate with
range checks.

x|Alc[F|[G|D[H |
ylidlol1]2]3]al5]6]78
Alofolololofo|of- - -
clal-Qalalaf-T-1-1-1-
Flol-T-120-1-1-1-[- [-
clal-T-1-0I30-[-T-T-T-
Dlal-T-T-F4l4laf- - -
His[-T-T-T-0I50-1-[- -
B|6[-|6]6/6[/6/6/6|6|6
El7[-T-1-1-[-07/-177
clel-T-T-T-T-T-T7-7- I8

Figure 21: A subclass matrix using class ids as

unique keys.

y: A (o} F GD H B E |
X ACFGDHCFGFGGDHHCFGDHBEI DHBE!
0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

IO\O\O\O\O ofs[s]1]2]s]4]aT4]s]e]c 6 e 666 6]7[-[7]7]8]

Figure 22: A packed vector encoding using class ids
as unique keys.

define function subclass?
(x :: <klass>, y :: <klass>) => (well?)

pv[y.base - y.min-id + x.id] = y.id
end function;

Figure 23: A more sophisticated PVE subclass pred-
icate without range checks.

define class <klass> (<object>)

slot min-id :: <int>;

slot max-id :: <int>;
slot offset :: <int>;
end class;

define function subclass?

(x :: <klass>, y :: <klass>) => (well?)
*pvk[y.offset + x.id] = y.id
end function;

Figure 24: The final optimized PVE subclass predi-
cate.

define function assign-offsets

(klasses :: <vec>) => (res :: <int>)
let off = 0;
for (klass in klasses)
let range = klass.max-id - klass.min-id + 1;

klass.offset
off
end for;
off
end function;

off - klass.min-id;
off + range;

Figure 25: A procedure for assigning offsets into the
PVE.

The final optimized subclass? predicate shown in Figure 24
is now competitive with the bitmatrix subclass? predicate of
Figure 6. For completeness, the updated assign-offsets
code is shown in Figure 25, the optimized PVE populat-
ing procedure is shown in Figure 26, and the top-level PVE
construction procedure is shown in Figure 27.

4.4 Limited SizeKeys—PVE,

As currently described, PVE’s require log,n bits per key
compared to the single bit per key required by the bitma-
trix algorithm. Even better compression could be achieved
by using keys limited to & < log, n number of bits in the
packed vector. In order to make this work, we must ensure
that each clump’s key is unique across the entire range of
class ids. This constraint is easily achieved during the off-
set assignment process by adding a gap of negatives to the
packed vector whenever the current key collides with that
key’s last max index, that is, whenever for a given klass,
the max index of the last recorded klass.id is greater than
klass.base minus klass.min-id, or klass.offset. 'The

define function fill-pv

(klasses :: <vec>, pv-len :: <int>) => (res :: <intvec>)
let pv = fill(make(<intvec>, size: pscv-len), $no-id);
for (klass in klasses)

for (child in klass.children)

pvlklass.offset + child.id] := klass.id;

end for;

end for;

pscv
end function;

Figure 26: The PVE populating procedure.

define method fab-subclass-encoding

(roots :: <vec>) => (res :: <intvec>)
let n = 0;
for (root in roots)

n := assign-ids(root, n);
end for;

let klasses = make(<vec>, size: n);
for (root in roots)
assign-min/max-ids(root, klasses);
end for;
let len = assign-offsets(klasses);
fill-pv(klasses, len);
end method;

Figure 27: The PVE construction procedure.

assign-lim-offsets algorithm shown in Figure 28 shows
the new PVE}, construction procedure *, subclass? test, and
necessary additional klass slots. The PVE offset assign-
ment procedure (assign-lim-offsets) maintains a vector
of last indices with an entry for each key adding a gap when-
ever necessary to enforce this constraint.

As an example, calling the assign-lim-offsets function
with k equal to 2 produces the packed vector shown in Fig-
ure 29. One pad had to be inserted at index 11 to avoid a
collision. The previous best PVE from Figure 22 required 4
bits per key times 28 entries resulting in a total of 112 bits.
The new vector requires only 2 bits per key times 29 entries
resulting in a total of 58 bits, which is 52% as small. As the
number of bits decreases, the padding cost increases until k
equals 1, when the algorithm becomes exactly the same as
the bitmatrix algorithm.

Unfortunately, allowing arbitrary key sizes makes the sub-
class? predicate more complicated because it must now ex-
tract bit fields. Therefore, the best speed/space trade off
would force the keys to sizes that are supported by the hard-
ware, such as 8, 16, and 32 bit keys.

4.5 Multiple Inheritance

Unfortunately, the simple preorder class numbering scheme
of Figure 13 is suboptimal for class hierarchy’s involving
multiple inheritance. In particular, mixins do not necessar-
ily have nearby class numbers to their children. As a result,
mixin ids will get assigned somewhat randomly, resulting in
large and sparse clumps. A simple class numbering variation
shown in Figure 30, aggressively walks mixins, increasing the
likelihood that a mixin’s id will be nearby to its children’s
ids.

Figure 31 shows the resulting class ids and clump ranges af-
ter running the multiple inheritance version of assign-ids.
The resulting PVE is shown in Figure 32. Notice that the
algorithm was able to squeeze out the single gap in clump 7
of Figure 22.

4.6 SpaceAnalysis

'Note that a couple trivial changes would be required to
top-level construction procedure as well.

define class <klass> (<object>)

slot min-id ::

<int>;
slot max-id :: <int>;
slot offset <int>;
slot key <int>;

end class;

define function subclass?
(x :: <klass>, y :: <klass>) => (well?)
*pvk[y.offset + x.id] = y.key
end function;

define function fill-pv
(klasses :: <vec>, pv-len :: <int>) => (res <intvec>)
let pv = fill(make(<intvec>, size: pscv-len), $no-id);
for (klass in klasses)
for (child in klass.children)
pvlklass.offset + child.id]
end for;
end for;
pscv
end function;

:= klass.key;

define function assign-lim-offsets

(klasses :: <vec>, k :: <int>) => (res <int>)
let nkeys =2 "k -1;
let max-bases = fill(make(<intvec>, size: nkeys), 0);
let nbase = 0;

for (klass in klasses, key = O then modulo(key + 1, nkeys))
let min-id = klass.min-id;

let base = max(ibase, max-bases[id] + min-id);
let range = klass.max-id - min-id + 1;
klass.key := key;
klass.offset := base - min-id;
nbase := base + range;
max-bases[id] := nbase - 1;

end for;

nbase

end function;

Figure 28: A procedure for assigning PVE offsets
given limited keys.

y: A c FGD H B E I
x ACFGDHCFGFGFGDHHCFGDHBEI DHBE

0 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[ooJofoJofo s s 2Jo]- [s]s]1]2f0 oTo oo o oo a]- [1]1]2]

Figure 29: A packed vector encoding using keys lim-
ited to two bits.

define function assign-ids
(root :: <klass>, base ::
local method descend (klass
if (klass.id == $no-id)
klass.id := this-id;
let next-id = this-id + 1;
for (sub in klass.children)
next-id := descend(sub, next-id);
end for;
for (sup in klass.parents)
next-id := descend(sup, next-id);
end for;
next-id;
else
this-id;
end if;
end method;
descend(root, base);
end function;

<int>) => (res <int>)
<klass>, this-id :: <int>)

Figure 30: Mixin aware preorder class numbering
function.

Figure 31: Mixin aware class numbering.

y: A (o} F GD H E I B

X ACFGDHCFGFGGDHHHEI I CFGDHEI B
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[ofoJoJofofofs]a[s]2]s]4 4 4]s]c]c [6]7[e[e[e[e e e e 8]

Figure 32: A packed vector encoding using a mixin
aware preorder class numbering procedure.

Figure 33: Best case Hierarchy.

Figure 34: Worst Case Single Inheritance Hierarchy.

In this section we consider the best and worst case space
properties of the PVE in order to better understand its
space consumption. PVE has best case space usage of O(n),
worst case of O(n?), and worst case single inheritance of
O(nlogn). The best case arises from depth one single inher-
itance hierarchies of the form shown in Figure 33. The worst
single inheritance case arises from binary trees as shown in
Figure 34. Finally, the worst case arises from depth one hi-
erarchies with an equal number of roots to children as shown
in Figure 35. The actual space usage depends on the kind
and amount of multiple inheritance.

5. RESULTS

Twenty real world data sets ranging in size from 66 to 5515
classes were used to test the various aspects of the PVE. The
bulk of these class hierarchies were taken from ([6], [13],
and [16]). We also added two new large hierarchies from
Dylan [7] and Flavors [14]. Table 1 shows the properties of
the various data sets. The class hierarchies are listed in order
of number of classes. The amount of multiple inheritance is
reported in the parents and ancestors columns. LOV and
GEO represent an extreme use of multiple inheritance and
are not representative of hierarchies created by humans.

Figure 35: Worst Case Hierarchy.

Table 2 shows the space results with PVE, compared against
the bitmatrix, PE, and PQE algorithms ? with space num-
bers reported in kbytes. PQE results are reported only for
hierarchies exhibiting multiple inheritance. PVE’s compres-
sion over the bitmatrix algorithm gets better with increasing
numbers of classes. For small n, the factor of eight win of
the bitmatrix algorithm by using one bit keys dominates
the O(n?) consumption, but as n grows, PVE’s logn num-
ber of bits needed for keys combined with its approximate
O(nlogn) number of entries starts to kick in. PQE is the
clear winner of compression with an average of 5x space ad-
vantage over PVEg ®. Finally, PVEs consistently runs neck
and neck with PE across the various class hierarchies, but
in the end, PE compresses about 43% better than PVEsg.

Table 3 compares PVE sizes against the n?, nlogn and op-
timal baselines. The n? baseline is the number of entries in
a bitmatrix, the nlogn baseline is the worst case for sin-
gle inheritance hierarchies and represents acceptable space
growth, and the optimal baseline is the number of ones in
the bitmatrix needed to represent a class hierarchy and the
smallest PVE possible. First, we can see that the bitmatrix
is often quite sparse with as low as 1.3% occupancy in the
JAV30 hierarchy. Second, these results suggest that PVE’s
space usage is pretty close to nlogn and that the optimal
baseline is always smaller than nlogn for the example hier-
archies. Finally, based on the optimal results, there appears
to be approximately a factor of up to about 12 room for
improvement for PVE.

Table 4 compares sizes with various values of k in the PVEy
algorithm. Note that PVE’s key sizes are automatically cho-
sen to be either 8 or 16 depending on the number of classes
in the class hierarchy. It is clear that smaller keys can im-
prove the compression and that too small a value of k£ can
worsen the compression. A reasonable choice of k£ for the
sample hierarchies is 8.

Table 5 shows the construction time results of PVEg com-
pared against PE and bitmatrix with time reported in mil-
liseconds. The timings were conducted on a 700Mhz Pen-
tium III notebook computer. All algorithms except for PQE
were coded in Dylan with full optimizations, adequate type
declarations, and range checks turned off. The PE algorithm
was implemented in a rather straightforward fashion using
bitsets for the sets *. The PQE algorithm was written in
C++ and was supplied by the PQE authors °.

First, we can see that PVEg’s construction algorithm is on
average 4x faster than bitmatrix’s. Second, PVEg’s con-

2Consult either [13] or [16] for space results for and compar-
isons against the NHE algorithm.

3Unfortunately, this advantage might not be so dramatic in
the dynamic case (e.g., where y is unknown statically, per-
haps by choice), where their heterogenous representations
might compromise subclass? test performance.

4A more simple-minded PE implementation using stretchy
vectors instead of bitsets resulted in times approximately
10x slower.

®The PQE times do not include required hierarchy transfor-
mations and calculations that preliminary timings indicate
could add an additional 30% overhead.

Name n Max Max/Avg Max/Avg Language Description
Depth # Parents # Ancestors

IDL 66 6 2/1.1 8/3.8 IDL IDL

JAV 225 6 3/1.2 7/3.2 Java JDK 1.1

LAU 293 11 3/1.1 16/8.2 Laure Base system

NST 309 6 1/1.0 7/3.0 Objective-C NextStep

ED 434 10 7/1.7 23/8.0 Laure Editor

LOV 436 9 10/1.8 24/8.5 LOV Base system

UNI 613 8 2/1.0 9/3.0 C++ Unigraph

CEC 932 12 3/1.2 23/6.5 Cecil System

CLO 1070 12 9/1.4 51/8.0 CLOS Symbolics

GEO 1318 13 16/2.1 50/14.0 LOV Machine-generated

DT3 1355 12 1/1.0 13/5.4 Smalltalk Digitalk3

JAV18 1704 9 11/1.1 16/4.3 Java JDK 1.18

SLF 1801 16 9/1.0 40/29.9 Self System

VW2 1956 14 1/1.0 15/6.4 Smalltalk VisualWorks 2

EIF 1999 17 10/1.3 39/8.8 Eiffel Eiffeld

VA2 3239 13 2/1.0 14/6.4 Smalltalk VisualAge 2

JAV22 4339 9 14/1.2 17/4.4 Java Java 1.22

DYL 4931 14 9/1.2 40/7.3 Dylan Functional Developer

JAV30 5438 9 14/1.2 19/4.4 Java JDK 1.30

FLA 5515 12 53/5.3 54/7.1 Flavors Symbolics

Avg. 1898.6 10.9 9.0/14 24.2/7.5

Table 1: Properties of class hierarchy data sets.

Name BM PE PE PQE PQE PVEgs PVEg PVEg PVEg
% BM % BM % BM % PE % PQE
IDL 0.5 0.4 72.8 0.1 20.0 0.3 49.3 67.7 300.0
JAV 6.3 1.6 24.9 0.2 3.2 0.7 11.8 47.3 350.0
LAU 10.7 4.7 43.7 0.5 4.7 5.9 54.6 125.0 1180.0
NST 11.9 0.6 5.2 0.9 7.6 147.6
ED 23.5 11.7 49.8 18.9 80.2 161.2
LOV 23.8 12.2 51.4 2.7 11.3 23.4 98.7 192.1 866.7
UNI 47.0 4.9 10.4 0.8 1.7 2.0 4.3 41.1 250.0
CEC 108.6 20.5 18.9 3.7 3.4 18.4 16.9 89.7 497.3
CLO 143.1 54.6 38.1 10.8 7.5 18.5 12.9 33.9 171.3
GEO 217.1 68.5 31.6 14.5 6.7 153.8 70.9 224.6 1060.7
DT3 229.5 2.7 1.2 8.7 3.8 319.2
JAV18 363.0 27.3 7.5 7.0 1.9 25.7 7.1 94.4 367.1
SLF 4054 684 16.9 10.6 2.6 59.4 14.7 86.8 560.4
VW2 478.2 3.9 0.8 15.9 3.3 406.8
EIF 499.5 78.0 15.6 18.2 3.6 216.5 434 2777 1189.6
VA2 13114 29.2 2.2 34.7 2.6 118.9
JAV22 23534 781 3.3 244 1.0 109.2 4.6 139.8 447.5
DYL 3039.3 207.1 6.8 50.5 1.7 120.0 4.0 58.0 237.6
JAV30 3696.5 103.3 2.8 319 0.9 154.5 4.2 1495 484.3
FLA 3801.9 297.7 7.8 102.0 2.7 286.0 7.5 96.0 280.4
Avg. 20.6 4.9 25.1 143.8 545.5

Table 2: Space results of the bitmatrix, PE, PQE, and PVEsg algorithms given in kbytes.

NAME n® mnlogn opt. opt. opt. %% PVE PVE% PVE%

% n® nlogn nlogn opt.
IDL 0.5 0.5 0.3 46.5 54.8 0.3 58.0 105.9
JAV 6.3 1.8 0.7 11.3 39.7 0.7 41.4 104.3
LAU 10.7 2.6 2.4 44.6 90.7 5.9 222.3 245.0
NST 11.9 2.8 0.9 15.3 32.8 0.9 32.8 100.0
ED 23.5 3.9 3.5 29.4 88.7 18.9 483.5 544.9
LOV 23.8 3.9 3.7 31.2 94.5 23.4 597.5 632.5
UNI 47.0 6.1 1.9 7.9 30.2 1.9 30.5 100.9
CEC 108.6 9.3 6.0 11.1 64.6 18.2 194.8 301.0
CLO 143.1 11.8 8.6 12.0 72.8 18.2 154.5 212.1
GEO 217.1 14.5 184 17.0 127.2 153.8 1061.8 834.7
DT3 229.5 14.9 7.3 6.4 49.1 7.3 49.1 100.0
JAV18 363.0 18.7 7.4 4.1 39.5 23.2 123.6 312.7
SLF 405.4 19.8 53.8 26.6 271.7 57.7 291.2 107.2
VW2 478.2 21.5 125 5.2 58.2 12.5 58.2 100.0
EIF 499.5 22.0 17.6 7.0 79.8 214.9 977.2 1223.7
VA2 1311.4 38.9 20.7 3.2 53.1 20.7 53.3 100.3
JAV22 2353.4 56.4 18.9 1.6 33.6 85.0 150.6 448.6
DYL 3039.3 64.1 36.0 2.4 56.2 90.6 141.3 251.3
JAV30 3696.5 70.7 23.8 1.3 33.6 111.8 158.2 470.4
FLA 3801.9 717 394 2.1 55.0 259.0 361.2 657.3
Avg. 14.3 71.3 262.1 347.6

Table 3: Comparison of PVE against n?, nlogn, and optimal baselines reporting number of K entries.

Name BM PE PQE PVEs DPVEs PVEs DPVEs
%BM %PE % PQE
DL 0.3 31 3.0 10 427 35 33.3
JAV 08 127 3.0 0.3 358 2.3 10.0
LAU 25 185 4.0 0.6 246 3.4 15.0
NST 11 14.2 04 374 2.8
ED 37 414 1.6 435 3.9
LOV 44 421 581 14 308 3.2 2.4
UNI 24 318 3.0 0.8 34.8 2.6 26.7
CEC 76 865 46.0 2.1 277 2.4 4.6
CLO 40.9 2114 1182 3.1 7.5 1.4 2.6
GEO 23.6 2043 4616 83 351 4.0 1.8
DT3 63.1 7L.3 3.1 4.8 4.3
JAVI8 121 1580 22.1 44 366 2.8 19.9
SLF 1763 2146 89.1 8.4 4.8 3.9 9.4
VW2 546 127.2 123 226 9.7
EIF 269 2856 2353 11.6 42.9 4.0 4.9
VA2 38.8 2100 100 25.7 4.8
JAV22 50.8 7867 1252 149 29.3 1.9 11.9
DYL 76.7 891.9 3335 243 317 2.7 7.3
JAV30 73.3 12387 179.3 19.9 27.1 1.6 11.1
FLA 251.1 1884.8 2991.3 344 13.7 1.8 1.2
Avg. 27.9 34 10.8

Table 5: Construction time results of the bitmatrix, PE, and PVE;g algorithms given in milliseconds.

Name PVE PVE4 PVE; PVEsg PVEs

% PVE % PVE
IDL 0.3 0.2 61.9 0.3 100.0
JAV 0.7 1.0 137.2 0.7 100.0
LAU 11.7 3.9 33.7 5.9 50.0
NST 1.8 1.8 100.6 0.9 50.0
ED 37.8 10.9 29.0 18.9 50.0
LOV 46.9 13.1 28.0 23.4 50.0
UNI 3.7 6.7 178.4 2.0 53.8
CEC 36.3 21.5 59.1 18.4 50.7
CLO 36.4 23.5 64.6 18.5 50.9
GEO 307.9 96.3 31.3 153.8 50.0
DT3 14.6 32.7 223.6 8.7 59.1
JAV18 46.3 56.7 122.4 25.7 55.5
SLF 115.4 78.9 68.3 59.4 51.5
VW2 25.0 67.4 269.2 15.9 63.5
EIF 429.8 155.7 36.2 216.5 50.4
VA2 414 180.8 436.3 34.7 83.6
JAV22 169.9 344.0 202.4 109.2 64.3
DYL 181.2 4314 238.1 120.0 66.3
JAV30 223.6 535.0 239.2 154.5 69.1
FLA 517.9 589.0 113.7 286.0 55.2
Avg. 133.7 61.2

Table 4: Effect of £ on space in kbytes.

struction times are much lower than PE and PQE across
the board. In fact, PVEg is up to 100x faster to construct
than PE or PQE. There is more that could be done to fur-
ther optimize the PE construction algorithm, but a signif-
icant effort was made for the purposes of this paper. The
construction times for PE reported in ([13] and [16]) suggest
that PE’s can be constructed faster but clearly at the cost
of implementation complexity. Finally, PVEg’s construction
time is low enough to consider it as a mechanism for incre-
mental update. Even for the largest hierarchy (FLA) with
5515 classes, the full reconstruction takes under 35 millisec-
onds. It is likely that these PVEg construction times are
conservative given their implementation in such a high-level
language as Dylan.

6. CONCLUSIONS

The PVE is a very simple and efficient subclass? test algo-
rithm. It is fast enough to be used in incremental settings
for dynamic class (re)definition. It is easy to understand
and can be implemented in a page of code. In comparison,
the two previous best encodings, PE and PQE, require at
least a 10x and 100x implementation effort respectively 6.
While PVE’s are not as small as those produced by PQE,
it does produce encodings comparable to PE, the previous
best encoding.

7. FUTURE

The comparison between PVE and optimal PVE from Ta-
ble 3 shows that there is still much room for improvement in
the numbering / packing algorithm. We will be investigating
other simple algorithms that further increase compression.

In the very least, implementors would need to include and
potentially tune this relative number of lines of code.

8. CREDITS

This paper benefitted from helpful discussions with Craig
Chambers, James Knight, Greg Sullivan, and Jan Vitek.
Zibin and Gil [16] supplied their PQE software making pos-
sible PQE comparisons. We thank Gary Palter, Kalman
Reti, Jan Vitek, and Zoav Zibin for supplying the various
class hierarchies. We are especially grateful to Eric Kidd
for many fruitful conversations and for general inspiration.
Finally, Greg Sullivan and Eric Kidd read and commented
on many drafts of this paper leading to great improvements.

9. REFERENCES
[1] K. S. Booth and G. S. Lueker. Testing for the
consecutive ones property, interval graphs, and graph
planarity using P-Q tree algorithms. J. of Comp. and
Syst. Sci., 13:335-379, 1976.

[2] Yves Caseau. Efficient Handling of Multiple
Inheritance Hierarchies. In Proceedings of the
OOPSLA 98 Conference on Object-oriented
Programming Systems, Languages and Applications,
pages 271-287, October 1993. Published as
Proceedings OOPSLA 93, ACM SIGPLAN Notices,
volume 28, number10.

[3] Craig Chambers and Weimin Chen. Efficient multiple
and predicate dispatching. In Loren Meissner, editor,
Proceeings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages €
Applications (OOPSLA*99), volume 34.10 of ACM
Sigplan Notices, pages 238 255, N. Y., November 1 5
1999. ACM Press.

[4] N. H. Cohen. Type-extension tests can be performed
in constant time. In ACM Transactions on
Programming Languages and Systems, volume 13,
pages 626—629, 1991.

[5] Jeffrey Dean, Greg DeFouw, David Grove, Vassily
Litvinov, and Craig Chambers. Vortex: An optimizing
compiler for object-oriented languages. In Conference
on Object-Oriented Programming Systems, Languages
& Applications (OOPSLA ’96), pages 83 100, 1996.

[6] Natalie Eckel and Joseph Gil. Empirical study of
object-layout strategies and optimization techniques.
In Elisa Bertino, editor, ECOOP ’00 —
Object-Oriented Programming 14th European
Conference, volume 1850 of Lecture Notes in
Computer Science, pages 394—421. Springer-Verlag,
New York, NY, June 2000.

[7] Functional Objects Inc. Functional developer.
www . fun-o.com, 2001.

[8] Eric Kidd. Efficient Compression of Generic Function
Dispatch Tables. Technical Report TR2001-404,
Dartmouth College, Computer Science, Hanover, NH,
June 2001.

[9] Andreas Krall and Reinhard Grafl. CACAO — A
64-bit JavaVM just-in-time compiler. Concurrency:
Practice and Ezperience, 9(11):1017-1030, November
1997. Special Issue: Java for computational science
and engineering — simulation and modeling II.

[10] Andreas Krall, Jan Vitek, and R. Nigel Horspool.
Near optimal hierarchical encoding of types. In
Mehmet Aksit and Satoshi Matsuoka, editors,
ECOOP 97 — Object-Oriented Programming 11th
European Conference, Jyviskyld, Finland, volume
1241 of Lecture Notes in Computer Science, pages
128 145. Springer-Verlag, New York, NY, June 1997.

[11] Christian Queinnec. Fast and compact dispatching for
dynamic object-oriented languages. Submitted to IPL.

[12] A. Shalit. The Dylan Reference Manual. Addison
Wesley, 1996.

[13] Jan Vitek, Nigel Horspool, and Andreas Krall.
Efficient type inclusion tests. In Toby Bloom, editor,
Conference on Object Oriented Programming Systems,
Languages & Applications (OOPSLA’97), pages
142-157, Atlanta, October 1997. ACM.

[14] D. Weinreb and David Moon. The Lisp Machine
Manual. Symbolics Inc., 1981.

[15] N. Wirth. Type extensions. ACM Transactions on
Programming Languages and Systems, 10(2):204—214,
April 1988.

[16] Yoav Zibin and Joseph (Yossi) Gil. Efficient subtyping
tests with pg-encoding. In Toby Bloom, editor,
Conference on Object Oriented Programming Systems,
Languages & Applications (OOPSLA’01), pages
142-157, Tampa, October 2001. ACM.

