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Abstract

There are many applications in which it is desirable to order rather than classify
instances. Here we consider the problem of learning how to order, given feedback
in the form of preference judgments, i.e., statements to the effect that one instance
should be ranked ahead of another. We outline a two-stage approach in which one
first learns by conventional means a preference function, of the form PREF �������
	 ,
which indicates whether it is advisable to rank � before � . New instances are
then ordered so as to maximize agreements with the learned preference func-
tion. We show that the problem of finding the ordering that agrees best with
a preference function is NP-complete, even under very restrictive assumptions.
Nevertheless, we describe a simple greedy algorithm that is guaranteed to find a
good approximation. We then discuss an on-line learning algorithm, based on the
“Hedge” algorithm, for finding a good linear combination of ranking “experts.”
We use the ordering algorithm combined with the on-line learning algorithm to
find a combination of “search experts,” each of which is a domain-specific query
expansion strategy for a WWW search engine, and present experimental results
that demonstrate the merits of our approach.

1 Introduction

Most previous work in inductive learning has concentrated on learning to classify. However,
there are many applications in which it is desirable to order rather than classify instances.
An example might be a personalized email filter that gives a priority ordering to unread
mail. Here we will consider the problem of learning how to construct such orderings, given
feedback in the form of preference judgments, i.e., statements that one instance should be
ranked ahead of another.

Such orderings could be constructed based on a learned classifier or regression model,
and in fact often are. For instance, it is common practice in information retrieval to rank
documents according to their estimated probability of relevance to a query based on a
learned classifier for the concept “relevant document.” An advantage of learning orderings
directly is that preference judgments can be much easier to obtain than the labels required
for classification learning.

For instance, in the email application mentioned above, one approach might be to rank
messages according to their estimated probability of membership in the class of “urgent”
messages, or by some numerical estimate of urgency obtained by regression. Suppose,
however, that a user is presented with an ordered list of email messages, and elects to read
the third message first. Given this election, it is not necessarily the case that message three
is urgent, nor is there sufficient information to estimate any numerical urgency measures;
however, it seems quite reasonable to infer that message three should have been ranked
ahead of the others. Thus, in this setting, obtaining preference information may be easier
and more natural than obtaining the information needed for classification or regression.



In the remainder of this paper, we will investigate the following two-stage approach to
learning how to order. In stage one, we learn a preference function, a two-argument
function PREF �������� which returns a numerical measure of how certain it is that � should
be ranked before � . In stage two, we use the learned preference function to order a set of
new instances � ; to accomplish this, we evaluate the learned function PREF �������� on all
pairs of instances ��������� , and choose an ordering of � that agrees, as much as possible,
with these pairwise preference judgments. This general approach is novel; for related work
in various fields see, for instance, references [2, 3, 1, 7, 10].

As we will see, given an appropriate feature set, learning a preference function can be
reduced to a fairly conventional classification learning problem. On the other hand, finding
a total order that agrees best with a preference function is NP-complete. Nevertheless, we
show that there is an efficient greedy algorithm that always finds a good approximation to
the best ordering. After presenting these results on the complexity of ordering instances
using a preference function, we then describe a specific algorithm for learning a preference
function. The algorithm is an on-line weight allocation algorithm, much like the weighted
majority algorithm [9] and Winnow [8], and, more directly, Freund and Schapire’s [4]
“Hedge” algorithm. We then present some experimental results in which this algorithm is
used to combine the results of several “search experts,” each of which is a domain-specific
query expansion strategy for a WWW search engine.

2 Preliminaries

Let � be a set of instances (possibly infinite). A preference function PREF is a binary
function PREF : ��������� 0 � 1  . A value of PREF �������� which is close to 1 or 0 is
interpreted as a strong recommendation that � should be ranked before � . A value close to
1 ! 2 is interpreted as an abstention from making a recommendation. As noted above, the
hypothesis of our learning system will be a preference function, and new instances will be
ranked so as to agree as much as possible with the preferences predicted by this hypothesis.

In standard classification learning, a hypothesis is constructed by combining primitive
features. Similarly, in this paper, a preference function will be a combination of other
preference functions. In particular, we will typically assume the availability of a set of "
primitive preference functions # 1 �%$%$&$%�'#)( . These can then be combined in the usual ways,
e.g., with a boolean or linear combination of their values; we will be especially interested
in the latter combination method.

It is convenient to assume that the #+* ’s are well-formed in certain ways. To this end, we
introduce a special kind of preference function called a rank ordering. Let , be a totally
ordered set1 with ’ - ’ as the comparison operator. An ordering function into , is a function.

: �/�0, . The function
.

induces the preference function #21 , defined as

# 1 �������� def3 45 6 1 if
. ��7�8- . �9�:�

0 if
. ��7�8; . �9�:�

1
2 otherwise.

We call # 1 a rank ordering for � into , . If # 1 �������� 3 1, then we say that � is preferred
to � , or � is ranked higher than � .

It is sometimes convenient to allow an ordering function to “abstain” and not give a
preference for a pair � , � . Let < be a special symbol not in , , and let

.
be a function into,>= � <?� . We will interpret the mapping

. ��7� 3 < to mean that � is “unranked,” and let#21@�9�7�A�:� 3 1
2 if either � or � is unranked.

To give concrete examples of rank ordering, imagine learning to order documents based on
the words that they contain. To model this, let � be the set of all documents in a repository,

1That is, for all pairs of distinct elements B 1 ��B 2 CED , either B 1 F B 2 or B 1 G B 2.



and for " words H 1 �&$%$&$I��H ( , let
. * �9�?� be the number of occurrences of H * in � . Then#21�J will prefer � to � whenever H * occurs more often in � than � . As a second example,

consider a meta-search application in which the goal is to combine the rankings of several
WWW search engines. For " search engines K 1 �%$%$&$%�'KL( , one might define

. * so that # 1 J
prefers � to � whenever � is ranked ahead of � in the list M * produced by the corresponding
search engine. To do this, one could let

. * ��7� 3ONQP
for the document � appearing in theP

-th position in the list MR* , and let
. *���7� 3 < for any document not appearing in MS* .

3 Ordering instances with a preference function

We now consider the complexity of finding the total order that agrees best with a learned
preference function. To analyze this, we must first quantify the notion of agreement between
a preference function PREF and an ordering. One natural notion is the following: Let �
be a set, PREF be a preference function, and let T be a total ordering of � , expressed
again as an ordering function (i.e., T���7�U-VT����� iff � precedes � in the order). We define
AGREE �T�� PREF � to be the sum of PREF �������� over all pairs �7�A� such that � is ranked
ahead of � by T :

AGREE �9T�� PREF � 3 WXZY [ : \&] X_^a` \&] [b^ PREF �9�7�A�:�'$ � 1 �
Ideally, one would like to find a T that maximizes AGREE �T�� PREF � . This general opti-
mization problem is of little interest since in practice, there are many constraints imposed
by learning: for instance PREF must be in some restricted class of functions, and will
generally be a combination of relatively well-behaved preference functions # * . A more
interesting question is whether the problem remains hard under such constraints.

The theorem below gives such a result, showing that the problem is NP-complete even if
PREF is restricted to be a linear combination of rank orderings. This holds even if all the
rank orderings map into a set , with only three elements, one of which may or may not be< . (Clearly, if , consists of more than three elements then the problem is still hard.)ced�fhg:ijfhk

1 The following decision problem is NP-complete:

Input: A rational number l ; a set � ; a set , with m ,Umon 3; a collection of" ordering functions
. * : � � , ; and a preference function PREF defined as

PREF �������� 3qp (*sr 1 Ht*9# 1 Jb�9�7�A�:� where w 3 �H 1 �%$%$&$%�AHu(v� is a weight vector in � 0 � 1  (
with

p (*sr 1 Hu* 3 1.

Question: Does there exist a total order T such that AGREE �T�� PREF �wnxl ?

The proof (omitted) is by reduction from CYCLIC-ORDERING [5, 6].

Although this problem is hard when m ,Qm@n 3, it becomes tractable for linear combinations
of rank orderings into a set , of size two. In brief, suppose one is given � , , and PREF as
in Theorem 1, save that , is a two-element set, which we assume without loss of generality
to be , 3 �

0 � 1 � . Now define T��9�?� 3 p * H * . * ��7� . It can be shown that the total order
defined by T maximizes AGREE �T�� PREF � . (In case of a tie, T���7� 3 T����� for distinct �
and � , T defines only a partial order. The claim still holds in this case for any total order
which is consistent with this partial order.) Of course, when m ,Um 3 2, the rank orderings
are really only binary classifiers. The fact that this special case is tractable underscores the
fact that manipulating orderings can be computationally more difficult than performing the
corresponding operations on binary classifiers.

Theorem 1 implies that we are unlikely to find an efficient algorithm that finds the optimal
total order for a weighted combination of rank orderings. Fortunately, there do exist efficient
algorithms for finding an approximately optimal total order. Figure 1 summarizes a greedy



Algorithm Order-By-Preferences
Inputs: an instance set � ; a preference function PREF
Output: an approximately optimal ordering function ˆT
let y 3 �
for each �z�{y do |8���� 3 p XZ}�~ PREF ������7� N p XZ}�~ PREF ��������
while y is non-empty do

let � 3 arg max XZ}�~ |8�9�?�
let ˆT��9��� 3 m y�my 3 y N � ���
for each �z��y do |8���� 3 |8������ PREF �9�b����� N PREF �9���A���

endwhile

Figure 1: A greedy ordering algorithm

algorithm that produces a good approximation to the best total order, as we will shortly
demonstrate. The algorithm is easiest to describe by thinking of PREF as a directed
weighted graph where, initially, the set of vertices y is equal to the set of instances � ,
and each edge �{�0� has weight PREF �9�7�A�:� . We assign to each vertex ����y a potential
value |8���� , which is the weighted sum of the outgoing edges minus the weighted sum of
the ingoing edges. That is, |8�9�:� 3�p XZ}�~ PREF ������7� N�p XZ}�~ PREF �9�7�A�:��$ The greedy
algorithm then picks some node � that has maximum potential, and assigns it a rank by
setting ˆT����� 3 m y�m , effectively ordering it ahead of all the remaining nodes. This node,
together with all incident edges, is then deleted from the graph, and the potential values| of the remaining vertices are updated appropriately. This process is repeated until the
graph is empty; notice that nodes removed in subsequent iterations will have progressively
smaller and smaller ranks.

The next theorem shows that this greedy algorithm comes within a factor of two of optimal.
Furthermore, it is relatively simple to show that the approximation factor of 2 is tight.ced�fhg:ijfhk

2 Let OPT � PREF � be the weighted agreement achieved by an optimal total
order for the preference function PREF and let APPROX � PREF � be the weighted agreement
achieved by the greedy algorithm. Then APPROX � PREF �wn 1

2 OPT � PREF �A$
4 Learning a good weight vector

In this section, we look at the problem of learning a good linear combination of a set of
preference functions. Specifically, we assume access to a set of ranking experts which
provide us with preference functions # * of a set of instances. The problem, then, is to learn
a preference function of the form PREF �9�7�A�:� 3�p (*�r 1 Ht*9#+*��9�7�A�:� . We adopt the on-line
learning framework first studied by Littlestone [8] in which the weight Ht* assigned to each
ranking expert # * is updated incrementally.

Learning is assumed to take place in a sequence of rounds. On the � -th round, the learning
algorithm is provided with a set ��� of instances to be ranked and to a set of " preference
functions #+�* of these instances. The learner may compute #+�* �9�7�A�:� for any and all preference
functions # �* and pairs �����{��� � before producing a final ordering T � of � � . Finally, the
learner receives feedback from the environment. We assume that the feedback is an arbitrary
set of assertions of the form “ � should be preferred to � .” That is, formally we regard the
feedback on the � -th round as a set � � of pairs �9�7�A�:� indicating such preferences.

The algorithm we propose for this problem is based on the “weighted majority algorithm” [9]
and, more directly, on the “Hedge” algorithm [4]. We define the loss of a preference function



Allocate Weights for Ranking Experts
Parameters:� ��� 0 � 1  , initial weight vector � 1 ��� 0 � 1  ( with

p (*�r 1 H 1* 3 1" ranking experts, number of rounds �
Do for � 3 1 � 2 �%$&$%$b���

1. Receive a set of elements � � and preference functions # �1 �%$%$&$%�'# �( .

2. Use algorithm Order-By-Preferences to compute ordering function ˆT � which ap-
proximates PREF � �9�7�A�:� 3�p (*sr 1 H * #+�* �������� .

3. Order � � using ˆT � .
4. Receive feedback �2� from the user.

5. Evaluate losses Loss �9# �* �A� � � as defined in Eq. (2).

6. Set the new weight vector H ��� 1* 3 HU�*8� � Loss ]����J Y � � ^ !Z� � where � � is a normalization
constant, chosen so that

p (*sr 1 H ��� 1* 3
1.

Figure 2: The on-line weight allocation algorithm.

# with respect to the user’s feedback � as

Loss ��#��A��� def3 p ] XZY [b^a}
� � 1 N #�����������m �zm $ � 2 �
This loss has a natural probabilistic interpretation. If # is viewed as a randomized prediction
algorithm that predicts that � will precede � with probability #��������� , then Loss ��#��'��� is
the probability of # disagreeing with the feedback on a pair �������� chosen uniformly at
random from � .

We now can use the Hedge algorithm almost verbatim, as shown in Figure 2. The algorithm
maintains a positive weight vector whose value at time � is denoted by � � 3 �H �1 �%$&$%$&��H �( � .
If there is no prior knowledge about the ranking experts, we set all initial weights to be
equal so that H 1* 3 1 !b" . The weight vector ��� is used to combine the preference functions
of the different experts to obtain the preference function PREF � 3 p (*�r 1 H �* # �* . This, in
turn, is converted into an ordering ˆT � on the current set of elements ��� using the method
described in Section 3. After receiving feedback �2� , the loss for each preference function
Loss ��# �* �'� � � is evaluated as in Eq. (2) and the weight vector � � is updated using the
multiplicative rule H ��� 1* 3 HU�* � �?�:�'��� ]s���J Y � � ^ !
� � where

� ��� 0 � 1  is a parameter, and � � is
a normalization constant, chosen so that the weights sum to one after the update. Thus, based
on the feedback, the weights of the ranking experts are adjusted so that experts producing
preference functions with relatively large agreement with the feedback are promoted.

We will briefly sketch the theoretical rationale behind this algorithm. Freund and
Schapire [4] prove general results about Hedge which can be applied directly to this loss
function. Their results imply almost immediately a bound on the cumulative loss of the
preference function PREF � in terms of the loss of the best ranking expert, specifically W

� r 1

Loss � PREF � �'� � �w¡x¢Z£ min*
 W
� r 1

Loss ��# �* �'� � ����¤�£ ln "
where ¢ £ 3 ln � 1 ! � �¥!¦� 1 N � � and ¤ £ 3 1 !h� 1 N � � . Thus, if one of the ranking experts has
low loss, then so will the combined preference function PREF � .
However, we are not interested in the loss of PREF � (since it is not an ordering), but rather in
the performance of the actual ordering ˆT � computed by the learning algorithm. Fortunately,



the losses of these can be related using a kind of triangle inequality. It can be shown that,
for any PREF, � and T :

Loss �9# \ �'���S¡ DISAGREE �T�� PREF �m �zm � Loss � PREF �A��� � 3 �
where, similar to Eq. (1), DISAGREE �T�� PREF � 3 p XZY [ : \&] X_^a` \&] [b^ � 1 N PREF ����������'$ Not
surprisingly, maximizing AGREE is equivalent to minimizing DISAGREE.

So, in sum, we use the greedy algorithm of Section 3 to minimize (approximately) the first
term on the right hand side of Eq. (3), and we use the learning algorithm Hedge to minimize
the second term.

5 Experimental results for metasearch

We now present some experiments in learning to combine the results of several WWW
searches. We note that this problem exhibits many facets that require a general approach
such as ours. For instance, approaches that learn to combine similarity scores are not
applicable since the similarity scores of WWW search engines are often unavailable.

We chose to simulate the problem of learning a domain-specific search engine. As test
cases we picked two fairly narrow classes of queries—retrieving the home pages of ma-
chine learning researchers (ML), and retrieving the home pages of universities (UNIV).
We obtained a listing of machine learning researchers, identified by name and affiliated
institution, together with their home pages, and a similar list for universities, identified by
name and (sometimes) geographical location. Each entry on a list was viewed as a query,
with the associated URL the sole relevant document.

We then constructed a series of special-purpose “search experts” for each domain. These
were implemented as query expansion methods which converted a name, affiliation pair
(or a name, location pair) to a likely-seeming Altavista query. For example, one expert
for the ML domain was to search for all the words in the person’s name plus the words
“machine” and “learning,” and to further enforce a strict requirement that the person’s last
name appear. Overall we defined 16 search experts for the ML domain and 22 for the UNIV
domain. Each search expert returned the top 30 ranked documents. In the ML domain there
were 210 searches for which at least one search expert returned the named home page; for
the UNIV domain, there were 290 such searches.

For each query � , we first constructed the set ��� consisting of all documents returned by all
of the expanded queries defined by the search experts. Next, each search expert § computed
a preference function #+�* . We chose these to be rank orderings defined with respect to an
ordering function

. �* in the natural way: We assigned a rank of
. �* 3 30 to the first listed

document,
. * 3 29 to the second-listed document, and so on, finally assigning a rank of. * 3 0 to every document not retrieved by the expanded query associated with expert § .

To encode feedback, we considered two schemes. In the first we simulated complete
relevance feedback—that is, for each query, we constructed feedback in which the sole
relevant document was preferred to all other documents. In the second, we simulated the
sort of feedback that could be collected from “click data,” i.e., from observing a user’s
interactions with a metasearch system. For each query, after presenting a ranked list of
documents, we noted the rank of the one relevant document. We then constructed a feedback
ranking in which the relevant document is preferred to all preceding documents. This would
correspond to observing which link the user actually followed, and making the assumption
that this link was preferred to previous links.

To evaluate the expected performance of a fully-trained system on novel queries in this
domain, we employed leave-one-out testing. For each query ¨ , we removed ¨ from the



ML Domain University Domain
Top 1 Top 10 Top 30 Av. rank Top 1 Top 10 Top 30 Av. rank

Learned System (Full Feedback) 114 185 198 4.9 111 225 253 7.8
Learned System (“Click Data”) 93 185 198 4.9 87 229 259 7.8
Naive 89 165 176 7.7 79 157 191 14.4
Best (Top 1) 119 170 184 6.7 112 221 247 8.2
Best (Top 10) 114 182 190 5.3 111 223 249 8.0
Best (Top 30) 97 181 194 5.6 111 223 249 8.0
Best (Av. Rank) 114 182 190 5.3 111 223 249 8.0

Table 1: Comparison of learned systems and individual search queries

query set, and recorded the rank of ¨ after training (with
� 3

0 $ 5) on the remaining
queries. For click data feedback, we recorded the median rank over 100 randomly chosen
permutations of the training queries.

We the computed an approximation to average rank by artificially assigning a rank of 31
to every document that was either unranked, or ranked above rank 30. (The latter case is
to be fair to the learned system, which is the only one for which a rank greater than 30 is
possible.) A summary of these results is given in Table 1, together with some additional
data on “top-

P
performance”—the number of times the correct homepage appears at rank

no higher than
P

. In the table we give the top-
P

performance (for three values of
P

) and
average rank for several ranking systems: the two learned systems, the naive query (the
person or university’s name), and the single search expert that performed best with respect
to each performance measure. The table illustrates the robustness of the learned systems,
which are nearly always competitive with the best expert for every performance measure
listed; the only exception is that the system trained on click data trails the best expert in
top-

P
performance for small values of

P
. It is also worth noting that in both domains, the

naive query (simply the person or university’s name) is not very effective. Even with the
weaker click data feedback, the learned system achieves a 36% decrease in average rank
over the naive query in the ML domain, and a 46% decrease in the UNIV domain.

To summarize the experiments, on these domains, the learned system not only performs
much better than naive search strategies; it also consistently performs at least as well as,
and perhaps slightly better than, any single domain-specific search expert. Furthermore, the
performance of the learned system is almost as good with the weaker “click data” training
as with complete relevance feedback.
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