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Abstract
Image processing pipelines combine the challenges of stencil com-
putations and stream programs. They are composed of large graphs
of different stencil stages, as well as complex reductions, and stages
with global or data-dependent access patterns. Because of their
complex structure, the performance difference between a naive im-
plementation of a pipeline and an optimized one is often an order of
magnitude. Efficient implementations require optimization of both
parallelism and locality, but due to the nature of stencils, there is a
fundamental tension between parallelism, locality, and introducing
redundant recomputation of shared values.

We present a systematic model of the tradeoff space fundamen-
tal to stencil pipelines, a schedule representation which describes
concrete points in this space for each stage in an image processing
pipeline, and an optimizing compiler for the Halide image process-
ing language that synthesizes high performance implementations
from a Halide algorithm and a schedule. Combining this compiler
with stochastic search over the space of schedules enables terse,
composable programs to achieve state-of-the-art performance on a
wide range of real image processing pipelines, and across different
hardware architectures, including multicores with SIMD, and hetero-
geneous CPU+GPU execution. From simple Halide programs writ-
ten in a few hours, we demonstrate performance up to 5× faster than
hand-tuned C, intrinsics, and CUDA implementations optimized by
experts over weeks or months, for image processing applications
beyond the reach of past automatic compilers.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – compilers, optimization, code generation

Keywords domain specific language; compiler; image processing;
locality; parallelism; redundant computation; optimization; GPU;
vectorization

1. Introduction
Image processing pipelines are everywhere, and are essential to
capturing, analyzing, mining, and rendering the rivers of visual
information gathered by our countless cameras and imaging-based
sensors. Applications from raw processing, to object detection and
recognition, to Microsoft’s Kinect, to Instagram and Photoshop, to
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medical imaging and neural scanning all demand extremely high
performance to cope with the rapidly rising resolution and frame rate
of image sensors and the increasing complexity of algorithms. At the
same time, the shrinking cameras and mobile devices on which they
run require extremely high efficiency to last more than a few minutes
on battery power. While power-hungry radios and video CODECs
can implement slow-changing standards in custom hardware, image
processing pipelines are rapidly evolving and diverse, requiring high
performance software implementations.

Image processing pipelines combine the challenges of stencil
computation and stream programs. They are composed of large
graphs of many different operations, most of which are stencil
computations. These pipelines are simultaneously wide and deep:
each stage exhibits data parallelism across the many pixels which
it must process, and whole pipelines consist of long sequences
of different operations, which individually have low arithmetic
intensity (the ratio of computation performed to data read from prior
stages and written to later stages). For example, an implementation
of one recent algorithm, local Laplacian filters [3, 22], is a graph of
99 different stages (Fig. 1), including many different stencils and a
large data-dependent resampling.

As a result of this structure, the performance difference between
a naive implementation of a given pipeline and a highly optimized
one is frequently an order of magnitude or more. With current tools,
often the only way to approach peak performance is by hand-writing
parallel, vectorized, tiled, and globally fused code in low-level C,
CUDA, intrinsics, and assembly. Simple pipelines become hun-
dreds of lines of intricately interleaved code; complex pipelines, like
Adobe’s Camera Raw engine, become hundreds of thousands. Tun-
ing them requires immense effort by expert programmers, and the
end result is not portable to different architectures, nor composable
with other algorithms, without sacrificing much of this painstakingly
earned performance. Libraries of optimized subroutines do not solve
the problem, either, since many critical optimizations involve fusion
for producer-consumer locality across stages.

We address this challenge by raising the level of abstraction, and
decoupling the algorithm definition from its execution strategy, to
improve portability and composability, while automating the search
for optimized mappings of the resulting pipelines to parallel ma-
chines and complex memory hierarchies. Effective abstraction and
automatic optimization enable radically simpler programs to achieve
higher performance than hand-tuned expert implementations, while
running across a wide range of architectures.

1.1 Image Processing Pipelines
Stencils have been well studied in scientific applications in the form
of iterated stencil computations, where one or a few small stencils
are applied to the same grid over many iterations [10, 16, 19]. In
contrast, we are interested in other applications, in image processing
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Figure 1. Imaging pipelines employ large numbers of interconnected, heterogeneous stages. Here we show the structure of the local Laplacian
filter [3, 22], which is used for a variety of tasks in photographic post-production. Each box represents intermediate data, and each arrow
represents one or more functions that define that data. The pipeline includes horizontal and vertical stencils, resampling, data-dependent
gathers, and simple pointwise functions.

and computer graphics, where stencils are common, but often in a
very different form: stencil pipelines. Stencil pipelines are graphs of
different stencil computations. Iteration of the same stencil occurs,
but it is the exception, not the rule; most stages apply their stencil
only once before passing data to the next stage, which performs
different data parallel computation over a different stencil.

Graph-structured programs have been studied in the context
of streaming languages [4, 11, 29]. Static communication analy-
sis allows stream compilers to simultaneously optimize for data
parallelism and producer-consumer locality by interleaving compu-
tation and communication between kernels. However, most stream
compilation research has focussed on 1D streams, where sliding win-
dow communication allows 1D stencil patterns. Image processing
pipelines can be thought of as programs on 2D and 3D streams and
stencils. The model of computation required by image processing is
also more general than stencils, alone. While most stages are point
or stencil operations over the results of prior stages, some stages
gather from arbitrary data-dependent addresses, while others scatter
to arbitrary addresses to compute operations like histograms.

Pipelines of simple map operations can be optimized by tradi-
tional loop fusion: merging multiple successive operations on each
point into a single compound operation improves arithmetic intensity
by maximizing producer-consumer locality, keeping intermediate
data values in fast local memory (caches or registers) as it flows
through the pipeline. But traditional loop fusion does not apply to
stencil operations, where neighboring points in a consumer stage
depend on overlapping regions of a producer stage. Instead, sten-
cils require a complex tradeoff between producer-consumer locality,
synchronization, and redundant computation. Because this tradeoff
is made by interleaving the order of allocation, execution, and com-
munication of each stage, we call it the pipeline’s schedule. These
tradeoffs exist in scheduling individual iterated stencil computations
in scientific applications, and the complexity of the choice space
is reflected by the many different tiling and scheduling strategies
introduced in past work [10, 16, 19]. In image processing pipelines,
this tradeoff must be made for each producer-consumer relationship
between stages in the graph—often dozens or hundreds—and the
ideal schedule depends on the global interaction among every stage,
often requiring the composition of many different strategies.

1.2 Contributions
Halide is an open-source domain-specific language for the complex
image processing pipelines found in modern computational pho-
tography and vision applications [26]. In this paper, we present the
optimizing compiler for this language. We introduce:

• a systematic model of the tradeoffs between locality, parallelism,
and redundant recomputation in stencil pipelines;

• a scheduling representation that spans this space of choices;
• a DSL compiler based on this representation that combines

Halide programs and schedule descriptions to synthesize points
anywhere in this space, using a design where the choices for how
to execute a program are separated not just from the definition
of what to compute, but are pulled all the way outside the black
box of the compiler;

• a loop synthesizer for data parallel pipelines based on simple
interval analysis, which is simpler and less expressive than
polyhedral model, but more general in the class of expressions
it can analyze;

• a code generator that produces high quality vector code for
image processing pipelines, using machinery much simpler than
the polyhedral model;

• and an autotuner that can infer high performance schedules—up
to 5× faster than hand-optimized programs written by experts—
for complex image processing pipelines using stochastic search.
Our scheduling representation composably models a range of

tradeoffs between locality, parallelism, and avoiding redundant
work. It can naturally express most prior stencil optimizations,
as well as hierarchical combinations of them. Unlike prior stencil
code generation systems, it does not describe just a single stencil
scheduling strategy, but separately treats every producer-consumer
edge in a graph of stencil and other image processing computations.

Our split representation, which separates schedules from the
underlying algorithm, combined with the inside-out design of
our compiler, allows our compiler to automatically search for the
best schedule. The space of possible schedules is enormous, with
hundreds of inter-dependent dimensions. It is too high dimensional
for the polyhedral optimization or exhaustive parameter search
employed by existing stencil compilers and autotuners. However,
we show that it is possible to discover high quality schedules using
stochastic search.

Given a schedule, our compiler automatically synthesizes high
quality parallel vector code for x86 and ARM CPUs with SSE/AVX
and NEON, and graphs of CUDA kernels interwoven with host
management code for hybrid GPU execution. It automatically infers
all internal allocations and a complete loop nest using simple
but general interval analysis [18]. Directly mapping data parallel
dimensions to SIMD execution, including careful treatment of
strided access patterns, enables high quality vector code generation,
without requiring any general-purpose loop auto-vectorization.



The end result is a system which enables terse, composable
programs to achieve state-of-the-art performance on a wide range
of real image processing pipelines, and across different hardware
architectures, including multicores with SIMD, and heterogeneous
CPU+GPU execution. From simple Halide programs written in a
few hours, we demonstrate performance up to 5× faster than hand-
tuned C, intrinsics, and CUDA implementations written by experts
over weeks or months, for image processing applications beyond
the reach of past automatic compilers.

2. The Halide DSL
We use the Halide DSL to describe image processing pipelines
in a simple functional style [26]. A simple C++ implementation
of local Laplacian filters (Fig. 1) is described by dozens of loop
nests and hundreds of lines of code. This is not practical to globally
optimize with traditional loop optimization systems. The Halide
version distills this into 62 lines describing just the essential dataflow
and computation in the 99 stage pipeline, and all choices for how
the program should be synthesized are described separately (Sec. 3).

In Halide, values that would be mutable arrays in an impera-
tive language are instead functions from coordinates to values. It
represents images as pure functions defined over an infinite inte-
ger domain, where the value of a function at a point represents the
color of the corresponding pixel. Pipelines are specified as chains
of functions. Functions may either be simple expressions in their
arguments, or reductions over a bounded domain. The expressions
that define functions are side-effect free, and are much like those in
any simple functional language, including:
• Arithmetic and logical operations;
• Loads from external images;
• If-then-else expressions;
• References to named values (which may be function arguments,

or expressions defined by a functional let construct);
• Calls to other functions, including external C ABI functions.

For example, a separable 3× 3 unnormalized box filter is expressed
as a chain of two functions in x, y:

UniformImage in(UInt(8), 2)
Var x, y
Func blurx(x,y) = in(x-1,y) + in(x,y) + in(x+1,y)
Func out(x,y) = blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)

This representation is simpler than most functional languages.
It does not include higher-order functions, dynamic recursion, or
additional data structures like lists. Functions simply map from
integer coordinates to a scalar result. Constrained versions of more
advanced features such as higher-order functions are added as
syntactic sugar, but do not change the underlying representation.

This representation is sufficient to describe a wide range of image
processing algorithms, and these constraints enable flexible analysis
and transformation of algorithms during compilation. Critically,
this representation is naturally data parallel within the domain of
each function. Also, since functions are defined over an infinite
domain, boundary conditions can be handled safely and efficiently
by computing arbitrary guard bands of extra values as needed. Guard
bands are a common pattern in image processing code, both for
performance concerns like alignment, and for safety. Wherever
specific boundary conditions matter to the meaning of an algorithm,
the function may define its own.
Reduction functions. In order to express operations like his-
tograms and general convolutions, Halide also needs a way to ex-
press iterative or recursive computations, like summation, histogram,
and scan. Reductions are defined in two parts:

• An initial value function, which specifies a value at each point
in the output domain.

• A recursive reduction function, which redefines the value at
points given by an output coordinate expression in terms of prior
values of the function.

Unlike a pure function, the meaning of a reduction depends on the
order in which the reduction function is applied. The programmer
specifies the order by defining a reduction domain, bounded by
minimum and maximum expressions for each dimension. The value
at each point in the output domain is defined by the final value of
the reduction function at that point, after recursing in lexicographic
order across the reduction domain.

This pattern can describe a range of algorithms outside the scope
of traditional stencil computation, but essential to image processig
pipelines, in a way that bounds side effects. For example, histogram
equalization combines multiple reductions and a data-dependent
gather. A scattering reduction computes a histogram, a recursive
scan integrates it into a CDF, and a point-wise operation remaps the
input using the CDF:
UniformImage in(UInt(8), 2)
RDom r(0..in.width(), 0..in.height()), ri(0..255)
Var x, y, i
Func histogram(i) = 0; histogram(in(r.x, r.y))++
Func cdf(i) = 0; cdf(ri) = cdf(ri-1) + histogram(ri)
Func out(x, y) = cdf(in(x, y))

The iteration bounds for the reduction and scan are expressed by the
programmer using explicit reduction domains (RDoms).

3. Scheduling Image Processing Pipelines
Halide’s representation of image processing algorithms avoids
imposing constraints on the order of execution and placement of
data. Values need to be computed before they can be used, to respect
the fundamental dependencies in the algorithm, but many choices
remain unspecified:

• When and where should the value at each coordinate in each
function be computed?

• Where should they be stored?
• How long are values cached and communicated across multiple

consumers, and when are they independently recomputed by
each?

These choices can not change the meaning or results of the algo-
rithm, but they are essential to the performance of the resulting
implementation. We call a specific set of choices for when and
where values are computed the pipeline’s schedule.

In the presence of stencil access patterns, these choices are bound
by a fundamental tension between producer-consumer locality,
parallelism, and redundant recomputation of shared values. To
understand this tradeoff space, it is useful to look at an example.

3.1 Motivation: Scheduling a Two-Stage Pipeline
Consider the simple two-stage blur algorithm, which computes a
3×3 box filter as two 3×1 passes. The first stage, blurx, computes
a horizontal blur of the input by averaging over a 3× 1 window:
blurx(x,y) = in(x-1,y) + in(x,y) + in(x+1,y)

The second stage, out, computes the final isotropic blur by averaging
a 1× 3 window of the output from the first stage:
out(x,y) = blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)

A natural way to think about scheduling the pipeline is from the
perspective of the output stage: how should it compute its input?
There are three obvious choices for this pipeline.
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Figure 2. A natural way to visualize the space of scheduling choices
is by granularity of storage (x-axis), and granularity of computation
(y-axis). Breadth-first execution does coarse-grain computation into
coarse-grain storage. Total fusion performs fine-grain computation
into fine-grain storage (small temporary buffers). Sliding window
strategies allocate enough space for the entire intermediate stage,
but compute it in in fine-grain chunks as late as possible. These
extremes each have their pitfalls. Breadth-first execution has poor
locality, total fusion often does redundant work, and using sliding
windows to avoid redundant recomputation constrains parallelism by
introducing dependencies across loop iterations. The best strategies
tend to be mixed, and lie somewhere in the middle of the space.

First, it could compute and store every required point in blurx
before evaluating any points in out. Applied to a 6 megapixel
(3k × 2k) image, this is equivalent to the loop nest:
alloc blurx[2048][3072]
for each y in 0..2048:
for each x in 0..3072:
blurx[y][x] = in[y][x-1] + in[y][x] + in[y][x+1]

alloc out[2046][3072]
for each y in 1..2047:
for each x in 0..3072:
out[y][x]=blurx[y-1][x] + blurx[y][x] + blurx[y+1][x]

This is the most common strategy in hand-written pipelines, and
what results from composing library routines together: each stage
executes breadth-first across its input before passing its entire output
to the next stage. There is abundant parallelism, since all the required
points in each stage can be computed and stored independently, but
there is little producer-consumer locality, since all the values of
blurx must be computed and stored before the first one is used by
out.

At the other extreme, the out stage could compute each point in
blurx immediately before the point which uses it. This opens up a
further choice: should points in blurx which are used by multiple
points in out be stored and reused, or recomputed independently by
each consumer?

Interleaving the two stages, without storing the intermediate
results across uses, is equivalent to the loop nest:
alloc out[2046][3072]
for each y in 1..2047:
for each x in 0..3072:
alloc blurx[-1..1]
for each i in -1..1:
blurx[i]= in[y-1+i][x-1]+in[y-1+i][x]+in[y-1+i][x+1]

out[y][x] = blurx[0] + blurx[1] + blurx[2]

Each pixel can be computed independently, providing the same
abundant data parallelism from the breadth-first strategy. The dis-
tance from producer to consumer is small, maximizing locality. But
because shared values in blurx are not reused across iterations, this
strategy performs redundant work. This can be seen as the result of

Strategy Span (iterations) Max. reuse dist. (ops) Work ampl.
Breadth-first ≥ 3072× 2046 3072× 2048× 3 1.0×

Full fusion ≥ 3072× 2046 3× 3 2.0×
Sliding window 3072 3072× (3 + 3) 1.0×

Tiled ≥ 3072× 2046 34× 32× 3 1.0625×
Sliding in tiles ≥ 3072× 2048/8 3072× (3 + 3) 1.25×

Figure 3. Different points in the choice space in Figure 2 each
make different trade-offs between locality, redundant recomputation,
and parallelism. Here we quantify these effects for our two-stage
blur pipeline. The span measures the degree of parallelism available,
by counting how many threads or simd lanes could be kept busy
doing useful work. The Max. reuse distance measures locality, by
counting the maximum number of operations that can occur between
computing a value and reading it back. Work amplification measures
redundant work, by comparing the number of arithmetic operations
done to the breadth-first case. Each of the first three strategies
represent an extreme point of the choice space, and is weak in
one regard. The fastest schedules are mixed strategies, such as the
tiled ones in the last two rows.

applying classical loop fusion through a stencil dependence pattern:
the body of the first loop is moved into the second loop, but its work
is amplified by the size of the stencil.

The two stages can also be interleaved while storing the values
of blurx across uses:
alloc out[2046][3072]
alloc blurx[3][3072]
for each y in -1..2047:

for each x in 0..3072:
blurx[(y+1)%3][x]=in[y+1][x-1]+in[y+1][x]+in[y+1][x+1]
if y < 1: continue
out[y][x] = blurx[(y-1)%3][x]

+ blurx[ y % 3 ][x]
+ blurx[(y+1)%3][x]

This interleaves the computation over a sliding window, with out
trailing blurx by the stencil radius (one scanline). It wastes no work,
computing each point in blurx exactly once, and the maximum
distance between a value being produced in blurx and consumed
in out is proportional to the stencil height (three scanlines), not the
entire image. But to achieve this, it has introduced a dependence
between the loop iterations: a given iteration of out depends on
the last three outer loop iterations of blurx. This only works if
these loops are evaluated sequentially. Interleaving the stages while
producing each value only once requires tightly synchronizing the
order of computation, sacrificing parallelism.

Each of these strategies has a major pitfall: lost locality, redun-
dant work, or limited parallelism (Fig. 3). In practice, the right
choice for a given pipeline is almost always somewhere in between
these extremes. For our two-stage example, a better balance can be
struck by interleaving the computation of blurx and out at the level
of tiles:
alloc out[2046][3072]
for each ty in 0..2048/32:

for each tx in 0..3072/32:
alloc blurx[-1..33][32]
for y in -1..33:

for x in 0..32:
blurx[y][x] = in[ty*32+y][tx*32+x-1]

+ in[ty*32+y][tx*32+x]
+ in[ty*32+y][tx*32+x+1]

for y in 0..32:
for x in 0..32:

out[ty*32+y][tx*32+x] = blurx[y-1][x]
+ blurx[y ][x]
+ blurx[y+1][x]

This trades off a small amount of redundant computation on tile
boundaries for much greater producer-consumer locality, while still
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Figure 4. Even simple pipelines exhibit a rich space of scheduling choices, each expressing its own trade-off between parallelism, locality,
and redundant recompute. The choice made for each stage is two-fold. The simpler choice is the domain order, which can express thread
parallelism, vectorization, and traversal order (row-major vs column-major). Dimensions can be split into inner and outer components, which
recursively expands the choice space, and can express tiling strategies. The more complex question each stage must answer is when its inputs
should be computed. Choices include computing all dependencies ahead of time (breadth-first), computing values as late as possible and
then discarding them (total fusion), and computing values as late as possible, but reusing previous computations (sliding window). The two
categories of choice interact. For example, the fastest schedules often split the domain into tiles processed in parallel, and then compute either
breadth-first or with sliding windows within each tile.

leaving parallelism unconstrained both within and across tiles. (In
the iterated stencil computation literature, the redundant regions are
often called “ghost zones,” and this strategy is sometimes called
“overlapped tiling” [17, 31].) On a modern x86, this strategy is
10× faster than the breadth-first strategy using the same amount of
multithreaded and vector parallelism. This is because the lack of
producer-consumer locality leaves the breadth-first version limited
by bandwidth. This difference grows as the pipeline gets longer,
increasing the ratio of intermediate data to inputs and outputs,
and it will only grow further as the computational resources scale
exponentially faster than external memory bandwidth under Moore’s
Law.

The very fastest strategy we found on this architecture interleaves
the computation of the two stages using a sliding window over
scanlines, while splitting the image into strips of independent
scanlines which are treated separately:
alloc out[2046][3072]
for each ty in 0..2048/8:
alloc blurx[-1..1][3072]
for y in -2..8:
for x in 0..3072:

blurx[(y+1)%3][x] = in[ty*8+y+1][tx*32+x-1]
+ in[ty*8+y+1][tx*32+x]
+ in[ty*8+y+1][tx*32+x+1]

if y < 0: continue
for x in 0..3072:
out[ty*8+y][x] = blurx[(y-1)%3][x]

+ blurx[ y % 3][x]
+ blurx[(y+1)%3][x]

Relative to the original sliding window strategy, this sacrifices
two scanlines of redundant work on the overlapping tops and
bottoms of independently-processed strips of blurx to instead
reclaim fine-grained parallelism within each scanline and coarse-
grained parallelism across scanline strips. The end result is 10%
faster still than the tiled strategy on one benchmark machine, but
10% slower on another. The best choice between these and many
other strategies varies across different target architectures. There
are also global consequences to the decision made for each stage in
a larger pipeline, so the ideal choice depends on the composition
of stages, not just each individual stages in isolation. Real image

processing pipelines often have tens to hundreds of stages, making
the choice space enormous.

3.2 A Model for the Scheduling Choice Space
We introduce a model for the space of important choices in schedul-
ing stencil pipelines, based on each stage choosing at what granular-
ity to compute each of its inputs, at what granularity to store each
for reuse, and within those grains, in what order its domain should
be traversed (Fig. 4).

The Domain Order Our model first defines the order in which
the required region of each function’s domain should be traversed,
which we call the domain order, using a traditional set of loop
transformation concepts:
• Each dimension can be traversed sequentially or in parallel.
• Constant-size dimensions can be unrolled or vectorized.
• Dimensions can be reordered (e.g. from column- to row-major).
• Finally, dimensions can be split by a factor, creating two new

dimensions: an outer dimension, over the old range divided by
the factor, and an inner dimension, which iterates within the
factor. After splitting, references to the original index become
outer × factor + inner .

Splitting recursively opens up further choices, and enables many
common patterns like tiling when combined with other transforma-
tions. Vectorization and unrolling are modeled by first splitting a
dimension by the vector width or unrolling factor, and then schedul-
ing the new inner dimension as vectorized or unrolled. Because
Halide’s model of functions is data parallel by construction, dimen-
sions can be interleaved in any order, and any dimension may be
scheduled serial, parallel, or vectorized.

For reduction functions, the dimensions of the reduction domain
may only be reordered or parallelized if the reduction update is
associative. Free variable dimensions may be scheduled in any order,
just as with pure functions.

Our model considers only axis-aligned bounding regions, not
general polytopes—a practical simplification for image processing
and many other applications. But this also allows the regions to



be defined and analyzed using simple interval analysis. Since our
model of scheduling relies on later compiler inference to determine
the bounds of evaluation and storage for each function and loop,
it is essential that bounds analysis be capable of analyzing every
expression and construct in the Halide language. Interval analysis
is simpler than modern tools like polyhedral analysis, but it can
effectively analyze through a wider range of expressions, which is
essential for this design.

The Call Schedule In addition to the order of evaluation within the
domain of each function, the schedule also specifies the granularity
of interleaving the computation of a function with the storage and
computation of each function on which it depends. We call these
choices the call schedule. We specify a unique call schedule for each
function in the entire call graph of a Halide pipeline. Each function’s
call schedule is defined as the points in the loop nest of its callers
where it is stored and computed (Fig. 4, top). For example, the three
extremes from the previous section can be viewed along these axes:
• The breadth-first schedule both stores and computes blurx at

the coarsest granularity (which we call the root level—outside
any other loops).

• The fused schedule both stores and computes blurx at the
finest granularity, inside the innermost (x) loop of out. At this
granularity, values are produced and consumed in the same
iteration, but must be reallocated and recomputed on each
iteration, independently.

• The sliding window schedule stores at the root granularity, while
computing at the finest granularity. With this interleaving, values
of blurx are computed in the same iteration as their first use,
but persist across iterations. To exploit this by reusing shared
values in subsequent iterations, the loops between the storage
and computation levels must be strictly ordered, so that a single
unique first iteration exists for each point, which can compute it
for later consumers.

Together, the call schedule and domain order define an algebra
for scheduling stencil pipelines on rectangular grids. Composing
these choices can define an infinite range of schedules, including
the vast majority of common patterns exploited by practitioners in
hand-optimized image processing pipelines.

The loop transformations defined by the domain order interact
with the inter-stage interleaving granularity chosen by the call
schedule because the call schedule is defined by specifying the
loop level at which to store or compute. A function call site may be
stored or computed at any loop from the innermost dimensions of
the directly calling function, to the surrounding dimensions at which
it is itself scheduled to be computed, and so on through its chain
of consumers. Splitting dimensions allows the call schedule to be
specified at finer granularity than the intrinsic dimensionality of the
calling functions, for example interleaving by blocks of scanlines
instead of individual scanlines, or tiles of pixels instead of individual
pixels. Since every value computed needs a logical location into
which its result can be stored, the storage granularity must be equal
to, or coarser than, the computation granularity.

Schedule Examples Revisiting the optimized examples from
Sec. 3.1, the tiled schedule can be modeled as follows:
• The domain order of out is split(y, 32)→ ty, y; split(x, 32)→

tx, x; order(ty, tx, y, x). (This is similar to the tiled domain or-
der shown rightmost in Fig. 4.) All dimensions may be parallel.
x is vectorized for performance.

• The call schedule of blurx is set to both store and compute for
each iteration of tx in out.

• The domain of blurx under tx is scheduled order(y, x), and x
is vectorized for performance.

The parallel tiled sliding window schedule is modeled by making
the call schedule of blurx store at ty in out, but compute at finer
granularity, at out’s y dimension. Then:
• The domain order of out is split(y, 8)→ ty, y; order(ty, y, x).

ty may be parallel, x is vectorized for performance. y must be
sequential, to enable reuse.

• The domain of blurx under y only has dimension x, which is
vectorized for performance.

4. Compiling Scheduled Pipelines
Our compiler combines the functions describing a Halide pipeline,
with a fully-specified schedule for each function, to synthesize the
machine code for a single procedure which implements the entire
pipeline. The generated pipeline is exposed as a C ABI callable
function which takes buffer pointers for input and output data, as
well as scalar parameters. The implementation is multithreaded and
vectorized according to the schedule, internally manages the alloca-
tion of all intermediate storage, and optionally includes synthesized
GPU kernels which it also manages automatically.

The compiler makes no heuristic decisions about which loop
transformations to apply or what will generate fast code. For all such
questions we defer to the schedule. At the same time, the generated
code is safe by construction. The bounds of all loops and allocations
are inferred. Bounds inference generates loop bounds that ultimately
depend only on the size of the output image. Bounded loops are
our only means of control flow, so we can guarantee termination.
All allocations are large enough to cover the regions used by the
program.

Given the functions defining a Halide pipeline and a fully
specified schedule as input (Fig. 5, left), our compiler proceeds
through the major steps below.

4.1 Lowering and Loop Synthesis
The first step of our compiler is a lowering process that synthesizes
a single, complete set of loop nests and allocations, given a Halide
pipeline and a fully-specified schedule (Fig. 5, middle).

Lowering begins from the function defining the output (in this
case, out). Given the function’s domain order from the schedule,
it generates a loop nest covering the required region of the output,
whose body evaluates the function at a single point in that domain
(Fig. 5, middle-top). The order of loops is given by the schedule, and
includes additional loops for split dimensions. Loops are defined
by their minimum value and their extent, and all loops implicitly
stride by 1. This process rounds up the total traversed domain of
dimensions which have been split to the nearest multiple of the split
factor, since all loops have a single base and extent expression.

At this stage, loop bounds are left as simple symbolic expressions
of the required region of the output function, which is resolved later.
The bounds cannot have inter-dependent dimensions between the
loops for a single function, so they represent a dense iteration over
an axis-aligned bounding box. Each loop is labeled as being serial,
parallel, unrolled, or vectorized, according to the schedule.

Lowering then proceeds recursively up the pipeline, from callers
to callees (here, from out to blurx). Callees (apart from those
scheduled inline) are scheduled to be computed at the granularity
of some dimension of some caller function. This corresponds to an
existing loop in the code generated so far. This site is located, and
code evaluating the callee is injected at the beginning of that loop
body. This code takes the form of a loop nest constructed using the
domain order of the callee. The allocation for the callee is similarly
injected at some containing loop level specified by the schedule.
In Fig. 5, middle, blurx is allocated at the level of tiles (out.xo),
while it is computed as required for each scanline within the tile
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Input: Algorithm
blurx(x,y)  = in(x-1,y)
 + in(x,y)
 + in(x+1,y)

out(x,y)  = blurx(x,y-1)
 + blurx(x,y)
 + blurx(x,y+1)

Sec 4.1: Lowering out
par for out.yo in 0..out.y.extent/4
 for out.xo in 0..out.x.extent/4
  for out.yi in 0..4
   vec for out.xi in 0..4
    out(4*xo+xi,4*yo+yi) =
     blurx(xi,yi-1)
     + blurx(xi,yi)
     + blurx(xi,yi+1)

Sec 4.2: Bounds inference
let blurx.y.min = 
 4*out.yo.min + out.yi.min - 1

Sec 4.5: Vectorization
vec for blurx.xi in 0..4
 blurx[blurx.y.stride*blurx.y+4*blurx.xo+xi) = ...
 ↓ 
blurx[blurx.y.stride*blurx.y+4*blurx.xo+ramp(4)]
= in[in.y.stride*(blurx.y.min+blurx.y)+4*blurx.xo+ramp(4)]
+ ...

Sec 4.4: Flattening
out[out.y.stride*(4*(out.yo-out.yo.min)+out.yi)
    +4*(out.xo-out.xo.min)+out.xi]
= blurx[blurx.y.stride*(out.yi-1-blurx.y.min)+out.xi-blurx.x.min]
+ blurx[blurx.y.stride*(out.yi  -blurx.y.min)+out.xi-blurx.x.min]
+ blurx[blurx.y.stride*(out.yi+1-blurx.y.min)+out.xi-blurx.x.min]Sec 4.1: Lowering blurx

alloc blurx[blurx.y.extent][blurx.x.extent]
for blurx.y in blurx.y.min..blurx.y.max
 for blurx.xo in blurx.x.min/4..blurx.x.max/4
  vec for blurx.xi in 0..4
   blurx(4*xo+xi,y) =
    in(4*xo+xi-1,y)
    + in(4*xo+xi,y)
    + in(4*xo+xi+1,y)

Input: Schedule
blurx: split x by 4 → xo, xi

 vectorize: xi

 store at out.x0

 compute at out.yi

out: split x by 4 → xo, xi

   split y by 4 → yo, yi

 reorder: yo, xo, yi, xi

 parallelize: yo

 vectorize: xi

Figure 5. Our compiler is driven by an autotuner, which stochastically searches the space of valid schedules to find a high performance
implementation of the given Halide program. The core of the compiler lowers a functional representation of an imaging pipeline to imperative
code using a schedule. It does this by first constructing a loop nest producing the final stage of the pipeline (in this case out), and then
recursively injecting the storage and computation of earlier stages of the pipeline at the loop levels specified by the schedule. The locations
and sizes of regions computed are symbolic at this point. They are resolved by the subsequent bound inference pass, which injects interval
arithmetic computations in a preamble at each loop level that set the region produced of each stage to be at least as large as the region consumed
by subsequent stages. Next, sliding window optimization and storage folding remove redundant computation and excess storage where the
storage granularity is above the compute granularity. A simple flattening transform converts multidimensional coordinates in the infinite
domain of each function into simple one-dimensional indices relative to the base of the corresponding buffer. Vectorization and unrolling
passes replace loops of constant with k scheduled as vectorized or unrolled with the corresponding k-wide vector code or k copies of the loop
body. Finally, backend code generation emits machine code for the scheduled pipeline via LLVM.

(out.yi). The allocation and computation for blurx are inserted at
the corresponding points in the loop nest.

Reductions are lowered to a pair of loop nests: the first initializes
the domain, and the second applies the reduction rule. Both alloca-
tion and loop extents are tracked as symbols of the required region
of the function used by its callers. Once lowering has recursed to
the end of the pipeline, all functions have been synthesized into a
single set of loops.

4.2 Bounds Inference
At this stage, for allocation sizes and loop bounds the pipeline relies
on symbolic bounds variables for each dimension of each function.
The next stage of lowering generates and injects appropriate defini-
tions for these variables. Like function lowering, bounds inference
proceeds recursively back from the output. For each function, it
symbolically evaluates the bounds of each dimension based on the
bounds required of its caller and the symbolic indices at which the
caller invokes it. At each step, the required bounds of each dimen-
sion are computed by interval analysis of the expressions in the
caller which index that dimension, given the previously computed
bounds of all downstream functions.

After bounds inference has recursed to the top of the pipeline, it
walks back down to the output, injecting definitions for the bounds
variables used as stand-ins during lowering. They are defined by
expressions which compute concrete bounds as a preamble at each
loop level (e.g., in Fig. 5, right, the minimum bound of blurx.y is
computed from interval analysis of the index expressions at which it
is accessed combined with the bounds of the calling function, out).
In practice, hoisting dynamic bounds evaluation expressions to the
outermost loop level possible makes the runtime overhead of more
complex bounds expressions negligible.

Interval analysis is an unusual choice in a modern loop synthesis
and code generation system. The resulting min/max bounds for each

dimension are less expressive than the polyhedral model. They can
only describe iteration over axis-aligned boxes, rather than arbitrary
polytopes. However, it is trivial to synthesize efficient loops for
any set of intervals, in contrast to the problem of scanning general
polyhedra. For many domains, including image processing, this is an
acceptable simplification: most functions are applied over rectilinear
regions.

Most critically, interval analysis can analyze a more general class
of expressions: it is straightforward to compute intervals through
nearly any computation, from basic arithmetic, to conditional ex-
pressions, to transcendentals, and even loads from memory. As a
result, this analysis can be used pervasively to infer the complete
bounds of every loop and allocation in any pipeline represented
in Halide. It also generalizes through constructs like symbolic tile
sizes, which are beyond the scope of polyhedral analysis. For cases
where interval analysis is over-conservative (e.g., when computing
the bounds of a floating point number loaded from memory which
the programmer knows will be between 0 and 1), Halide includes a
simple clamp operator, which simultaneously declares and enforces
a bound on an expression.

4.3 Sliding Window Optimization and Storage Folding
After bounds inference, the compiler traverses the loop nests seeking
opportunities for sliding window optimizations. If a realization of
a function is stored at higher loop level than its computation, with
an intervening serial loop, then iterations of that loop can reuse
values generated by previous iterations. Using the same interval
analysis machinery as in bounds inference, we shrink the interval
to be computed at each iteration by excluding the region computed
by all previous iterations. It is this transformation that lets us trade
off parallelism (because the intervening loop must be serial) for
reuse (because we avoid recomputing values already computed by
previous iterations.)



For example, in Fig. 5, blurx is stored for reuse within each tile
of out, but computed as needed, for each scanline within the tile.
Because scanlines (out.yi) are traversed sequentially, intermediate
values of blurx are computed immediately before the first scanline
of out which needs them, but may be reused my later scanlines
within the tile. For each iteration of out.yi, the range of blurx.y
is computed to exclude the interval covered by all prior iterations
computed within the tile.

Storage folding is a second similar optimization employed at this
stage of lowering. If a region is allocated outside of a serial loop but
only used within it, and the subregion used by each loop iteration
marches monotonically across the region allocated, we can “fold”
the storage, by rewriting indices used when accessing the region by
reducing them modulo the maximum extent of the region used in any
given iteration. For example, in Fig. 5, each iteration of out.yi only
needs access to the last 3 scanlines of blurx, so the storage of blurx
can be reduced to just 3 scanlines, and the value blurx(x,y+3) will
reuse the same memory address as blurx(x,y), blurx(x,y-3), and
so on. This reduces peak memory use and working set size.

4.4 Flattening
Next, the compiler flattens multi-dimensional loads, stores, and allo-
cations into their single-dimensional equivalent. This happens in the
conventional way: a stride and a minimum offset are computed for
each dimension, and the buffer index corresponding to a multidimen-
sional site is the dot product of the site coordinates and the strides,
minus the minimum. (Cf. Fig. 5, right.) By convention, we always
set the stride of the innermost dimension to 1, to ensure we can
perform dense vector loads and stores in that dimension. For images,
this lays them out in memory in scanline order. While our model of
scheduling allows extreme flexibility in the order of execution, we
do not support more unusual layouts memory, such as tiled or sparse
storage. (We have found that modern caching memory hierarchies
largely obviate the need for tiled storage layouts, in practice.)

4.5 Vectorization and Unrolling
After flattening, vectorization and unrolling passes replace loops of
constant size scheduled as vectorized or unrolled with transformed
versions of their loop bodies. Unrolling replaces a loop of size n
with n sequential statements performing each loop iteration in turn.
That is, it completely unrolls the loop. Unrolling by lesser amounts is
expressed by first splitting a dimension into two, and then unrolling
the inner dimension.

Vectorization completely replaces a loop of size n with a single
statement. For example, in Fig. 5 (lower right), the vector loop
over blurx.xi is replaced by a single 4-wide vector expression.
Any occurrences of the loop index (blurx.xi) are replaced with
a special value ramp(n) representing the vector [0 1...n − 1]. A
type coercion pass is then run over this to promote any scalars
combined with this special value to n-wide broadcasts of the scalar
expression. All of our IR nodes are meaningful for vector types:
loads become gathers, stores become scatters, arithmetic becomes
vector arithmetic, ternary expressions become vector selects, and
so on. Later, during code generation, loads and stores of a linear
expression of k∗ramp(n)+o will become dense vector loads and
stores if the coefficient k = 1, or strided loads and stores with
stride k otherwise. In contrast to many languages, Halide has no
divergent control flow, so this transformation is always well-defined
and straight-forward to apply. In our representation, we never split
a vector into a bundle of scalars. It is always a single expression
containing ramps and broadcast nodes. We have found that this
yields extremely efficient code without any sort of generalized loop
auto-vectorization.

4.6 Back-end Code Generation
Finally, we perform low-level optimizations and emit machine code
for the resulting pipeline. Our primary backends use LLVM for low-
level code generation. We first run a standard constant-folding and
dead-code elimination pass on our IR, which also performs symbolic
simplification of common patterns produced by bounds inference.
At this point, the representation is ready to be lowered to LLVM IR.
There is mostly a one-to-one mapping between our representation
and LLVM’s, but two specific patterns warrant mention.

First, parallel for loops are lowered to LLVM code that first
builds a closure containing state referred to in the body of a for loop.
The loop body is lowered to a separate function that accepts the
closure as an argument and performs one iteration of the loop. We
finally generate code that enqueues the iterations of the loop onto a
task queue, which a thread pool consumes at runtime.

Second, many vector patterns are difficult to express or generate
poor code if passed directly to LLVM. We use peephole optimization
to reroute these to architecture-specific intrinsics. For example, we
perform our own analysis pass to determine alignment of vector
loads and stores, and we catch common patterns such as interleaving
stores, strided loads, vector averages, clamped arithmetic, fixed-
point arithmetic, widening or narrowing arithmetic, etc. By mapping
specific expression IR patterns to specific SIMD opcodes on each
architecture, we provide a means for the programmer to make use
of all relevant SIMD operations on ARM (using NEON) and x86
(using SSE and AVX).

GPU Code Generation The data parallel grids defining a Halide
pipeline are a natural fit for GPU programming models. Our com-
piler uses the same scheduling primitives, along with a few simple
conventions, to model GPU execution choices. GPU kernel launches
are modeled as dimensions (loops) scheduled to be parallel and
annotated with the GPU block and thread dimensions to which they
correspond.

The limitations of GPU execution place a few constraints on
how these dimensions can be scheduled. In particular, a sequence of
block and thread loops must be contiguous, with no other intervening
loops between the block and thread levels, since a kernel launch
corresponds to a single multidimensional, tiled, parallel loop nest.
Sets of kernel loops may not be nested within each other on current
GPUs which do not directly implement nested data parallelism.
Additionally, the extent of the thread loops must fit within the
corresponding limits of the target device. Other than that, all the
standard looping constructs may still be scheduled outside or within
the block and grid dimensions. This corresponds to loops which
internally launch GPU kernels, and loops within each thread of a
GPU kernel, respectively.

Given a schedule annotated with GPU block and thread dimen-
sions, our compiler proceeds exactly as before, synthesizing a single
set of loop nests for the entire pipeline. No stage before the backend
is aware of GPU execution; block and thread dimensions are treated
like any other loops. The GPU backend extends the x86 backend,
including its full feature set. Outside the loops over block and thread
dimensions, the compiler generates the same optimized SSE code as
it would in the pure CPU target. At the start of each GPU block loop
nest, we carve off the sub-nest much like a parallel for loop in the
CPU backend, only it is spawned on the GPU. We first build a clo-
sure over all state which flows into the GPU loops. We then generate
a GPU kernel from the body of those loops. And finally, we generate
the host API calls to launch that kernel at the corresponding point in
the host code, passing the closure as an argument. We also generate
dynamic code before and after launches to track which buffers need
to be copied to or from the device. Every allocated buffer which is
used on the GPU has a corresponding device memory allocation,
and their contents are lazily copied only when needed.



The end result is not individual GPU kernels, but large graphs
of hybrid CPU/GPU execution, described by the same scheduling
model which drives the CPU backends. A small change in the
schedule can transform a graph of dozens of GPU kernels and
vectorized CPU loop nests, tied together by complex memory
management and synchronization, into an entirely different graph
of kernels and loops which produce the same result, expressively
modeling an enormous space of possible fusion and other choices
in mapping a given pipeline to a heterogeneous machine.

5. Autotuning Pipeline Schedules
We apply stochastic search to automatically find good schedules for
Halide pipelines. The automatic optimizer takes a fixed algorithm
and attempts to optimize the running time by searching for the most
efficient schedule. The schedule search space is enormous—far too
large to search exhaustively. For example in the local Laplacian
filters pipeline, we estimate a lower bound of 10720 schedules. This
is derived by labeling functions with three tilings per function and all
possible store and compute granularities. The actual dimensionality
of the space is likely much higher. The optimal schedule dependends
on machine architecture, image dimensions, and code generation in
complex ways, and exhibits global dependencies between choices
due to loop fusion and caching behavior.

In this section, we describe our autotuner. Because the search
problem has many local minima, we use a genetic algorithm to
seek out a plausible approximate solution, inspired by the search
procedure in PetaBricks [2]. We first describe the schedule search
space. We show how domain-specific knowledge can be used to
select reasonable starting points. Then we explain the general
operations of the genetic algorithm. Finally, we show how further
knowledge can be incorporated as search priors for more effective
mutation rules.

Schedule Search Space Our full model of scheduling is per call
but to simplify autotuning we schedule each function identically
across all call sites. The domain transformations include splitting
and reordering dimensions, and marking them parallel, vectorized,
or unrolled, or mapping a pair of dimensions to a GPU grid launch.
Variable and block size arguments are randomized and chosen from
small powers of two.

Because schedules have complex global dependencies, not all
schedules are valid: for example, a schedule could be computed or
stored inside a dimension that does not exist in the caller’s loop order.
Genetic operations such as mutate and crossover may invalidate
correct parent schedules. In general therefore we reject any partially
completed schedules that are invalid, and continue sampling until
we obtain valid schedules. We also verify the program output against
a correct reference schedule, over several input images. This is just
a sanity check: all valid schedules should generate correct code.
Finally to prevent explosion of generated code due to complex
pipelines, we limit the number of domain scheduling operations for
each function.

Search Starting Point One valid starting schedule is to label all
functions as computed and stored breadth first (at the outermost,
root granularity). The tuner converges from this starting point, albeit
slowly. We can often do better by seeding the initial population
with reasonable schedules. For each function we find its rectangular
footprint relative to the caller (via bounds inference) and inline
functions with footprint one. Remaining functions are stochastically
scheduled as either (1) fully parallelized and tiled or (2) simply
parallelized over y. We define fully parallelized and tiled as tiled
over x and y, vectorized within the tile’s inner x coordinate, and
parallelized over the y outer tile dimension. These choices are
selected by a weighted coin that has fixed weight from zero to
one depending on the individual. This allows us to often discover

good starting points for functions that vectorize well, or fall back to
naive parallelism when that is not the case. The dimensions x and y
are chosen from adjacent dimensions at random, except when there
are optional bounds annotations provided by the Halide programmer
(such as the number of color channels): dimensions with small
bound are not tiled.

Genetic Algorithm Search We use a fixed population size (128
individuals per generation, for all examples in this paper) and
construct each new generation with population frequencies of
elitism, crossover, mutated individuals, and random individuals.
Elitism copies the top individuals from the previous generation.
Crossover selects parents by tournament selection, followed by
two-point crossover, with crossover points selected at random
between functions. Random individuals are generated either by the
reasonable schedules described previously, or with equal probability,
by scheduling each function independently with random schedule
choices. This is directly derived from the PetaBricks autotuner [2].

Schedule Mutation Rules We incorporate further prior knowledge
about schedules into our mutation rules. Mutation selects a function
at random and modifies its schedule with one of eight operations
selected at random. Six are fairly generic: randomize constants,
replace a function’s schedule with one randomly generated, copy
from a randomly selected function’s schedule, and for the function’s
list of domain transformations, either add, remove, or replace with a
randomly selected transformation.

Our remaining two mutations incorporate specific knowledge
about imaging. These are chosen with higher probability. First, a
pointwise mutation of compute or storage granularity is generally
ineffective at fusing loops. Thus we have a loop fusion rule which
schedules the chosen function as fully parallelized and tiled, fol-
lowed by scheduling callees as vectorized by x, and computed and
stored under the tile’s inner x dimension. The callee scheduling is
repeated recursively until a coin flip fails. Finally, we incorporate
prior knowledge by applying a template: we replace a function’s
schedule with one of three common schedule patterns sampled from
a text file. These are: (1) compute and store under x, and vectorize
by x, (2) fully parallelized and tiled, and (3) parallelized over y and
vectorized over x. If generating a CUDA schedule we inject a fourth
pattern which simply tiles on the GPU. The x and y dimensions are
determined as in the starting point.

6. Results
To evaluate our representation and compiler, we applied them to a
range of image processing applications, and compared the best
autotuned result found by our compiler to the best previously
published expert implementation we could find. We selected this set
of examples to cover a diversity of algorithms and communication
patterns. It includes pipelines ranging from two to 99 stages, and
including many different stencils, data-dependent access patterns,
and histogram reductions. We describe each application below.
Fig. 6 summarizes their properties, and Fig. 7 summarizes their
performance. All evaluation was performed on a quad core Xeon
W3520 x86 CPU, and an NVIDIA Tesla C2070 GPU.

Blur is the simple example used in Sec. 3.1, which convolves the
image with two 3× 1 box kernels in two steps, a horizontal 3× 1
kernel then a vertical 1× 3 kernel. This is a simple example of two
consecutive stencils. Our reference comparison is a hand-optimized,
manually fused and multithreaded loop nest defined entirely in SSE
intrinsics [26]. This version is 12× faster than a simple pair of loops
in C compiled by GCC 4.7. The version found by our autotuner
is 10% faster, still, while being generated from a two line Halide
algorithm rather than 35 lines of intrinsics.



# functions # stencils graph structure
Blur 2 2 simple
Bilateral grid 7 3 moderate
Camera pipeline 32 22 complex
Local Laplacian filters 99 85 very complex
Multi-scale interpolation 49 47 complex

Figure 6. Properties of the example applications. In some cases, the
number of functions exceeds the number of program lines in Fig. 7,
because Halide functions are meta-programmed using higher-order
functions.

Camera pipeline transforms the raw data recorded by the camera
sensor into a usable image. Its demosaicking, alone, is a complex
combination of 21 interleaved and inter-dependent stencils.

The reference comparison is a single carefully tiled and fused
loop nest from the Frankencamera, expressed in 306 lines of C++ [1].
All producer-consumer communication is staged through scratch
buffers, tiles are distributed over parallel threads using OpenMP, and
the tight loops are autovectorized by GCC. The Halide algorithm is
145 lines describing 32 functions and 22 different stencils, literally
translated from the pseudocode in the comments explaining the
original source. It compiles to an implementation 3.4× faster than
the hand-tuned original. The autotuned schedule fuses long chains
of stages through complex, interleaved stencils on overlapping tiles,
fully fuses other stages, vectorizes every stage, and distributes blocks
of scanlines across threads.

Multi-scale interpolation uses an image pyramid to interpolate
pixel data for seamless compositing. This requires dealing with data
at many different resolutions. The resulting pyramids are chains of
stages which locally resample over small stencils, but through which
dependence propagates globally across the entire image.

The reference implementation is a carefully-structured set of
loop nests which were hand-tuned by an Adobe engineer to generate
a fully vectorized implementation in GCC. The Halide algorithm is
substantially simpler, but compiles to an implementation 1.7× faster
than the original parallel vector code. The same Halide algorithm
also automatically compiles to a graph of CUDA kernels and x86
code which is 5.9× faster.

Bilateral grid is an efficient implementation of the bilateral filter,
which smoothes an image while preserving its main edges [5, 21].
It first scatters the image data into a 3D grid, effectively building
a windowed histogram in each column of the grid, then blurs the
grid along each of is axes with three 5-point stencils. Finally, the
output image is constructed by trilinear interpolation within the grid
at locations determined by the input image.

The CPU reference code is a tuned but clean implementation
from the original authors in 122 lines of C++. It is partially autovec-
torized by GCC, but is nontrivial to multithread (a naive OpenMP
parallelization of major stages results in a slowdown on our bench-
mark CPU), so the reference is single-threaded. The Halide algo-
rithm is 34 lines, and compiles to an implementation 4.2× faster
than the original. The speedup comes from a combination of par-
allelism, tile-level fusion of some stages, and careful reordering of
dimensions to control parallel grain size in the grid.

We also compared our implementation to a hand-tuned GPU
implementation from the original authors, written in 370 lines of
CUDA code. The same Halide algorithm—less than 1/10th the
code—found a different schedule which was 2.3× faster than
the hand-written CUDA. The Halide compiler generates similar
CUDA code to the reference, but the autotuner found an unintuitive
point in the schedule space which sacrificed some parallelism in
the grid construction step to reduce synchronization overhead in
the scattering reduction. It also uses a tiled fusion strategy which

x86
Halide Expert Speedup Lines Lines Factor
tuned tuned Halide expert shorter
(ms) (ms)

Blur 11 13 1.2× 2 35 18×
Bilateral grid 36 158 4.4× 34 122 4×
Camera pipe 14 49 3.4× 123 306 2×
Interpolate 32 54 1.7× 21 152 7×
Local Laplacian 113 189 1.7× 52 262 5×

CUDA
Halide Expert Speedup Lines Lines Factor
tuned tuned Halide expert shorter
(ms) (ms)

Bilateral grid 8.1 18 2.3× 34 370 11×
Interpolate 9.1 54* 5.9× 21 152* 7×
Local Laplacian 21 189* 9× 52 262* 5×

Figure 7. Comparison of autotuned Halide program running times
to hand-optimized programs created by domain experts in C, in-
trinsics, and CUDA. Halide programs are both faster and require
fewer code lines. (*No GPU reference available, compared to CPU
reference.)

passes intermediate results through GPU scratchpad memory to
improve locality through the blur steps at the expense of redundant
computation. These tradeoffs were counter-intuitive to the original
author, and also much harder to express in CUDA, but are easily
described by our schedule representation and found by our autotuner.

Local Laplacian filters uses a multi-scale approach to tone map
images and enhance local contrast in an edge-respecting fashion [3,
22]. It is used in the clarity, tone mapping, and other filters in Adobe
Photoshop and Lightroom. The algorithm builds and manipulates
several image pyramids with complex dependencies between them.
The filter output is produced by a data-dependent resampling from
several pyramids. With the parameters we used, the pipeline contains
99 different stages, operating at many scales, and with different
computational patterns.

The reference implementation is 262 lines of C++, developed
at Adobe, and carefully parallelized with OpenMP, and offloading
most intensive kernels to tuned assembly routines from Intel Per-
formance Primitives [14, 20]. It has very similar performance to a
version deployed in their products, which took several months to
develop, including 2-3 weeks dedicated to optimization. It is 10×
faster than an algorithmically identical reference version written
by the authors in pure C++, without IPP or OpenMP. The Halide
version was written in one day, in 52 lines of code. It compiles to an
implementation which is 1.7× faster than the highly optimized ex-
pert implementation (roughly 20× faster than the clean C++ without
IPP and OpenMP). The resulting schedule is enormously complex,
mixing different fusion, tiling, vectorization, and multithreading
strategies throughout the expansive 99 stage graph. In C, it would
correspond to hundreds of loops over more than 10,000 lines of
code.

The same program compiles with a different automatically
generated schedule to a hybrid CPU/GPU program with 58 unique
GPU kernels, each representing a differently tiled and partially fused
subset of the overall graph, and with the lookup table and several
smaller levels of the pyramids scheduled as vector code on the CPU.
The generated program has more distinct CUDA kernels than the
Halide algorithm describing it has lines of code. It runs 7.5× faster
than the hand-tuned Adobe implementation, and is more than 4×
faster than the best parallel vector implementation on the CPU. This



Source Target Cross- Autotuned Slowdown
size size tested on target (vs target

(MP) (MP) time (ms) (ms) autotuned)
Blur 0.3 30 13 11 1.2×
Bilateral grid 0.3 2 35 36 0.97×
Interpolate 0.3 2 31 32 0.97×
Blur 30 0.3 1.1 0.07 16×
Bilateral grid 2 0.3 9.6 6.7 1.4×
Interpolate 2 0.3 9.7 5.2 1.9×

Figure 8. Cross-testing of autotuned schedules across resolutions.
Each program is autotuned on a source image size. The resulting
schedule is tested on a target image size giving a “cross-tested time."
This is compared to the result of running the autotuner directly on
the target resolution. We report the ratio of the cross-tested time to
the autotuned-on-target time as the “slowdown." Note that schedules
generalize better from low resolutions to high resolutions. In theory
the slow-down should always be at least one, but due to the stochastic
nature of the search some schedules were slower when autotuned
on the target.

is by far the fastest implementation of local Laplacian filters we
know of.

6.1 Autotuning Performance
These examples took between 2 hours and 2 days to tune (from
10s to 100s of generations). In all cases, the tuner converged to
within 15% of the final performance after less than one day tuning
on a single machine. Improvements to the compiling and tuning
infrastructure (for example, distributing tests across a cluster) could
reduce these times significantly.

We generally found the tuned schedules to be insensitive to
moderate changes in resolution or architecture, but extreme changes
can cause the best schedule to change dramatically. Table 8 shows
experiments in cross-testing schedules tuned at different resolutions.
We observe that schedules generalize better from low resolutions to
high resolutions. We also mapped the best GPU schedule for local
Laplacian filter to the CPU, and found that this is 7× slower than
the best CPU schedule.

6.2 Discussion
Across a range of image processing applications and target architec-
tures, our scheduling representation is able to model, our compiler
is able to generate, and our autotuner is able to discover implemen-
tation strategies which deliver state-of-the-art performance. This
performance comes from careful navigation of the extremely high
dimensional space of tradeoffs between locality, parallelism, and re-
dundant recomputation in image processing pipelines. Making these
tradeoffs by hand is challenging enough, as shown by the much
greater complexity of hand-written implementations, but finding
the ideal points is daunting when each change a programmer might
want to test can require completely rewriting a complex loop nest
hundreds of lines long. The performance advantage of the Halide
implementations is a direct result of simply testing many more points
in the space than a human programmer ever could manually describe
at the level of explicit loops.

Nonetheless, based on our experience, brute force autotuning
still poses significant challenges of robustness and usability in
a real system. The tuning process is an entire extra stage added
to a programmer’s normal development process. Straightforward
implementations are sensitive to noise in testing environment and
many other factors. In Halide, while simple pipelines (like blur) can
tune effectively with only trivial mutation rules, we found heuristic
mutation rules are essential to converge in a reasonable amount

of time when tuning more complex imaging pipelines. However
these rules may be specific to the algorithm structure. For example,
different template mutation rules may be necessary for 3D voxel data
or unconventional color layouts. We also found that it is necessary
to maintain diversity to avoid becoming trapped in local minima,
which we did by using a large population (128 individuals per
generation). Even so, the tuner can occasionally become trapped,
requiring restarting with a new random initialization, and taking
the best of several runs. In general, we feel that high dimensional
stochastic autotuning has not yet developed the robust methodology
or infrastructure for real-world use found elsewhere in the compiler
community.

7. Prior Work
Image processing pipelines include similar structure to several
problems well studied in compilers.

Split Compilers Sequoia’s “mappings” and SPIRAL’s loop syn-
thesis algebra echo our separation of the model of scheduling from
the description of the algorithm, and its lifting outside our com-
piler [9, 25].

Stream Programs Compiler optimization of stream programs was
studied extensively in the StreamIt and Brook projects [4, 11, 29]. In
this framework, sliding window communication implements stencils
on 1D streams [12, 24, 30]. Stream compilers generally did not
consider the introduction of redundant work as a major optimization
choice, and nearly all work in stream compilation has focussed
on these 1D streams. Image processing pipelines, in contrast, are
effectively stream programs over 2D-4D streams.

Stencil Optimization Iterated stencil computations are important
to many scientific applications, and have been studied for decades.
Frigo and Strumpen proposed a cache oblivious traversal for effi-
cient stencil computation [10]. This view of locality optimization
by interleaving stencil applications in space and time inspired our
model of scheduling. The Pochoir compiler automatically trans-
forms stencil codes from serial form into a parallel cache oblivious
form using similar algorithms [28].

Overlapping tiling is a strategy which divides a stencil compu-
tation into tiles, and trades off redundant computation along tile
boundaries to improve locality and parallelism [16], modeled in our
schedule representation as interleaving both storage and computa-
tion inside the tile loops. Other tiling strategies represent different
points in the tradeoff space modeled by our representation [19].
Past compilers have automatically synthesized parallel loop nests
with overlapped tiling on CPUs and GPUs using the polyhedral
model [13, 16]. These compilers focussed on synthesizing high
quality code given a single, user-defined set of overlapped tiling
parameters. Autotuning has also been applied to iterated stencil com-
putations, but past tuning work has focussed on exhaustive search
of small parameter spaces for one or a few strategies [15].

Image Processing Languages Critically, many optimizations for
iterated stencil computations are based on the assumption that the
time dimension of iteration is large relative to the spatial dimension
of the grid. In image processing pipelines, most individual stencils
are applied only once, while images are millions of pixels in size.
Image processing pipelines also include more types of computa-
tion than stencils alone, and scheduling them requires choices not
only of different parameters, but of entirely different strategies, for
each of many heterogeneous stages, which is infeasible with either
exhaustive search or polyhedral optimization. Most prior image pro-
cessing languages and systems have focused on efficient expression
of individual kernels, as well as simple fusion in the absence of
stencils [6, 8, 23, 27]. Recently, Cornwall et al. demonstrated fast



GPU code generation for image processing code using polyhedral
optimization [7].

Earlier work on the Halide language included a weaker model of
schedules, and required programmers to explicitly specify schedules
by hand [26]. This is the first automatic optimizer, and therefore
the first fully automatic compiler, for Halide programs. We show
how they can be automatically inferred, starting from just the
algorithm defining the pipeline stages, and using relatively little
domain-specific knowledge beyond the ability to enumerate points
in the space of schedules. Our state-of-the-art performance shows
the effectiveness of our scheduling model for representing the
underlying choice space. The scheduling model presented here is
also richer than in past work. In particular, it separates computation
frequency from storage frequency in the call schedule, enabling
sliding window schedules and similar strategies which trade off
parallelism for redundant work while maintaining locality.

In all, this gives a dramatic new result: automatic optimization of
stencil computations, including full consideration of the parallelism,
locality, and redundancy tradeoffs. Past automatic stencil optimiza-
tions have targeted individual points in the space, but have not auto-
matically chosen among different strategies spanning these multi-
dimensional tradeoffs, and none have automatically optimized large
heterogeneous pipelines, only individual or small multi-stencils.
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