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Figure 1: An automatically-generated preview at 914x389 resolution with 13x13 supersampling for a scene featuring 42 spot, environment,
and message-passing lights and multiple 20k instruction surface shaders. The upper-left half of the image is rendered with our approach
while the lower right is the final RenderMan frame – the seam is barely visible. The error heat map is in percentage of maximum 8-bit pixel
value and is mostly due to shadow map artifacts. This scene renders interactively at 4x4 subsampled resolution at 9.2 Hz, while refining to
the above antialiased final-quality in 2.7 seconds, compared to 57 minutes in RenderMan.

Abstract

We present an automated approach for high-quality preview of
feature-film rendering during lighting design. Similar to previous
work, we use a deep-framebuffer shaded on the GPU to achieve
interactive performance. Our first contribution is to generate the
deep-framebuffer and corresponding shaders automatically through
data-flow analysis and compilation of the original scene. Cache
compression reduces automatically-generated deep-framebuffers
to reasonable size for complex production scenes and shaders.
We also propose a new structure, the indirect framebuffer, that
decouples shading samples from final pixels and allows a deep-
framebuffer to handle antialiasing, motion blur and transparency
efficiently. Progressive refinement enables fast feedback at coarser
resolution. We demonstrate our approach in real-world production.

Keywords: Lighting Preview, Interactive Rendering, Data-flow
Analysis, RenderMan, Programmable Shading, GPUs

1 Introduction

Configuring lights is a critical bottleneck in modern production
rendering, and recent advances have sought to provide real-time
preview using deep-framebuffers and graphics hardware [Gersh-
bein and Hanrahan 2000; Pellacini et al. 2005]. A deep-framebuffer
caches static values such as normals and texture samples in image
space, and each time the user updates light parameters, real-
time shaders interactively recompute the image from the cache.
Unfortunately, these approaches require substantial additional work
from shader authors. For example, in the lpics system deployed at
Pixar [Pellacini et al. 2005], at least two versions of each shader
need to be written in place of just one: the usual RenderMan shader
used for the final rendering (with additional code paths to cache
data), and a Cg version used for real-time preview.

We alleviate the need to author multiple versions of a shader by
automatically translating unmodified RenderMan shaders into real-
time shaders and precomputation shaders. This translation is part of
a larger process that automatically generates deep-framebuffer data
from unmodified existing scenes. In theory, some RenderMan code
cannot be translated into GPU shaders, but we have found that, in
practice, the dynamic parts of our production shaders translate well.

In contrast to pure static compiler analysis, we use post-
execution cache compression to supplement a simple compiler
analysis. Cache compression effectively reduces automatically-
generated deep-framebuffers to reasonable size for complex
production shaders.

In addition, transparency, motion blur and antialiasing can be
critical to judge appearance. We introduce the indirect framebuffer,
which enables these effects without linearly scaling rendering time.
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Similar to RenderMan, it decouples shading from visibility, but
also precomputes the final weight of each shading sample for
the relevant final pixels. Given the complexity of shots that we
handle, we also use progressive refinement to offer both interactive
feedback (multiple frames per second) and faithful final quality
(potentially after a few seconds).

Finally, it is important to facilitate the implementation of new
passes in a preview system. We use a computation graph that
directly expresses the dependencies and data-flow between passes
to implement shadows and translucency.

We describe a full production relighting system that is being
deployed in two studios with different rendering workflows.

1.1 Prior Work

Fast relighting has long been a major area of research [Dorsey et al.
1995; Ng et al. 2003]. Software renderers can be optimized for
repetitive re-rendering by caching intermediate results at various
stages of the rendering process as pioneered by TDI in the 1980s
[Alias 1999; Pixar 2001; Nvidia 2005; Tabellion and Lamorlette
2004]. However, such optimizations must be integrated at the core
of a system and are still far from interactive for film scenes.

Séquin and Smyrl [1989] introduced a parameterized version of
ray tracing that enables the modification of some material and light
properties after precomputation (although not the light direction or
position). They also perform cache compression.

Gershbein and Hanrahan created a system for lighting design
[2000] which cached intermediate results in a deep-framebuffer
inspired by G-Buffers [Saito and Takahashi 1990]. They cached
a fixed set of data, and approximated shading with multitextur-
ing. Pellacini et al. performed shading on programmable graph-
ics hardware [2005] using manually-written shaders that emulate
RenderMan shaders. These systems require manual segmentation
of shaders into light-dependent and light-independent components,
and manual translation of preview shaders. While this allows for
manual optimization to maximize preview performance, it is a
significant burden. We chose to potentially sacrifice performance
but tremendously improve integration and maintainability by au-
tomating the segmentation and translation of shaders. Furthermore,
we extend prior deep-framebuffer systems by enabling the efficient
rendering of transparent surfaces and multisampling effects, such
as motion blur. Finally, our approach also automatically supports
editing many (user-selected) surface properties because it employs
data-flow analysis with respect to arbitrary parameters.

Wexler, et al. implemented high-quality supersampling on the
GPU [2005], but they focus on final rendering, while we optimize
for static visibility, resulting in a different data structure. We
build on recent work on direct-to-indirect transfer, which exploits
linearity for global illumination in cinematic relighting [Hašan et al.
2006]. We apply similar principles to multisampling, transparency
and subsurface scattering.

Jones et al. segmented shaders into static and dynamic subsets
and cached shading information in texture-space to accelerate
rendering the same scene multiple times under similar configu-
rations [2000]. However, their technique only cached shading
computation—not tessellation, displacement, etc.—and required
manual shader segmentation.

Our goals cannot be fully met by pre-computed radiance transfer
(PRT) techniques [Sloan et al. 2002; Ng et al. 2003], because they
usually make assumptions on the reflectance or lighting and have
significant precomputation cost. In contrast, we need to handle
the effect of local point light sources and arbitrary reflectance.
Furthermore, computing illumination itself is a large part of our
run-time calculation as production light shaders are quite complex.

Compiler specialization of graphics computation was first used
for ray tracing [Hanrahan 1983; Mogensen 1986; Andersen 1996].

Guenter, Knoblock & Ruf developed data specialization to reduce
the cost of recomputation when only certain shading parame-
ters vary, by automatically segmenting shaders into parameter-
dependent and -independent components [1995; 1996]. We lever-
age their approach in the context of lighting design and extend their
analyses to global data-flow through existing real-world Render-
Man shaders. We solve specialization using a graph formulation,
mentioned but not implemented by Knoblock and Ruf [1996]. This
allows us to not only specialize with respect to dynamic parameters,
but also to perform dead-code elimination and other analyses, all
from a single dependence analysis.

Peercy et al. [2000] and Bleiweiss and Preetham [2003] ad-
dressed the compilation of RenderMan shaders onto graphics hard-
ware. We, too, exploit the fact that a large subset of the RenderMan
Shading Language (RSL) can be compiled to a GPU. Our interest,
however, is not in using RSL as a GPU shading language, but
in automatically specializing final-frame shaders and creating an
appropriate deep framebuffer for interactive relighting.

2 System Design

2.1 Design Goals

Our primary objective is, given a fixed scene geometry, material and
viewpoint, to enable the interactive manipulation of all light source
parameters, including intensity, position, and falloff, as well as to
create and remove light sources. The restriction to lights came first
from current production workflow where light source placement is
a separate step at the end of the pipeline, after all other aspects
have been frozen. We were also motivated by technical limitations:
surface shaders tend to have more complexity and could prove
harder to fully map to graphics hardware.

However, it later became apparent that our approach can also
enable the modification of many, but not all, material appearance
parameters, and we have sought to facilitate this, although only as
a secondary objective.

In order to receive widespread adoption in production, a lighting
design system must meet the following three major design goals.

High-performance preview Minimizing feedback time is our
primary goal. Specifically, we wish to provide:

• Low-latency feedback – When the user modifies a light pa-
rameter, image refresh must be instantaneous. Final quality
might take a few seconds through progressive refinement, but
low-latency feedback is critical to seamless user interaction.

• Fast initial precomputation – To be accepted by artists, this
tool should not make it take longer to begin work on a shot. We
seek to keep the initial preprocessing time as short as rendering
one frame with the offline renderer.

• High absolute rendering speed – Though secondary to latency
and startup time, absolute rendering speed must be optimized.

Seamless integration with existing pipelines A preview sys-
tem should be transparent to the user and require no additional work
to use within an existing pipeline. This means that it should stand
in for the existing offline rendering pipeline by:

• Taking the same input – unmodified RenderMan scenes and
shaders.

• Producing the same output – using shading and visibility
computation with extremely high fidelity to final rendering,
including antialiasing, motion blur, and transparency.

• Using the same workflow – in particular the same light editing
GUI, which varies from studio to studio. This requires our
system to communicate with different GUI software.

2



To appear in the ACM SIGGRAPH conference proceedings

automatic preprocessor interactive previewcomputation graphinput scene

rendering engine modeling gui

surface
shaders

GPU
shaders

caching
surface
shaders

caching
scene

specializing
compiler

auxiliary data 
e.g. shadow geometry,

translucency samples

deep- and
indirect
framebuffer
caches

dynamic
light shaders

dynamic
surface shaders

rendered image

light
shaders

RenderMan

GPU

cache
compression

caches

temp

aux

parameter controls

Figure 2: Our system takes as input the original RenderMan scene with its shaders. Our specializing compiler automatically separates a
shader into static and dynamic parts and uses RenderMan to cache static computation and auxiliary data. The dynamic part is translated
into Cg. Cache compression greatly reduces the size of the cached data. The preprocess generates a computation graph that encapsulates
the computation and data binding necessary to re-render the scene. The real-time engine executes the graph to generate intermediate
data (shadow maps, etc.) and run the dynamic shaders over the cache on the GPU. A new indirect framebuffer enables antialiasing and
transparency. The GUI application modifies light parameters through the graph interface.

Ease of implementation and maintenance Production render-
ing pipelines are complex and continually evolving. A preview
system cannot afford the same implementation investment and
should not require major re-implementation whenever the final-
frame renderer is updated, the shaders changed, or the pipeline
altered. Our system must achieve effective:
• Reuse – Our system seeks to reuse the existing pipeline wher-

ever possible, offloading most precomputation directly to the
existing offline pipeline.

• Flexibility – Our system is developed for two independent
studios, with different pipelines and toolsets, so we wish to
reuse as much as possible between these two environments.

• Extensibility – It should be as easy as possible to support new
functionality—from using new shaders to implementing new
multipass effects—in a simple, modular fashion.

2.2 System Architecture
Our approach (Fig. 2) can be decomposed into an automatic
preprocess and a run-time phase that communicate through a
dynamically-generated computation graph. We take as input the
same RenderMan scene and shaders used for final rendering.
Automatic specialization First, we automatically slice all sur-
face shaders into a static component that can be cached and a
dynamic component that will be executed by the real-time engine
(Section 3). For surface shaders, we then generate two new shaders:
a static precomputation shader, which is executed once in the
final-frame renderer to generate a deep-framebuffer cache, and a
dynamic re-rendering shader (in Cg), which is executed repeatedly
over the deep-framebuffer to generate interactive previews. We
directly translate light shaders to execute together with the re-
rendering surface shaders on the GPU.

The automatic specialization of shaders can be expected to yield
a performance penalty for the interactive preview compared to
manually optimized and simplified code [Gershbein and Hanrahan
2000; Pellacini et al. 2005], but in our context, seamless integration
took precedence over final performance. Another potential limita-
tion of automatic translation is that not all RenderMan code can be
mapped to the GPU. However, for our production shaders this has
not been an issue.
Indirect framebuffer Our core real-time rendering is similar
to traditional deep-framebuffer approaches and uses Cg shaders
to perform computation on all deep-framebuffer samples on the
GPU. However, we introduce a new level of indirection through an

indirect framebuffer to decouple shading samples from final pixel
values, thereby efficiently handling antialiasing, motion blur, and
transparency. It also enables progressive refinement (Sec. 4, 5).

Cache compression We rely on static preprocessing of the
cached data to compensate for overestimates of the compiler
analysis, as well as to cull the deep-framebuffer and indirect
framebuffer based on visibility. This provides over an order of
magnitude reduction in total cached data sizes while allowing the
compiler to remain relatively simple.

Multipass rendering We enable multipass effects such as shadow
mapping and subsurface scattering. This requires the preproces-
sor to also output auxiliary data such as geometry needed for
shadow mapping or lighting samples for translucency. Although
translucency currently incurs substantial cost for our preview, it
demonstrates the generality of our architecture.

Computation graph The overall re-rendering algorithm is en-
coded as a computation graph, generated during preprocessing from
the original scene and shaders. The graph provides a specification
of how to re-shade an image from the cache under new lighting
configurations (Section 6).

The computation graph provides two critical abstractions. First,
it encodes dependences between different elements of real-time
rendering, which is particularly critical for progressive refinement
and multipass effects. Second, the graph abstracts the preprocessing
from the editing GUI. So long as the generated graph conforms to
certain basic conventions, the preprocessing stage can be updated
and extended without affecting the GUI tool. This is important to
our design goal of integrating seamlessly with multiple different
workflows.

3 Automatic Deep-Framebuffer Caching

We wish to automatically generate a deep-framebuffer and real-
time preview. We first need to determine which parts of the com-
putation are static vs. dynamic with respect to the light parameters.
We then create new RenderMan Shading Language (RSL) shaders
that compute and output the static values, and use RenderMan to
create a deep-framebuffer cache. We preprocess the cache output by
RenderMan to compress redundant and irrelevant values. Finally,
we translate the dynamic part of the computation into real-time
GPU shaders that access the deep framebuffer as textures. Previous
work has achieved these steps manually. Our contribution is to
make this process fully automatic.
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Figure 3: Specializing compiler. The input shader is represented as an abstract syntax tree (AST). We augment it to encode dependency
between variables and expressions. To decide if an expression is dynamic, we query whether it depends on any dynamic parameters. Once the
shader has been split, we generate two new shaders, a caching shader and a real-time shader. RenderMan executes the caching shader over
the scene and the cached values are compressed to generate a dense deep-framebuffer, which is read by the dynamic shader during preview.

3.1 Data-flow Analysis for Specialization

We build on techniques from data-flow analysis to label the static
and dynamic parts of a shader [Horwitz et al. 1990; Reps et al.
1995]. We need to conservatively identify all expressions that
depend directly or indirectly on dynamic input parameters. This
can naturally be turned into a graph reachability problem: an
expression in a shader is dynamic if it is “reachable” from a
dynamic parameter. RenderMan separates surface and light shaders
and we focus on specializing surface shaders, since light shaders are
mostly dynamic with respect to light parameters.

Dependence analysis The first step of our analysis (Fig. 3) adds
global dependencies to transform an abstract syntax tree (AST)
representation of the shader into a dependency graph that encodes
all dependencies between expressions. We add a dynamic node
and connect it to the dynamic parameters, specified by name.
We then simply query whether each expression depends on a
dynamic parameter by testing if it can reach the dynamic node.
The core global dependency rules are described separately [Ragan-
Kelley 2007]. We perform dead-code elimination using the same
dependence graph by connecting output values to a new output
node.

Cache-required code Our caching analysis constrains dynamic
shaders to operations that can be executed on the GPU. We
can force certain operations—namely calls to external C rou-
tines, and unimplemented shadeops (e.g., trace)—to be labeled
cached even if the dependence analysis labeled them dynamic.
Static/dynamic analysis eliminates most such operations in our
shaders. We can recognize light-dependent cache-required nodes
as errors, but we find simply warning the user and computing the
values statically at cache time often provides usable preview results.

3.2 Code Generation and Translation
Once we have decided which computations to cache, and which to
execute dynamically during preview, we generate two new surface
shaders, one for each phase.

RenderMan precomputation Caching computations are emitted
as a new RSL shader. When branch conditions are dynamic, control
flow in the dynamic preview shader may differ from the caching
execution. If values are cached inside a dynamic conditional, the
caching shader must execute both potential branches. Finally, we
generate a new RenderMan scene that replaces each shader by its
caching equivalent. We run it through RenderMan to generate the
deep framebuffer (Fig. 3).

Cg code generation Dynamic surface shaders are emitted as
new Cg shaders which read the deep-framebuffer cache as textures.

The key issue in translating RSL to Cg is to mimic RenderMan’s
richer data-flow and execution semantics. Communication of
light color and direction is accomplished through shared global
variables, as in RSL. However, RSL also allows surfaces and
lights to access each other’s parameters by name through message-
passing. We implement this by communicating parameters through
global variables.

We represent string tokens, including message passing identi-
fiers, by encoding static string values in floats using unique IDs,
enabling runtime code to pass and compare (though not modify)
strings on the GPU. RSL also uses strings to represent transforms
and texture handles, so our Cg string type includes the necessary
texture samplers and matrices for all major uses of strings.

Finally, RSL supports the computation of arbitrary derivatives
over the surface. Cg also supports derivatives, but its fast approx-
imations are low-quality. In practice, we find that high quality
derivatives are only significant in dynamic code for large texture
filter kernels. These primarily depend on surface partial derivatives,
which are not dynamic, so we simply cache them when necessary.

Light translation While surface shaders are specialized, light
shaders are directly translated through the same Cg code generator.
Similar to RenderMan, we generate Cg light and surface shaders
separately and combine them at load time. They communicate
primarily through Cg interfaces [Mark et al. 2003].

This approach can only automatically translate light shaders
which do not rely on cache-required functionality—namely, exter-
nal C calls. In practice, our lights only call C DSOs for simple
operations like fast math routines, which are trivially replaced with
native instructions on the GPU, so we do not find this problematic.

3.3 Specialization Results

Figure 4 summarizes the results of our shader specialization ap-
proach. Note that the dynamic shader complexity depends on both
the light and surface shaders. Generic Surface is a multipurpose
“übershader” that forms the basis of most of our custom shaders.
However, it does not result in dramatically larger dynamic shaders
than a simpler surface because most of the code is static and dy-
namic code is dominated by lighting computation. RSL instructions
tend to be higher-level, and the equivalent computation requires
a larger number of GPU instructions. The sizes of our caching
shaders are 28k and 22k RSL instructions for Generic Surface and
Metallic Paint, respectively.

Pellacini et al. [2005] describe challenges with binding overhead
for the number of unique surfaces generated by specialization. Our
technique has no more shaders than the original shot and our shots
usually use at most a dozen unique shaders, which contrasts with
the thousands of unique shaders per shot used in other studios
[Pellacini et al. 2005]1. This further emphasizes that, in our context,
automatic specialization is primarily motivated by the rate at which
shaders change (as well as the ability to edit surface parameters),
not their total number.

The main challenge for specialization lies in the number of
values that need to be cached for large shaders. It can easily
reach hundreds of scalars per deep-framebuffer element, potentially
exceeding the GPU’s memory. This makes cache compression, as
well as the tiling described in Section 5, critical.

1Given increased program size limits in latest GPUs, Cg codegen
could generate a single compound shader performing dynamic dispatch to
subroutines implementing each surface or light. This technique is already
used effectively in games.

4



To appear in the ACM SIGGRAPH conference proceedings

Configuration RSL instr. GPU instr. GPU regs.
Generic Surface 19,673 (combined surface/light)
spot +1290 4653 28
point +626 3941 24
reflection +351 1942 20
reflection environment +733 2721 23
ambient environment +367 2724 22
occlusion msg +28 863 12
Metallic Paint 22274
spot +1290 4461 26
“Simple” Surface 4171
spot +1290 3368 21

Figure 4: Compiled RenderMan (RSL) vs. compiled GPU assembly
instructions, and number of GPU registers. Note that the indicated
total complexity of the GPU dynamic shader includes both light and
surface, while RenderMan instructions are given separately.

3.4 Cache Compression
Static code analysis is challenging and tends to be conservative. In
contrast, we find that applying simple post-processes to our final
cached data provides tremendous reductions in cache complexity,
sufficient to enable effective automatic deep-framebuffer genera-
tion with a simple compiler. After caching, we analyze all channels
in the deep-framebuffer and eliminate those whose values are:
• Constant over the frame – non-varying terms are converted to

static constants in the code.
• Identical to other channels – non-unique terms are replaced with

references to a single common channel.
These optimizations can reduce the number of cached components
by more than a factor of 4 (Fig. 5). Because these optimizations
inline significant new static data in the dynamic Cg shaders, this
also helps the Cg compiler reduce runtime shader complexity
through constant folding.

Shader dynamic varying unique
(caching analysis) (compressed)

generic surface 402 145 97
metallic paint 450 150 97

Figure 5: The number of (scalar) values per deep-framebuffer
sample for the scene in Fig. 1 under compression. Dynamic terms
are determined by the initial caching analysis. Varying terms
remain after elimination of values that are constant over the frame.
Unique terms remain after further elimination of duplicated values.

3.5 Specializing for Surface Parameters
A key advantage of automatic specialization is to allow users
to selectively tweak some surface, as well as light parameters.
When users select surface parameters as dynamic, the compiler can
just as easily generate code with configurable surface parameters
(Fig. 6). Many of the most commonly tuned parameters, such as
gain factors and specular roughness can be dynamically edited.
This significantly extended the initially-planned range from lighting
to look-design. In practice, the main overhead in editing surface
parameters is that it requires the reevaluation of all light sources.

Editable surf. parameters GPU instr. regs. relative perf.
0 (baseline) 3518 21 100%
18 (gain) 3856 27 90%
41 (gain & specularity) 3973 29 86%

Figure 6: Preview performance as a function of the number
of editable surface parameters for a variant of Generic Surface.
Editing 41 scalar and vector surface parameters does not
significantly slow rendering compared to light parameters alone.

Figure 7: Motion blur and transparency. Left: Lightspeed. Right:
RenderMan. The difference is statistically insignificant (� 0.1%).

Figure 8: Lightspeed rendering from a motion-blurred RenderMan
frame with 13x13 pixel samples and shading rate 1. At 720x306,
RenderMan shades 1.5M micropolygons and filters 21M subpixel
samples in rendering this image, while our preprocessing distills
this to only 467k visible shading samples and 3.8M unique subpixel
contributions to produce identical results. Shading time still
significantly dominates resampling time.

4 The Indirect Framebuffer

Traditional deep-framebuffers are pure image-space structures,
which allows them to scale with image size, not scene complexity.
However, because they interpret pixels as discrete surface shading
samples, they cannot directly express effects where multiple
shading samples contribute to a pixel, such as antialiasing, motion
blur, depth-of-field, and transparency. A direct extension would
use supersampling, but this greatly increases storage and shading
cost and scales poorly with variable depth complexity introduced
by transparency.

Inspired by the decoupling between shading and visibility com-
putation central to RenderMan’s REYES pipeline, we introduce
a layer of indirection between deep-framebuffer shading and vis-
ibility/display samples through a second data structure we call the
indirect framebuffer. We first review the multisampling approach
used in RenderMan before introducing our new data structure.
Background RenderMan’s REYES architecture achieves high
quality and generality of antialiasing, motion blur, and depth-
of-field by supersampling visibility computation, while reducing
shading cost by reusing shading values rather than supersampling
them [Cook et al. 1987; Apodaca and Gritz 2000]. While smooth
reconstruction of motion blur, depth-of-field, or fine geometry
may require 100 or more visibility samples, the shading rate is
commonly just roughly one shading sample per output pixel.

For this, RenderMan uses three core data structures to encode
shading and visibility (Fig. 9.i,ii):
• Shading is performed in object space on surface shading sam-

ples called micropolygons.
• Pixels contain a uniform density of subpixel samples, dis-

tributed in screen-space (spatial antialiasing), time (motion
blur), and aperture location (depth-of-field).

• Each subpixel sample maintains a depth-ordered visible point
list of pointers to the micropolygons visible along that “ray”.

RenderMan first tessellates all primitives into micropolygons.
Shaders execute over all vertices of the micropolygon grids, pro-
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Figure 9: The indirect framebuffer densely encodes variable-
rate visibility information to enable efficient antialiasing and
transparency under a static view. It resamples a densely-
packed deep-framebuffer into screen-space to precisely reproduce
RenderMan’s high-quality antialiasing, but is linearized and
consolidated for the given static visibility configuration, requiring
far fewer unique samples for the same result.

ducing a color per vertex (Fig. 9.i). RenderMan then computes vis-
ibility (hiding) by testing each micropolygon against each subpixel
sample it potentially covers (rasterization), taking into account the
aperture and time value of the sample. A depth test is performed
and transparency is handled by maintaining a z-ordered list of
micropolygon pointers at each subpixel sample (Fig. 9.ii).

The color of a subpixel sample is then computed by looking up
the color and opacity of each micropolygon and compositing them
in depth-order. The final pixel value is the weighted average color
of the subpixels, and since the subpixels are jittered in space, time,
and aperture location, this achieves high quality multisampling
effects while keeping shading cost tractable.

4.1 Indirect Framebuffer Data Structure

We note that each final, filtered pixel color ultimately corre-
sponds to a simple linear combination of the shaded colors of
all micropolygons visible under that pixel. Even transparency,
which traditionally presents challenges due to order-dependence,
ultimately factors into a single weight because we assume a fixed
viewing configuration. Consider the example in Fig. 9.ii: the first
subpixel’s color is a linear combination of shading samples a1 and
b1 with weights given by a1’s transparency. The final pixel value is
a combination of the colors of shading samples a1, b1, and b2 with
weights 0.175, 0.225 and 0.435. When visibility is static, these
cumulative linear weights similarly become static. This is similar
to the principle of the direct-to-indirect transfer [Hašan et al. 2006]
but in the context of multisampling and transparency.

We directly exploit this static linearity while decoupling shading
and final pixel value. We first use a standard deep framebuffer, but
instead of organizing it per pixel, our preprocess caches data for
each shading sample (Fig. 9.iii). Our real-time dynamic shaders
execute over this cache and output per-shading-sample colors.

Our indirect framebuffer encapsulates the linear nature of the

RenderMan our approach
Figure resolution samples shade subpix shade indir.
1 914x389 13x13 2.1M 32M 633k 1.6M
8 720x306 13x13 1.5M 21M 467k 3.8M
12 640x376 4x4 2.5M 2.3M 327k 716k
15 (α: 0.1) 720x389 8x8 54M 121M 21M 35M
15 (α: 0.6) 720x389 8x8 43M 58M 11M 17M
15 (α: 1.0) 720x389 8x8 25M 17M 3.9M 5.7M

Figure 10: Original RenderMan micropolygon and pixel-
sample output complexity compared to our compressed indirect
framebuffer, in numbers of samples, for Figs. 1, 8, 15, and 12. Static
visibility compression losslessly reduces deep-framebuffer shading
samples by 3-8x relative to RenderMan’s shaded micropolygons,
and reduces the number of unique indirect framebuffer samples by
3-20x relative to RenderMan’s subpixel samples.

final color and stores, for each pixel, a list of weights and pointers
to the deep-framebuffer output (Fig. 9.iv). For example, the pixel in
Figure 9.iii corresponds to three entries in the indirect framebuffer.

We need to efficiently represent the variable-length list of shad-
ing values influencing each pixel and enable progressive rendering.
We use a “scatter” strategy where points are rendered at each pixel
location to accumulate color contribution. Each indirect frame-
buffer entry is encoded into a vertex array as a point, containing
a pointer to a shading sample (a texture coordinate), a weight, and
an output pixel coordinate (x, y). Rendering the vertex array with
blending enabled scatters the weighted colors into final pixels.

Note that one entry in the deep framebuffer and the resulting
shaded color often contributes to multiple neighboring pixels,
especially in the presence of motion blur. This highlights the
effectiveness of our decoupling (and that of RenderMan) where
complex multisampling effects are achieved without scaling the
cost of shading.

Our implementation is currently limited to static opacity. Dy-
namic transparency could be supported by recomputing the weights
on the fly, but light-dependent transparency does not occur in our
shaders. We also do not currently handle colored transparency,
though it simply requires storing an RGB weight and independently
blending each color channel.

4.2 Visibility Compression

Using the static visibility information of the indirect framebuffer,
we apply two key transformations on the cached data to losslessly
compress its size:

• The static linearization of the indirect framebuffer coalesces
all visibility samples which reference the same shading sample
at the same pixel into a single combined indirect framebuffer
weight. This provides a 3-20x reduction in the size of the
indirect framebuffer while producing the same output (Fig. 10).

• We cull all deep-framebuffer shading samples not referenced by
at least one indirect framebuffer sample. We maintain a local
neighborhood where necessary for derivative computation.

These optimizations reduce the number of indirect framebuffer
samples by 3-20x, and the number of deep-framebuffer samples
by 3-8x (Fig. 10), with no loss of generality, even for complex
scenes involving motion blur (Fig. 8) and transparent hair (Fig.
15). This reduces not only storage size, but also computation,
because shading is applied once per-deep-framebuffer sample, and
resampling once per-indirect framebuffer sample. Combined with
dense packing of shading values, these optimizations generally al-
low even heavily multisampled shots, with transparency, to require
little more storage than a simple, single-sampled image-space deep-
framebuffer, and to be rendered interactively.
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5 Scalability and Progressive Refinement

Our system must scale to final-resolution previews of massive
scenes with complex shaders, while maintaining interactivity.

5.1 Tiling
High resolution previews and more complex shaders may increase
cache size beyond GPU memory. We divide oversized caches
into screen-space tiles small enough for all hardware constraints.
Each tile contains an indirect framebuffer coupled with a deep-
framebuffer of all shading samples visible at those indirect frame-
buffer samples. We also use texture atlases because our deep-
framebuffer may contain more channels than the number of bind-
able textures.

5.2 Progressive Refinement
We rely on progressive refinement to offer both interactive feedback
and slower yet faithful final image quality. We progressively refine
the resolution, typically in 3 steps. In the first step, we begin with
4x4 then 2x2 pixel blocks. Next, we increase to full resolution but
with only one indirect framebuffer value per pixel. In the final step,
we use full multisampling for the highest quality.

Each stage is represented by a group of samples in our indirect
framebuffer. We order the indirect framebuffer samples for
a given pixel by weight and accumulate them progressively
in passes. By simply normalizing subpixel weights for
SRC ALPHA,ONE MINUS SRC ALPHA instead of additive
blending, we maintain appropriate brightness. Shading is only
updated for the points referenced by the indirect framebuffer
samples in a given refinement batch. This also helps guarantee
performance on massive scenes, because the first few refinement
levels can be constrained to fit entirely on the GPU. Finally, we
often disable shadows at the lowest refinement.

Tiles of our deep-framebuffer are stored as sets of shading
samples grouped by surface type, and into batches for multiple
progressive refinement passes. Passes are stored in 2D textures
with arbitrary layout (2x2 quads are maintained for derivatives). In
practice, shading samples are stored according to the order in which
RenderMan outputs them.

5.3 Light Caching
Like prior lighting design systems, we exploit the linearity of
(most) lighting by caching the contribution from all lights not
currently being edited by the user. We store a light cache that
gets updated when a subset of lights is temporarily “frozen.” In
practice, when a light is “unfrozen”, its contribution is subtracted
from the cache, and a new frozen light’s contribution is added. We
retain the old parameter state with which the cache was generated
to maintain correctness when subtracting. This speeds up freezing
when working with multiple tens of light sources, and has proven
numerically stable over long edit sessions when using a 32-bit
floating-point cache.

Changing surface parameters requires reshading the surface with
all lights. In scenes with few lights, this is still comfortably
interactive. In near-final shots with dozens of lights, it may be sub-
interactive, but still takes only a few seconds for useful feedback.

Light caching is significantly complicated by the introduction
of progressive refinement. Because we wish to provide initial
feedback to the user as quickly as possible, it is common for the
lowest refinement level of the light cache to be valid, while higher
refinement levels are in various invalid states. In order to update the
cache, we maintain a table of the cached light parameters for each
light at every refinement level. A given cache level is valid for a
light if the cached parameters match the light’s current parameters.

If not, the cache is updated by reshading and subtracting the
contribution of the old configuration, then shading and adding the
new contribution.

6 Multipass Rendering and Management

So far, we have focused on purely local illumination computation.
However, global effects such as shadowing and translucency must
also be reproduced. We first show how they can be included in our
approach using multipass rendering and discuss both the necessary
preprocessing and real-time components. We then address critical
software architecture issues in making the development of our
system tractable. The complex dependences between multipass
effects, the indirect framebuffer, and progressive refinement made it
important to develop an abstraction to facilitate the inclusion of new
effects and manage dependences, as well as abstract key low-level
aspects such as data-flow and bindings on the GPU.

Fig. 11 summarizes the data-flow for our final real-time com-
putation including shadow mapping, translucency, and indirect
framebuffer effects.

main shading sample

deep-framebuffer

shaded color
indirect 

framebuffer

shadow geometry

shadow mapping light 1

...
shading refinement 1

shading refinement 2

...

subsurface scattering

translucency 

contribution

shadow map

image

indices

render

add

shade

accumulate

accumulate

shaded 

color

hierarchy

accumulate

shade

translucency gather samples

deep-framebuffer

light cache

update

Figure 11: Data-flow dependencies in multipass rendering with
progressive refinement. We abstract and manage dependencies
using a computation graph automatically generated for the features
of a specific scene during preprocessing.

6.1 Shadow Mapping

Shadow mapping illustrates how multipass effects from the final
rendering pipeline can be included in our architecture. Shadow
maps necessitate one extra pass per light and require auxiliary data
from the preprocessor (scene geometry). For real-time preview,
the shadow map pass communicates with the main pass through
a texture and our graph interface (presented below) manages com-
munication and dependences when parameters are edited.

During caching, we run RenderMan a second time over the scene
to extract micropolygons after all transforms and displacements are
applied. We store object IDs to support selective shadow casting
and receiving per-object. For specialization, RenderMan shadow
mapping calls are flagged and marked dynamic. They are replaced
in the dynamic code by a Cg shadow map lookup. When rendering
the shadow map, we also render the object IDs to allow shadow
assignments to be modified in real-time on a per-object basis.
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6.2 Translucency
Subsurface scattering requires the integral of incident light flux
times a BSSRDF diffusion kernel over a neighborhood at each
visible point. We have adapted Jensen and Buhler’s hierarchical
two-pass approach [2002], exactly as used in our existing offline
shaders, for real-time preview. This method first creates a hierarchy
of irradiance samples which enables fast hierarchical evaluation of
the integral. Our scheme builds on the work by Hašan et al. [2006]
for indirect lighting, but instead of a wavelet approach, we directly
use Jensen and Buhler’s octree hierarchy [2002].

For translucency, we must distinguish the shading of visible
shading samples as described in Section 4 and the irradiance
computation at gather samples used to estimate subsurface scatter-
ing [Jensen and Buhler 2002]. In particular, the latter cannot have
view-dependent terms and usually only requires albedo and normal
information. We “bake” this information during preprocessing into
a separate translucency deep-framebuffer and generate a simple
dynamic Cg shader, based on our offline irradiance shader, to
evaluate irradiance (diffuse shading) during runtime. For each
visible shading sample, we cache the indices of the set of nodes
of the irradiance hierarchy that contribute to the translucency. We
also store the corresponding BSSRDF coefficient weight (the dipole
kernel) [Jensen and Buhler 2002] and distance to allow dynamic
editing of the scattering depth.

For interactive preview, we first evaluate the irradiance at each
gather sample using the dynamic diffuse shader and the translu-
cency deep framebuffer. This provides us with the leaf values of
our hierarchy, stored in a texture. We then use d iterative blending
passes for the d levels of the octree to accumulate the values of
higher-level nodes as a sum of their children. All octree values are
stored in the same texture map as the leaves.

We can then compute the color of the visible shading samples.
Because only the accumulation weights, not the actual octree
traversal, depend on the BSSRDF coefficients, lookups into the
octree are recorded statically during preprocessing and encoded
as vertex arrays, much like the indirect framebuffer. We instead
store static BSSRDF attenuation and distance terms per-lookup,
and albedo modulation per-visible-point. We then dynamically
compute the BSSRDF contribution based on dynamic scattering
depth (sigma) values using a fragment shader while accumulating
each lookup into the hierarchy’s irradiance values using the static
indices recorded during preprocessing. Note that translucency
computation is performed at the granularity of shading samples and
benefits from the decoupling of our indirect framebuffer, both for
progressive refinement and overall efficiency.

Results Our initial results (Fig. 12), while promising in their
fidelity, demonstrate the need for a progressive shading technique.
While final scattering contributions are evaluated progressively,
per visible shading point, the static octree lookups require the
translucency deep-framebuffer to be completely shaded prior to any
accumulation. In practice, these deep-framebuffers can be even
larger than the primary deep-framebuffer—1.3M points, in this
example. This means that, while changing scattering coefficients
render interactively (2 Hz) for this scene, and the base shader
renders at 2-10 Hz for initial refinement, excluding scattering
computations, reevaluating the subsurface scattering result takes
several seconds to reach initial refinement (though subsequent
refinement is very fast because the octree is already evaluated).
We are considering subsampling and approximation techniques for
progressive refinement, but leave this to future work.

6.3 The Multipass Computation Graph
Multipass algorithms such as shadow mapping and translucency,
together with the indirect framebuffer and progressive refinement,
introduce complex data-dependencies between and computations.

Figure 12: Subsurface scattering coefficients can be edited
interactively. Top: less translucency. Bottom: more translucency.
The preview renders initial refinement at 2 Hz under changing
coefficients, but reshading the 1.3 million-point translucency buffer
takes several seconds. The eyes contain multiple transparent layers,
and appear black without the indirect framebuffer.

Furthermore, making our system extensible, and enforcing abstrac-
tion between the various components, required more care than we
initially anticipated, and our original, monolithic engine quickly
became challenging to maintain.

We therefore chose to abstract individual algorithms from the
overall data-flow through the real-time rendering pipeline (Fig. 11)
by using a dependency graph structure in which individual com-
putations are encapsulated as nodes. Nodes communicate through
ports, which abstract computation from dependency and data-flow,
and global data-flow is encoded as edges between ports. Our core
computation graph library also abstracts low-level aspects of shader
and data management on the GPU, and includes a library of basic
building block nodes.

The graph instance for a scene is generated automatically by
the compiler and preprocessing stages of our pipeline, and is used
internally by the user interface application.

7 Implementation and Results

Figure 13 summarizes our system’s fully-automatic performance on
two of our shots (Figs. 1, 12). Cache sizes fit within current GPU
resources, though our system scales to support out-of-core shots at
much higher resolutions or with even more complex shaders.

We report all results for our current, deployed artist workstations,
with dual 2.6GHz AMD Opteron 2218 processors, 8GB RAM, and
NVIDIA Quadro FX 5500 (G71) graphics. We are generally at the
limit of the capability/performance curve for our current hardware,
but preliminary results suggest major performance improvements
on next-generation hardware.
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Pirate (12) Robot (1)
resolution 640x376 914x389
supersampling 4x4 13x13
lights 3 42
RenderMan (total) 409 sec 3406 sec
irradiance shading 111 sec
material shaders 1 2
material instances 4 44
light shaders 1 5
light instances 3 42
Caching (total) 1425 sec 931 sec
initialization 8 sec 18 sec
shader specialization 24 sec 63 sec
deep-framebuffer caching 627 sec 499 sec
shadow geometry caching 105 sec 164 sec
cache compression 60 sec 187 sec
octree compression 600 sec
Preview
irradiance shading (1 light) 7 sec
interaction (irradiance cached) 0.5 sec
coarse refinement, 4x4 blocks 0.1 sec
full refinement (1 light changed) 10 sec 2.7 sec
full refinement (n lights) 29 sec (3 lights) 31.7 (42 lights)
deep-framebuffer 104 MB 256 MB
indirect framebuffer 33 MB 29 MB
irradiance deep-framebuffer 83 MB
scattering index buffer 436 MB

Figure 13: System performance compared to our RenderMan-
based offline pipeline for two production shots (Figs. 1 & 12). In
both, initial feedback is accelerated several orders of magnitude,
to interactive rates. Caching time for Robot is significantly
less than even a single offline render (common for most complex
shots), because we cache with lights turned off. Caching time for
the Pirate example is dominated by unoptimized octree caching
and compression processes which (unnecessarily) read and write
multiple GB of octree data on disk several times during caching.

Our system has been integrated into the pipelines of two special
effects studios. It is currently in initial release with a number of
artists in production for both lighting and look-design. We have
focused our efforts on ironing out the major, previously-unsolved
technical challenges with such a system. As such, some technically
straightforward but significant aspects of our implementation, such
as shadow map rendering, currently lack extensive optimization,
while significant effort has been paid to ensure the fidelity and
scalability of the core compiler, preprocessing, and real-time shad-
ing components on complex scenes. Subsurface scattering is only
proof-of-concept and requires further optimization.

Nevertheless, initial feedback has been extremely positive. For
example, artists love the freedom to experiment with complex
features such as noise: “[we] usually shy away from noise because
it takes so long to edit...this interactivity makes it much more
useful.” In general, there was a strong feeling that interactive
feedback not only accelerated the adjustment of key parameters
(“getting that level right [previously] took me an hour!” [after just
tuning a light to match the background in under 10 seconds]), but
left users more willing to experiment aggressively.

GPU vs. specialization speedup We have estimated the gain
due to specialization vs. GPU execution. Since we do not have
a software preview runtime, we can only perform back of the
envelope calculations comparing the GPU shaders to RenderMan
shaders, and prman timing with real vs. trivial shaders. For
the included scenes, we estimate that specialization and caching
provide a 100x speedup while execution on the GPU brings another
20x. The coarsest level of refinement provides an extra 10-100x.

LightspeedLightspeed

RendermanRenderman

Lightspeed

Renderman
0%

10%

Difference
Figure 14: The upper-right half of the image is rendered with
our approach while the lower left is the final RenderMan frame.
Initial refinement renders at over 20 Hz with our full 4k instruction
specialized surface shader and spot light, including shadows. Error
is in percentage of max pixel value.

Figure 15: 430k transparent hairs (α = 0.6, opacity
threshold: 0.96) rendered at 720x389 with 8x8 sampling. This
generates 43M micropolygons and 58M pixel samples in Render-
Man, and condenses to 11M visible shading samples and 17M
unique visibility samples through lossless visibility compression,
rendering at 12 Hz and fully refining in 33 secs. Compression
and performance are even better at α = 1.0, but α =
0.1 (threshold: 0.996) generates 21M visible shading samples,
overflowing the 16M sample textures we currently use (cf. Fig. 10).

7.1 Scalability

Shadow geometry scales with scene complexity and is the main
scalability limitation, in practice. Using micropolygons instead of
source primitives was a design decision to avoid re-implementing
every primitive supported by prman. We control shadow-geometry
level of detail by altering the shading rate of the shadow bake pass.
Additional mesh decimation passes could be useful.

Aside from shadowing, our system effectively scales with image
complexity. The indirect framebuffer and cache compression
dramatically reduce memory costs. Transparency is the main
difference from previous techniques because it adds an unbounded
number of samples. We created a complex scene to test scalability
(Fig. 15): 430k transparent hair fibers (α = 0.1, opacity threshold=
0.996), resulting in 55M prman micropolygons and 20M visible
Lightspeed shading samples rendered at 720x389 with 64x super-
sampling. This overflows our shade sample texture because of the
GPU’s 4kx4k (16M) texture limit. However, with α reduced to
0.6, the same scene only requires 11M shade samples (vs. 43M in
prman) and works at 12 Hz (33 secs for full refinement because the
full cache is 2GB and needs to be paged). With no transparency,
Lightspeed shades just 4M samples (vs. 25M for prman) at 22
Hz (5.5 secs for full refinement). The 16M limit can trivially be
increased by using multiple textures or 8k textures in DirectX 10.
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For our production scenes, however, we have not encountered
such extreme cases. Our artists avoid transparent hair in favor of
smaller sub-pixel hair because these same scalability problems ap-
ply in prman. In fact, though unbounded, transparency consistently
contributes much less to total frame complexity than (bounded)
multisampling in our scenes.

While the worst case scales with supersampled image complex-
ity (times depth complexity for transparency), the key goal of our
design—visibility compression and the linearization of visibility
into the indirect framebuffer—is to provide real-world scaling much
closer to pixel-complexity, even with motion blur (Fig. 8), sub-
pixel microgeometry like hair (Fig. 15), and a modest average
transparency depth.

The overall conclusion of our tests, ignoring shadowing, is:
• We can handle a lot of fine geometry, or handle a lot of very

transparent coarse geometry, but our current implementation
will not handle a lot of very transparent and fine geometry that
completely fills the image, with antialiasing.

• We can handle a lot of fine geometry that is semi-transparent
even if it fills the image, with high antialiasing.

Where scene complexity can become an issue for the indirect
framebuffer is during caching. Because simple methods of caching
(bake3d) extract all shaded grids from prman, initial cache sizes
can be very large, and compression becomes disk i/o bound.
We addressed this by pushing compression in-memory with the
renderer (as a DSO), which greatly accelerates caching and culling.

The number of unique shaders can also be an issue. However, if
a given surface shader is used for multiple surfaces with different
parameters, we only need to specialize it once. The total number
of dynamic shaders is the product of the number of different light
shaders and the number of surface shaders (not the number of
instances). Because we mostly use übershaders, this is not a
problem for our workloads (≤10-100 combinations in practice,
Fig. 13), though it would be for studios with thousands of unique
shaders in a shot. This might be addressed with established
techniques, as discussed in Footnote 1.

7.2 Challenges and Limitations
In practice we find our approach quite robust. Major challenges we
have addressed include:
• Dynamic calls to external C routines are largely eliminated

during specialization, and, where they aren’t, they have been
effectively emulated on the GPU or made cache-required.

• Generated deep-framebuffers are compressed to modest sizes,
even for our more complicated scenes and shaders.

• GPU texture limits are abstracted through tiling.
• Complex visibility is effectively compressed, even at high

multisampling rates.
• Interactivity is maintained in the face of complexity by progres-

sive refinement.
• Automatically specialized shaders fit within current GPU limits.

Future shaders will surpass the limits of our current hardware,
but newer GPUs have already elevated the relevant program and
register size limits by at least an order of magnitude.

Our key limitations are the same faced by any GPU shading
system—namely, that operations not easily expressed as native
GPU instructions require special handling. Most importantly, non-
local shading must be handled explicitly using multipass algo-
rithms. We have achieved this for shadows and translucency, but
additional implementation is required for other effects.

Still, a number of features cannot be translated and would result
in an error message if deemed dynamic. Fortunately, such features
are usually not used in the dynamic parts of shaders in our studio.
This may not be true in all studios.

Ray Tracing We do not perform ray casting. Note that specular
ray tracing could be previewed in a deep-framebuffer using indirect
buffers (ray intersections do not change unless the index of refrac-
tion is edited for transmitted rays). This is future work. The main
limitation concerns ray-casting for shadows and inter-reflections.

Ambient occlusion Lightspeed would require re-caching of
occlusion if object-object shadowing assignments changed. Our
artists only edit occlusion gain during lighting design, and inter-
object occlusion, itself, can be cached.

Shadows Our system currently does not implement deep shad-
ows and this is a serious limitation for scenes with hair.

Brickmaps and pointclouds Memory management would
present challenges for implementing brickmaps. We do not
support them in dynamic code. This is a particular problem if
brickmaps are used in a light shader. Our subsurface scattering
implementation is an example where a point cloud is statically
sampled at cache time, but the returned values are dynamic.

Non-linear lights Non-linear contributions are not easily cached.

Dynamic loops Dynamic loops containing cached expressions
are a limitation. We support them in the special case where they are
bounded, since we statically allocate space in the deep framebuffer.
Figure 12 uses bounded dynamic loops for layered materials.

8 Conclusions and Future Work
We have introduced a system for the real-time preview of Render-
Man scenes during lighting design. Our method automatically spe-
cializes shaders into a static RenderMan pass that generates a deep-
framebuffer, and a dynamic Cg pass that uses the deep-framebuffer
to enable real-time preview on a GPU. Cache compression enables
automatically generated deep-framebuffers to fit in modest GPU
memory for complex production shots. We have introduced the
indirect framebuffer which efficiently encodes multisampling for
high-quality rendering with transparency and motion blur. Our
computation graph-based system architecture is flexible and is
amenable to multipass rendering algorithms, which we demonstrate
with shadow mapping and subsurface scattering.

We were surprised by the effectiveness of cache compression.
Initially, we assumed we would build complex compiler analyses
to control cache size. However, due to the data-parallel nature
of shading, redundancy abounds, and simple post-processes easily
uncover savings which static analysis could not recognize.

As a whole, our system brings a level of automation that
greatly simplifies interactive lighting preview and alleviates the
need to write and maintain different shaders for final rendering,
preprocessing, and preview. However, it does not close the debate
between manual instrumentation and automatic specialization. The
manual programming of preview shaders can bring an extra level
of flexibility, in particular to adapt the level of detail to further
accelerate preview, as illustrated in lpics [Pellacini et al. 2005],
though Pellacini separately showed that automatic level-of-detail
can help [2005]. In the long run, we believe that lighting preview
should be addressed in a way similar to traditional programming:
automatic tools are provided for compilation and optimization,
and the programmer can provide hints or manually optimize and
simplify critical portions of the code based on profiling tools.

Still, the greatest limitation to deep-framebuffer rendering is its
basis in local shading. As global illumination becomes prevalent
in production rendering, the ability to integrate global effects into
this system will determine its future success. Fortunately, our tech-
niques are not specific to GPUs. Rather, they are generally useful
for reducing complex shading to efficient data-parallel execution,
including on future manycore CPUs, and this may ultimately be the
avenue through which global effects are most efficiently achieved.
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