
Infrastructure for Engineered Emergence on Sensor/Actuator

Networks

Jacob Beal and Jonathan Bachrach

MIT CSAIL

April 28, 2006

Abstract

Our ability to control emergent phenomena depends on decomposing them into aspects susceptible
to independent engineering. The amorphous medium abstraction separates what behavior is desired on
a continuous space and how the behavior is implemented on a sensor/actuator network approximating
the space, while the Proto language provides a means of composing self-organizing primitives on an
amorphous medium. We thus separate the engineering problem into three components: a discrete kernel
to emulate an amorphous medium and distribute code, a compiler for Proto, and implementations of
high-level coordination and homeostasis primitives, allowing simple and concise expression of programs
controlling spatial behaviors. Programs written using our implementation of this framework have been
verified in simulation on over ten thousand nodes, as well as on a network of Berkeley Motes.

1 Self-Managing Systems Engineering

The study of self-organizing systems has now reached the tool-building phase, in which a new discipline of
self-managing systems engineering can begin to emerge.

The next step is to refine the principles of self-organization into a system of composable parts suitable for
engineering—as the principles of electromagnetism are captured for electronic engineering in components
like capacitors, transistors and resistors.

To transform a science into an engineering discipline, we must identify an operating range, decouple aspects
of the problem from one another, create standard interfaces for composition, identify primitive components
which conform to the standards, and create rules of abstraction which hide the complexity of systems of
components.

We have begun this process in the domain of sensor/actuator network applications, observing that in many
applications, the network is deployed to approximate a physical space, and that what is being programmed
is the space rather than the network. This observation allows us to decouple self-management problems
using the amorphous medium abstraction, so that global behavior descriptions in our Proto language can
be compiled automatically into locally executed code which produces emergent phenomena matching the
global description. We have experimentally verified our code both in simulation and (for small programs)
on a network of sensor/actuator nodes.

1



2 Decoupling: Amorphous Medium

Consider deploying a network of devices to manage a large farm. The tasks to be carried out by the
devices—irrigation, pest management, and fertilization, for example—are naturally specified in terms of
regions of the farm: “a potato field is watered every so-many hours during hot weather” or “minor alfalfa
weevil infestations are treated with an early harvest, but major infestations are treated with pesticides.”
An applications programmer for farms should be able to write code at this layer of abstraction, rather than
having to specify how the devices in the fields will coordinate to carry out the programs.

The divide between specification and implementation is captured by the amorphous medium abstraction:
an amorphous medium is a continuous computational material filling the space of interest. Every point in
the medium is a computational device which independently executes the same code as every other device
in the medium.1 Each device has a neighborhood of devices less than d units of distance away, and exposes
its internal state to its neighborhood. Conversely, a device can read the internal state of devices in its
neighborhood, obtaining values lagged proportional to the distance separating them.

We cannot, of course, build a continuous medium containing uncountably many infinitely small computers.
We can, however, approximate it by scattering a discrete set of devices through the medium. We then
compute using as our basis the relatively few systems whose discrete behavior is a good approximation
of their continuous behavior, just as electronic engineering uses components which capture only a few of
the phenomena of electromagnetism. In both cases, restricting the range of behavior supports engineering
abstractions that ignore much of the complexity of the underlying system.

The amorphous medium abstraction separates the space being programmed from the devices carrying out
the program, allowing us to decompose self-managing systems engineering into three layers of abstraction—
global, local, and discrete—each supported by its own infrastructure component, which decouple aspects of
self-managing systems design into largely independent subproblems:

• The discrete layer consists of devices embedded in space exchanging messages with nearby neighbors.
Infrastructure for this level is a discrete kernel which provides approximate emulation of an amorphous
medium.

• The local layer executes on the amorphous medium, using our Proto language to specify a uniform
behavior for each point.

• The global layer executes on the amorphous medium, using a library of amorphous computing algo-
rithms translated into Proto to control the behavior of regions.

Figure 1 illustrates some of the design problems separated by use of these abstraction layers.

• The implementatin has three infrastructure components: a kernel providing the neighborhood abstrac-
tion, a compiler for the Proto language, and libraries of long-range coordination and control primitives
coded in Proto.

• Global layer coordination primitives operate on regions and are implemented with local layer interac-
tions between points and their neighborhoods. The neighborhood is, in turn, implemented by messages
passed between discrete devices.

• Global control is described in terms of homeostatic processes continually moving regions towards a
desired behavior. These are implemented as networks of streams in the local layer, which compile to
update code executed periodically in the discrete layer.

• Diifferent modes of failure are handled by different layers: individual device crashes are masked by the
neighborhood abstraction, outside events which destroy regions of the network need are handled by
homeostatic primitives, and bugs in the user’s code are minimized by a clean global layer interface.

1Executions diverge due to differences in sensor values, randomness, and interaction with their neighborhoods.

2



Layer Infrastructure Coordination Control Flow Failures Energy Efficiency
Global Proto Libraries Region Homeostasis User Coordinations
Local Proto Compiler Neighborhood Stream Network Region Reductions
Discrete Kernel Device Rounds Device Packets

Figure 1: Decomposing self-managing systems engineering into global, local, and discrete abstraction layers
separates many design problems into largely independent subproblems.

• Assuming energy is dominated by the cost of communication, the amount of communication depends
on how many long-range coordination operations are used in the global layer, how many reductions
over neighbor state are used to implement coordination at the local layer, and the packets transmitted
and received to implement shared neighbor state at the discrete layer.

3 Operating Range: Amorphous Computers

A sensor/actuator network in which devices communicate only with nearby neighbors can be considered
as an amorphous computer[1]. Amorphous computing takes inspiration from biological systems engaged in
morphogenesis and regeneration, in which extremely large numbers of unreliable devices (cells) coordinate
to achieve predictable results with high precision.

We have chosen the amorphous computer model for two reasons. First, its biologically inspired specifi-
cations imply the self-management issues of robustness, distribution, and scalability. Second, real-world
sensor/actuator networks are growing rapidly in scale and capability, bringing them closer into alignment
with the amorphous computer model.

In particular, Proto and its supporting infrastructure are designed to operate on sensor/actuator networks
with the following properties:

• The number of devices n may range from dozens to billions.

• Devices are distributed arbitrarily through space and collaborate via unreliable broadcast to neighbors
no more than r distance away.

• Devices are mostly immobile.2

• Memory and processing are not limiting resources.3

• Execution is partially synchronous—each device has a clock which ticks regularly, but frequency may
vary by up to ε and clocks have an arbitrary initial time and phase.

• Naming, routing, and coordinate services are not provided.4

• Arbitrary point and region stopping failures and joins may occur, including changes in the connected-
ness of the network.

Our operating range specification does not directly address energy consumption, although it has been a
concern in implementation. Energy issues can be addressed independently in each abstraction layer, however,
and we expect that most possible savings can be extracted by optimizing the discrete kernel implementation.
Although some excess energy expenditure will likely remain, we consider the gain in engineering capability
to be worth moderate inefficiency in energy expenditure.

2Note that mobile devices might be programmed as immobile virtual devices[7, 8].
3Profligate expenditure of either is still bad, and memory is an important constraint for the Mote implementation.
4They may be made available as sensor values, with appropriate characterization of reliability and error.

3



Amorphous Medium

Proto Libraries

D
is

cr
et

e
L

oc
al

G
lo

ba
l

P

Region

Figure 2: Self-management problems are decoupled by factoring into three abstraction layers: global, local,
and discrete. Interactions between individual devices in the discrete layer emulate an amorphous medium.
The local layer describes the behavior of points in the medium, from which library code is built to allow the
description of the behavior of regions of medium at the global layer.

4



5

+

2

Figure 3: A Proto program is a network of operator instances ascending from a single root. The output
stream of the root serves as a reference to the program.

4 Abstraction and Composition: Proto

Interface standards, primitive components, and rules of abstraction are captured in the semantics of Proto, a
language we have constructed for specifying the behavior of points in the amorphous medium. Proto combines
the dynamic stream networks of Gooze[2] with previous work on amorphous medium languages[4, 3].

4.1 Primitives and Composition

Programs in Proto produce a stream of output values. Proto uses Scheme syntax, but has its own set of
types and primitive functions. For example, the expression

2

evaluates to a stream of twos. Programs are composed using functional operators, so the expression

(+ 2 5)

yields a program that emits a stream of sevens. Operator and operand expressions are evaluated with the
same rules, as in Scheme. The operands are streams and the operator constructs a stream of output values
from sets of values input from its operands. A program is a directed acyclic graph with a single root, with
nodes that are instantiated operators and edges that connect from streams to the operator inputs which
consume them (Figure 3). The output stream of the root serves as a reference to the program ascending
from it.

4.2 Types

Proto is strongly typed like ML [14] and Haskell [12] and unlike statically typed languages such as C, types
are inferred automatically from literals and function calls. Therefore, users rarely need to deal with types,
but they are useful for describing the various kinds of data that are available and the signatures of built in
operators.

Proto permits boolean, character, number, and symbol data types. These base types can be combined to
form richer types using parameterized types, such as vectors, tuples, and functions. Vector and tuple types
can be nested to create a rich set of derived types.

Proto supports overloaded operators and chooses the most applicable operator at compile time during type
inference. This encourages reuse without sacrificing runtime efficiency.

5



4.3 I/O

Input from the outside world or other programs running on a device is accessed using the sense operator.
For example,

(sense :light)

returns the value of the sensor named light. Similarly, a Proto program affects the outside world through
the actuate operator. Thus, for example,

(actuate :sound (sense :light))

sends the light value to the sound actuator.5

4.4 State

Persistent state is established using delay loops, specifying an initial value and an expression for calculating
the next value from current values. For example, the expression

(letfed ((i 0 (1+ i)))

i)

creates one state variable, i, which starts at zero and increases by one each round.

4.5 Communication

Unlike discrete networks, each point in an amorphous medium has an infinite number of neighbors. As
such, communication by message passing is impractical. Proto instead provides communication in the form
of summaries of all the values in the neighborhood, using the reduce-nbrs operator to fold an expression
across each point’s neighborhood.

For example, assuming a boolean light sensor, we can dilate the lit region by one neighborhood radius with
the expression

(reduce-nbrs (sense light) or nil)

The first argument is the value to be reduced, the second is the reduction function, and the third is the
initial value of the reduction. When evaluated, reduce-nbrs begins with the initial value, then incorporates
the values from its neighbors one at a time, using the reduction function, to produce the final result. Indeed,
it is perhaps better to understand reduce-nbrs as a transform that operates on nearby space rather than
as communication.

In general we do not want to tie the behavior of our program to neighborhood sizes, so Proto provides special
operators for measuring the space distance, time distance, and volume of a neighbor: nbr-dist, nbr-lag,
and infinitesimal respectively.6

Thus, for example, we can measure the distance to a light with a gradient flowing out from the source7

5The mechanism for binding sensors to names is implementation dependent, as is value when sense is applied to an unbound
name, and the result of multiple streams being sent to the same actuator.

6These may be implemented coarsely or finely, depending on the hardware available: for example, our mote implementation
estimates the distance to all neighbors as its radio range, and the time lag as one round.

7Biological systems often use chemical diffusion from a source as a distance measure, and various distributed computing
fields have coopted “gradient” by analogy to mean a distance-to-source measurement created by gossip.

6



(letfed ((n infinity (if (sense light) 0

(+ (reduce-nbrs n min infinity)

(reduce-nbrs nbr-dist max 0)))))

n)

Here, the reduce-nbrs expression starts with a value of infinity and combines it with each neighbor’s value
for n to find the minimum. As a result, n is pegged to zero at light sources and floats up by one for each
unit of distance. Each point converges to the estimated distance to the nearest light source.

When Proto expressions are compiled into executable code, the values needed by reduce-nbrs expressions
are identified by the compiler so that the discrete kernel can export them to its neighbors whenever they
change. Any reduction which can be approximated using a sampling of neighbor state can be implemented
on a real network by the discrete kernel. This covers a wide range of functions, particularly with the inclusion
of the distance and infinitesimal operators to allow integration. For example,

(/ (reduce-nbrs (* (sense :light) infinitesimal) + 0)

(reduce-nbrs (* 1 infinitesimal) + 0))

finds the average light value in each point’s neighborhood (the second reduce-nbrs expression normalizes
the integral). Some operators such as random, however, must be subtly redefined to have a compatible
amorphous medium semantics and discrete kernel implementation.

4.6 Abstraction

Proto expressions can be abstracted to create new operators, just as ordinary Scheme expressions can be
abstracted to create new functions. For example, we can make a generic gradient operator

(def gradient (src)

(letfed ((n infinity (if src 0 (+ (reduce-nbrs n min infinity)

(reduce-nbrs nbr-dist max 0)))))

n))

and a generic averaging operator

(def local-average (x)

(/ (reduce-nbrs (* x infinitesimal) + 0)

(reduce-nbrs (* 1 infinitesimal) + 0)))

These operators then can be used in expressions, including definitions of operators at higher level of abstrac-
tion. Thus, for example, we can write the expression

(<= (gradient (sense :light)) 2)

that outputs true anywhere within 2 units distance of a light.

4.7 Execution

Pulling a value from a program’s output stream initiates a round of execution.8 Execution is then distributed
up the network as operators pull values from their inputs. If an operator does not pull a value from one of
its inputs, the upstream operator is not executed and goes into hibernation, discarding any internal state
until such time as it begins being executed again and reboots.

For example, assuming a boolean sound sensor, the program

8These values are generally discarded, so the ultimate goal of a program must be achieved via actuation.

7



Figure 4: All communication proceeds through neighborhoods, so a gradient (grey) spreading from regions
with light (black) that runs only when there is sound (white boxes) cannot cross a gap where it does not
run.

if

sense

*

sound

gradientsenselight

Figure 5: Subprograms may be used to feed multiple inputs. The subprogram caches its output so that it
only executes only the first time its output stream is pulled in a given round.

(when (sense :sound)

(<= (gradient (sense :light)) 2))

only runs the gradient where there is sound. As a consequence, points within 2 units distance but separated
by a quiet area will output false, since the gradient is not running in the intervening area (Figure 4).

The expression associated with an interpreted operator is instantiated into an encapsulated network once
for each active instance of the operator. When an instance hibernates, this network is discarded, along with
any state in its loops, to be restarted from scratch when it next becomes active. Among other things, this
allows recursion since the potentially infinite network structure is only constructed for the levels which are
actually currently in use.

The output of a process module may be used as input by more than one other module. For example,

(let ((d (gradient (sense :light))))

(if (sense :sound) (* d d) d))

always runs the gradient, but squares the output when there is sound (Figure 5). Execution carries a time-
stamp identifying the round, so that the subprogram can return the same result every time a downstream
process module pulls a value during a single round of execution. Conversely, as long as at least one process
module pulls a value, the subprogram will execute.

4.8 Miscellany

Proto allows a programmer to define new primitive operators. Although not strictly necessary, primitive
operators are generally faster and more memory-efficient because calculations can be performed without
instantiating and walking a network of streams, as happens in an interpreted operator.

Proto code is quite compact, which is unsurprising, given its LISP roots. For example, Eames’s algorithm for
distributed discovery of minimum threat paths[9] requires 2000 lines of nesC[10] code, while an equivalent
implementation in Proto is a mere 25 lines long.

8



neg

field

width

dp

buoy

src

d2d1
p

dstaxis

Figure 6: Finding coordinates with a mechanism adapted from paintable computing[5]: the two anchor points
of the coordinate system send out gradients, producing d1, d2 and dp which determine the location of p
except for the sign of its vertical coordinate. The sign is found by using leader election to break symmetry.

5 Raising the Abstraction Level

Using Proto, we can implement composable abstractions for controlling a sensor/actuator network.

Gradients, for example, are a commonly used amorphous computing primitive. Clipping a gradient against
a maximum distance produces a dilation operator

(def dilate (n source)

(<= (gradient source) n))

which adapts to changing sources equivalently to Clement and Nagpal’s active gradients[6].

We can then gradually raise the level of abstraction by building on our growing library of primitives, as in
this bounding program

(def bound (source max boundary)

(when (not boundary) (dilate max source)))

which returns true only within the boundaries containing the source. Bound can be used to re-express the
program illustrated in Figure 4 as

(bound (sense :light) 2 (not (sense :sound)))

5.1 Coordinates

Another useful example is the coordinate system mechanism from Butera’s paintable computing[5].

The coordinate system is derived from a provided source and destination. We will need to measure the
distance between these places, which we can do with a distance operator that uses our previously defined
gradient operator

(def distance (p1 p2)

(letfed ((d 0 (reduce-nbrs d max (* (gradient p1) (if p2 1 0)))))

d))

The paintable computing channel mechanism, which finds a wide path connecting two points, uses a trail-
following operator to trace a gradient back up to the source. This is fairly fragile, so we instead find the
trail geometrically by triangulation against distance, then widen it using dilate

(def channel (src dst width)

(let* ((d (distance src dst))

(trail (<= (+ (gradient src) (gradient dst)) d)))

(dilate width trail)))

9



Implementing the coordinates mechanism requires one more operator: choose-leader is used to break
symmetry by selecting a single location in the channel

(def choose-leader (selector)

(letfed ((v (if selector (random 1.0) infinity))

(minv v (reduce-nbrs minv min minv)))

(and (< v infinity) (= v minv) v)))

The complicated coordinates mechanism (Figure 6) can then be defined as an operator which, despite
comprising many complex operators is relatively straightforward for a programmer to create and understand.

(def coordinates (src dst width)

(let* ((field (channel src dst width))

(axis (channel src dst 1))

(d1 (gradient src))

(d2 (gradient dst))

(dp (distance src dst))

(buoy (choose-leader (and field (< d1 dp) (< d2 dp))))

(y (/ (+ (* d2 d2) (- (* d1 d1)) (* dp dp)) (* 2 dp)))

(x (sqrt (- (* d2 d2) (* y y))))

(neg (bound buoy (+ width dp) (or (< y 0) (> y dp) axis))))

(tuple (if neg (- x) x) y)))

5.2 Homeostasis

Long-range coordination can be accomplished by means of homeostatic operators which are always relaxing
towards a correct solution.

For example, a simple time synchronization operator can be defined to converge toward a shared time by
using a paired heartbeat and estimated lag. If the heartbeat arrives from a shorter route and advances time
too fast, the lag drops as the gradient records the shorter distance; if communication disruptions interfere
with the heartbeat, the lag gradient floats upwards, driving the time locally.

(def time-gradient (src)

(letfed ((n infinity (if src 0 (+ (reduce-nbrs n min infinity)

(reduce-nbrs nbr-lag max 0)))))

n))

(def sync-time (src)

(let ((lag (time-gradient src)))

(letfed ((time 0 (if src (1+ time) (reduce-nbrs time max 0))))

(+ time lag))))

Using this abstraction, we can establish long-range coordinated behavior like sinusoidal oscillations—useful
for locomotion in distributed robotics or moving objects around an active surface.

This could be done with an externally supplied phase coordinate (established, for example, using Butera’s
algorithm above) and a heartbeat for synchronization

(def oscillate (heart phase period)

(sin (/ (+ (sync-time heart) phase) period)))

or by calculating the oscillation vector internally. We can specify a vector in terms of a source and destination
and find a wavefront perpendicular to that by calculating their bisector

(def bisector (a b)

10



(let ((dif (abs (- (gradient a) (gradient b)))))

(<= dif (reduce-nbrs nbr-dist max 0))))

which may need to be swollen to make it a boundary impermeable to communication

(def impermeable (set)

(reduce-nbrs set or nil))

To break symmetry and allow the oscillation to propagate in one direction rather than flowing outward from
the bisector, we define

(def abs->signed (val is-plus)

(if (bound is-plus (maxdist) (impermeable (= val 0)) val (- val)))

and use it to negate the phase on the src side of a plane wave

(def plane-wave (src dst period)

(let ((phase (abs->signed (gradient (bisector src dst)) dst)))

(sin (/ (+ (sync-time src) (local-average phase)) period))))

All that remains, then, is to set the period of the wave to the length of the vector:

(def oscillate (src dst)

(plane-wave src dst (distance src dst)))

6 Implementation and Verification

Experimental verification is conducted using a simulator and an implementation of Proto for Mica2 motes.

Motes present significant challenges for any language implementation, but especially for high level languages
like Proto. The Mica2 motes are 8 bit microcontrollers running at 16MHz, have only a scant 4KB of RAM,
run on two AA batteries, and contain a relatively slow radio that can send a maximum of approximately
thirty 32 byte packets per second.

The biggest challenge of getting Proto to run on the motes is to get the operator trees to fit in the 4K of RAM
on the Atmel Mega128. This tiny memory forces a very simple memory management scheme. Fortunately,
stream processing permits data structures to be mostly preallocated when trees are opened and reused across
rounds.

Each mote has a C machine structure which provides the Proto discrete level operating system data structures
for the running scripts. Specifically, it holds the machine id, script, version, operator tree, time-stamp, export
tuple, neighborhood table, and sensor and actuator data.

The neighborhood data is a limited size table of associations between machine id and import tuples. The
neighborhood table is populated dynamically and stale entries are replaced. In addition to an ID and import
values, each entry contains a timeout counter tracking how long it has been since the last update, and an
area estimate used for integration. At the end of each evaluation round, exposed state is calculated and
added to an export buffer for later transmission.

On the motes, we use a max table size of 8 neighbors and a single packet export mechanism. Each export
packet can support up to six number values in our current implementation. It is straightforward to support
multi-packet exports and we plan to do so in the near future.

Each primitive operator has a class structure representing static properties and a corresponding C structure
representing its runtime values. An operator class contains the operator protocol in the form of function
pointers for the construction, opening, and closing of operator instances, and the execution of operator code.
Additionally, the operator class contains the number of exported values, operator children, local state data,

11



and construction arguments, and contains the corresponding bytecode. Operator instances contain a pointer
to the operator class, its time-stamp, output data, operator specific data (e.g. the reduce-nbrs operator
instances hold an offset into the export/neighborhood tuple), and pointers to operator children.

Proto scripts are written on a PC, translated by the Proto compiler to bytecodes and then injected packet
by packet over the air into the sensor network through a base station connected by serial cable to the PC.
Received scripts are virally forwarded to neighboring motes using a mechanism similar to those described
in [13], [11], and [15]. The programmer then needs only to program a single device and the code will
spread through the network to upgrade the rest. To prevent conflicts during an upgrade process, each state
broadcast also contains a version number, allowing devices to ignore state from different versions. Currently,
only single packet scripts are supported but it is straightforward to implement the multi-packet case. Once
the complete set of script packets are loaded onto a mote, the script is interpreted on a virtual stack machine
producing a new operator tree. Once constructed and installed, the operator tree is executed top down, each
operator executing and producing a value once for each round.

The Proto compiler performs type inference and method selection while translating scripts to byte codes.
Type inferencing allows the resolution of overloaded operators into efficient type specific operators and
eventual bytecodes. In order to support full type inference and the generation of type specific bytecodes, all
script operators are inlined and specialized.

To ease porting, Proto is implemented in such a way as to minimize platform specific code. The platform
independent code consists of the neighborhood management, script dissemination and interpretation, and
primitive operators. Primitive operators are written in stylized C that permits maximal code sharing.
Currently, the total amount of platform independent code is 1505 lines.

The platform specific code consists of low level timing, low level network code, and sensor/actuator code,
and currently amounts to 270 lines on the Mica2 motes. The timing code phases the execution and export
stages. On the mote, it is implemented using a TinyOS timer event firing every 128 milliseconds. This can
easily be sped up in the future. The low level networking code sends and receives script and neighborhood
packets. Packets arrive as events but their processing is handled in tasks to ensure synchronization of global
data. Finally, the sensors and actuators API is implemented for each of the mote inputs and outputs. The
total size of the compiled code including Proto and TinyOS is 31252 bytes.

The simulator permits the running of much larger networks (over 10,000 nodes), larger applications, flexible
visualization, and friendlier code development and debugging. As in the mote port, only a small amount of
platform specific code is necessary to implement. The bulk of the simulator code facilitates visualization,
code development, and debugging.

6.1 Verification Example

Verification begins in the simulator. For example, Figure 7 shows the plane-wave based oscillator running in
simulation on 10,000 nodes, using hopcount for distance and lag. Once a program runs in simulation, it can
be transferred to Motes which provide ground truth as to whether our building blocks compose correctly,
respecting their prescribed interface. For example, Figures 8 shows a small group of Motes running an
oscillator with phase and leadership supplied. This is specified completely by the implementation Proto
code:

(def id (x) x)

(def max (x y) (if (< x y) y x))

(def min (x y) (if (< y x) y x))

(def maxhops () 99)

(def gradient (src)

(letfed ((n (maxhops) (if src 0 (+ 1 (fold-hood min (maxhops) id n))))) n))

(def sync-time (src)

12



Figure 7: Plane wave oscillator running on 10,000 simulated devices. The period and direction of the wave
is determined by the placement of source (yellow) and destination (magenta) markers in the devices’ sensor
field.

Figure 8: A group of Motes running the oscillator program, displaying the output on their LEDs. The motes
are given a synthetic coordinate for their phase.

13



0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

Time

O
ut

pu
t (

P
ha

se
−

co
rr

ec
te

d)
Mote 0
Mote 1
Mote 2
Mote 3
Mote 4
Mote 5

Figure 9: Output of a group of six Motes in a line running the oscillator program, subtracting phase. The
Motes synchronize and begin oscillating shortly after the leader, Mote 0, is turned on. Dropped packets and
variable execution rates cause the executions on the various Motes to diverge rapidly, while the time-sync
operator continually draws them back towards synchrony.

(let ((lag (gradient src)))

(letfed ((t 0 (if src (+ 1 t) (fold-hood max 0 id t))))

(+ t lag))))

(def osc (src pos period)

(sin (/ (+ (sync-time src) pos) period)))

(leds (/ (+ (osc (sense 1) (elt (coord) 0) 5) 1) 2))

where fold-hood is equivalent to reduce-nbrs, leds is an actuator for the Mote LEDs, coord senses the
supplied phase and (sense 1) senses leadership. This evaluates to a script of 98 bytecodes and an operator
tree of 658 bytes.

The Motes synchronize and begin oscillating shortly after the leader, Mote 0, is turned on, displaying the
output of the oscillation on their LEDs. Plotting the values and subtracting the supplied phase difference
(Figure 9), we find that the composition works and the oscillator is, as expected, diverging due to commu-
nication difficulties and the variable rate of execution on individual Motes, but is continually drawn back
toward synchrony.

7 Future Directions

Our work on Proto and the amorphous medium abstraction has laid a groundwork on which the discipline
of self-managing systems engineering can continue to develop. As one would expect in a young field, there
are many open problems of varying difficulty.

Much work remains to be done on the practical matters of implementation. Although these problems are
less novel, solving them and integrating the solutions into the overall infrastructure is necessary to provide
a solid foundation for ongoing research. A few particularly noteworthy implementation needs:

14



• Energy management in the discrete kernel, such as adjusting transmission frequency and contents to
lower expenditure when data is changing slowly.

• Improved bandwidth utilization in the discrete kernel via TDMA, CSMA/CD, or other wireless com-
munication algorithms.

• Bringing the Proto implementation into closer alignment with Proto’s semantics.

• Optimization of code by the Proto compiler for both time and space. Much more space and time efficient
representations of operator trees are possible. In particular, we will be investigating the placement of
some of the static operator data in program memory and on the fly code generation techniques in the
near future.

• Verification of larger programs, either by adding multi-packet support for Motes or moving to less
constrained hardware.

Moving beyond implementation, it is an open question what types of abstractions are most intuitive for
global control of spaces. Candidates in the form of distributed algorithms from amorphous computing and
elsewhere need to be imported to Proto and analyzed within its context.

Although we have presented a means of composition, a tighter characterization of composed systems is likely
possible. In particular, some amorphous computing algorithms generally run faster and more resiliently than
the loose bounds established for them, and may effectively pipeline when composed.

Finally, as the discipline is developed, it may be extended into domains beyond sensor/actuator networks.
In particular, the amorphous medium abstraction should hold for any problem in which the network of
computational devices approximates the topology of the problem being solved. This suggests that problems
in non-spatial domains such as semantic networks may be solvable with the same techniques: our preliminary
investigations suggest that Proto should be usable in any domain approximated by a network with high
diameter and small neighborhood size.

References

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman,
and R. Weiss. Amorphous computing. Technical Report AIM-1665, MIT, 1999.

[2] Jonathan Bachrach. Gooze: a stream processing language. In Lightweight Languages 2004, November
2004.

[3] Jacob Beal. Programming an amorphous computational medium. In Unconventional Programming
Paradigms International Workshop, September 2004.

[4] Jacob Beal and Gerald Sussman. Biologically-inspired robust spatial programming. Technical Report
AI Memo 2005-001, MIT, January 2005.

[5] William Butera. Programming a Paintable Computer. PhD thesis, MIT, 2002.

[6] L. Clement and R. Nagpal. Self-assembly and self-repairing topologies. In Workshop on Adaptability in
Multi-Agent Systems, RoboCup Australian Open, January 2003.

[7] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geoquorums: Implementing atomic
memory in mobile ad hoc networks. In Proceedings of the 17th International Symposium on Distributed
Computing (DISC 2003), 2003.

[8] Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Elad Schiller, Alex A. Shvartsman, and Jennifer L. Welch.
Virtual mobile nodes for mobile ad hoc networks. In DISC04, October 2004.

15



[9] Adam Eames. Enabling path planning and threat avoidance with wireless sensor networks. Master’s
thesis, MIT, June 2005.

[10] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and David Culler. The nesc language:
A holistic approach to networked embedded systems. In Proceedings of Programming Language Design
and Implementation (PLDI) 2003, June 2003.

[11] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemination protocol for network
programming at scale. In Proceedings of the 2nd international conference on Embedded networked sensor
systems, pages 81–94. ACM Press, 2004.

[12] S. P. Jones and J. Hughes. Report on the programming language haskell 98., 1999.

[13] James McLurkin. Stupid robot tricks: A behavior-based distributed algorithm library for programming
swarms of robots. Master’s thesis, MIT, 2004.

[14] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML –
Revised. MIT Press, 1997.

[15] Andrew Sutherland. Towards rseam: Resilient serial execution on amorphous machines. Master’s thesis,
MIT, 2003.

16


