
The Lightspeed Automatic Interactive
Lighting Preview System

Jonathan Ragan-Kelley / MIT CSAIL
Charlie Kilpatrick / ILM

Brian Smith / ILM
Doug Epps / Tippett Studio

Paul Green / MIT CSAIL
Christophe Héry / ILM

Frédo Durand / MIT CSAIL

Lighting Design

■End of pipeline
fixed geometry, viewpoint, material

■Slow feedback
10-60 mins to render

1 hour later...

Lighting Design

■End of pipeline
fixed geometry, viewpoint, material

■Slow feedback
10-60 mins to render

another hour later...

Goal: Fast Lighting Preview

Exploit redundancy between previews
■ geometry
■ view
■material

High-Level Approach

■Precompute deep-framebuffer cache

■Preview dynamically on GPU
as the user specifies new light parameters

...e.g.

normal position diffuse
texture

specular
texture

Prior Work

Parameterized Ray Tracing [Séquin & Smyrl 1989]

G-Buffer [Saito & Takahashi 1990]

Fast Relighting Engine [Gershbein & Hanrahan 2000]

■Precomputed buffer
(normals, texture)
with BRDF*light reevaluated at runtime

■Shortcomings
■ Simplistic shading
■No antialiasing, motion blur, transparency

Render Caching

Pixar’s Lpics

■Production shaders
& lights (RenderMan)

■Exploit programmable GPUs

■No antialiasing, transparency

■Requires extra shader-writing work
■ (final) RenderMan version

+ extra caching code

■GPU preview version

[Pellacini et al. 2005]

Specializing Shaders

■Given dynamic parameters, automatically
split shader code into:
■ static
■ dynamic

■Simple language
no control flow

■Simple shaders

[Guenter et al. 1995]

 8

Bibliography
 [1] Andersen, Lars Ole. Self-applicable C Program

Specialization. Proceedings of the ACM SIGPLAN

Workshop on Partial Evaluation and Semantics-Based

Program Manipulation (San Francisco, California, June 12-

20, 1992). Yale University technical report

YALEU/DCS/RR-909, 1992, 54-61.

 [2] Andersen, Peter Holst. Partial Evaluation Applied to Ray

Tracing. Unpublished manuscript, October 1994.

[3] Baier, Romana, Robert Glück, and Robert Zöchling. Partial

Evaluation of Numerical Programs in Fortran. Proceedings

of the ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation (Orlando, Florida,

June 25, 1994). University of Melbourne technical report

94/9, 1994, 119-132

[4] Demers, Alan J., Thomas Reps, and Tim Teitelbaum.

Incremental Evaluation for Attribute Grammars with

Application to Syntax-directed Editors. Proceedings of the

Eighth Annual ACM Symposium on Principles of

Programming Languages (Williamsburg, Virginia, January

1981), 105-116.

[5] Goad, Chris. Special Purpose Automatic Programming for

Hidden Surface Elimination. Proceedings of SIGGRAPH 82

(Boston, Massachusetts, July 26-30, 1982). In Computer

Graphics 16, 3 (July 1982), 167-178.

[6] Hanrahan, Pat. Ray Tracing Algebraic Surfaces.

Proceedings of SIGGRAPH 83 (Detroit, Michigan, July 25-

29, 1983). In Computer Graphics 17, 3 (July 1983), 83-90.

[7] Hanrahan, Pat and Jim Lawson. A Language for Shading

and Lighting Calculations. Computer Graphics 24, 4

(August 1990), 289-298.

[8] Hoover, Roger. Alphonse: Incremental Computation as a

Programming Abstraction. Proceedings of the SIGPLAN

‘92 Conference on Programming Language Design and

Implementation (San Francisco, California, June 1992),

261-272.

[9] Jones, Neil D., Carsten K. Gomard, and Peter Sestoft.

Partial Evaluation and Automatic Program Generation.

Prentice-Hall, 1993.

[10] Mogensen, Torben. The Application of Partial Evaluation to

Ray-Tracing. Master's thesis, DIKU, University of

Copenhagen, Denmark, 1986.

[11] Osgood, Nathaniel David. PARTICLE: an Automatic

Program Specialization System for Imperative and Low-

level Languages. Master's thesis, MIT, September 1993.

[12] Pugh, William and Tim Teitelbaum. Incremental

Computation Via Function Caching. Proceedings of the

Sixteenth Annual ACM Symposium on Principles of

Programming Languages (Austin, Texas, January 1989),

315-328.

[13] Ruf, Erik. Topics in Online Partial Evaluation. Ph.D.

thesis, Stanford University, April 1993. Published as

Stanford Computer Systems Laboratory technical report

CSL-TR-93-563, March 1993.

[14] Sequin, Carlo H. and Eliot K. Smyrl. Parameterized Ray

Tracing. Proceedings of SIGGRAPH 89 (Boston,

Massachusetts, July 31-August 4, 1989). In Computer

Graphics 23, 3 (July 1989), 307-314.

[15] Sundaresh, R.S. and Paul Hudak. A Theory of Incremental

Computation and Its Application. Proceedings of the

Eighteenth Annual ACM Symposium on Principles of

Programming Languages (Orlando, Florida, January 1991),

1-13.

[16] Upstill, Steve. The RenderMan Companion. Addison-

Wesley, 1989.

[17] Watkins, Christopher D., Stephen B. Coy, and Mark Finlay.

Photorealism and Ray Tracing in C. M&T Books, 1992

[18] Watt, Alan and Mark Watt. Advanced Animation and

Rendering Techniques. ACM Press, 1992.

Plate 1: Test image.

Plate 2: Image obtained by reshading image of Plate 1. This

took 12 seconds unspecialized, 0.5 seconds specialized.

 8

Bibliography
 [1] Andersen, Lars Ole. Self-applicable C Program

Specialization. Proceedings of the ACM SIGPLAN

Workshop on Partial Evaluation and Semantics-Based

Program Manipulation (San Francisco, California, June 12-

20, 1992). Yale University technical report

YALEU/DCS/RR-909, 1992, 54-61.

 [2] Andersen, Peter Holst. Partial Evaluation Applied to Ray

Tracing. Unpublished manuscript, October 1994.

[3] Baier, Romana, Robert Glück, and Robert Zöchling. Partial

Evaluation of Numerical Programs in Fortran. Proceedings

of the ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation (Orlando, Florida,

June 25, 1994). University of Melbourne technical report

94/9, 1994, 119-132

[4] Demers, Alan J., Thomas Reps, and Tim Teitelbaum.

Incremental Evaluation for Attribute Grammars with

Application to Syntax-directed Editors. Proceedings of the

Eighth Annual ACM Symposium on Principles of

Programming Languages (Williamsburg, Virginia, January

1981), 105-116.

[5] Goad, Chris. Special Purpose Automatic Programming for

Hidden Surface Elimination. Proceedings of SIGGRAPH 82

(Boston, Massachusetts, July 26-30, 1982). In Computer

Graphics 16, 3 (July 1982), 167-178.

[6] Hanrahan, Pat. Ray Tracing Algebraic Surfaces.

Proceedings of SIGGRAPH 83 (Detroit, Michigan, July 25-

29, 1983). In Computer Graphics 17, 3 (July 1983), 83-90.

[7] Hanrahan, Pat and Jim Lawson. A Language for Shading

and Lighting Calculations. Computer Graphics 24, 4

(August 1990), 289-298.

[8] Hoover, Roger. Alphonse: Incremental Computation as a

Programming Abstraction. Proceedings of the SIGPLAN

‘92 Conference on Programming Language Design and

Implementation (San Francisco, California, June 1992),

261-272.

[9] Jones, Neil D., Carsten K. Gomard, and Peter Sestoft.

Partial Evaluation and Automatic Program Generation.

Prentice-Hall, 1993.

[10] Mogensen, Torben. The Application of Partial Evaluation to

Ray-Tracing. Master's thesis, DIKU, University of

Copenhagen, Denmark, 1986.

[11] Osgood, Nathaniel David. PARTICLE: an Automatic

Program Specialization System for Imperative and Low-

level Languages. Master's thesis, MIT, September 1993.

[12] Pugh, William and Tim Teitelbaum. Incremental

Computation Via Function Caching. Proceedings of the

Sixteenth Annual ACM Symposium on Principles of

Programming Languages (Austin, Texas, January 1989),

315-328.

[13] Ruf, Erik. Topics in Online Partial Evaluation. Ph.D.

thesis, Stanford University, April 1993. Published as

Stanford Computer Systems Laboratory technical report

CSL-TR-93-563, March 1993.

[14] Sequin, Carlo H. and Eliot K. Smyrl. Parameterized Ray

Tracing. Proceedings of SIGGRAPH 89 (Boston,

Massachusetts, July 31-August 4, 1989). In Computer

Graphics 23, 3 (July 1989), 307-314.

[15] Sundaresh, R.S. and Paul Hudak. A Theory of Incremental

Computation and Its Application. Proceedings of the

Eighteenth Annual ACM Symposium on Principles of

Programming Languages (Orlando, Florida, January 1991),

1-13.

[16] Upstill, Steve. The RenderMan Companion. Addison-

Wesley, 1989.

[17] Watkins, Christopher D., Stephen B. Coy, and Mark Finlay.

Photorealism and Ray Tracing in C. M&T Books, 1992

[18] Watt, Alan and Mark Watt. Advanced Animation and

Rendering Techniques. ACM Press, 1992.

Plate 1: Test image.

Plate 2: Image obtained by reshading image of Plate 1. This

took 12 seconds unspecialized, 0.5 seconds specialized.

Precomputed Radiance Transfer

e.g. Sloan et al. 2002, Ng et al. 2003

Inappropriate for our application
■ Large precomputation cost
■ Largely ignore light functions
■ Limitations on shading models

Precomputed Radiance Transfer for Real-Time Rendering
in Dynamic, Low-Frequency Lighting Environments
Peter-Pike Sloan Jan Kautz John Snyder
Microsoft Research
ppsloan@microsoft.com

Max-Planck-Institut für Informatik
jnkautz@mpi-sb.mpg.de

Microsoft Research
johnsny@microsoft.com

Abstract
We present a new, real-time method for rendering diffuse and
glossy objects in low-frequency lighting environments that cap-
tures soft shadows, interreflections, and caustics. As a preprocess,
a novel global transport simulator creates functions over the
object’s surface representing transfer of arbitrary, low-frequency
incident lighting into transferred radiance which includes global
effects like shadows and interreflections from the object onto
itself. At run-time, these transfer functions are applied to actual
incident lighting. Dynamic, local lighting is handled by sampling
it close to the object every frame; the object can also be rigidly
rotated with respect to the lighting and vice versa. Lighting and
transfer functions are represented using low-order spherical
harmonics. This avoids aliasing and evaluates efficiently on
graphics hardware by reducing the shading integral to a dot
product of 9 to 25 element vectors for diffuse receivers. Glossy
objects are handled using matrices rather than vectors. We further
introduce functions for radiance transfer from a dynamic lighting
environment through a preprocessed object to neighboring points
in space. These allow soft shadows and caustics from rigidly
moving objects to be cast onto arbitrary, dynamic receivers. We
demonstrate real-time global lighting effects with this approach.

Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques,

Rendering, Shadow Algorithms.

1. Introduction

Lighting from area sources, soft shadows, and interreflections are
important effects in realistic image synthesis. Unfortunately,
general methods for integrating over large-scale lighting environ-
ments [8], including Monte Carlo ray tracing [7][21][25], rad-
iosity [6], or multi-pass rendering that sums over multiple point
light sources [17][27][36], are impractical for real-time rendering.

Real-time, realistic global illumination encounters three difficul-
ties – it must model the complex, spatially-varying BRDFs of real
materials (BRDF complexity), it requires integration over the
hemisphere of lighting directions at each point (light integration),
and it must account for bouncing/occlusion effects, like shadows,
due to intervening matter along light paths from sources to receiv-
ers (light transport complexity). Much research has focused on
extending BRDF complexity (e.g., glossy and anisotropic reflec-
tions), solving the light integration problem by representing
incident lighting as a sum of directions or points. Light integra-
tion thus tractably reduces to sampling an analytic or tabulated
BRDF at a few points, but becomes intractable for large light
sources. A second line of research samples radiance and pre-
convolves it with kernels of various sizes [5][14][19][24][34].
This solves the light integration problem but ignores light trans-
port complexities like shadows since the convolution assumes the
incident radiance is unoccluded and unscattered. Finally, clever
techniques exist to simulate more complex light transport, espe-
cially shadows. Light integration becomes the problem; these
techniques are impractical for very large light sources.

Our goal is to better account for light integration and light trans-
port complexity in real-time. Our compromise is to focus on low-

frequency lighting environments, using a low-order spherical
harmonic (SH) basis to represent such environments efficiently
without aliasing. The main idea is to represent how an object
scatters this light onto itself or its neighboring space.

To describe our technique, assume initially we have a convex,
diffuse object lit by an infinitely distant environment map. The
object’s shaded “response” to its environment can be viewed as a
transfer function, mapping incoming to outgoing radiance, which
in this case simply performs a cosine-weighted integral. A more
complex integral captures how a concave object shadows itself,
where the integrand is multiplied by an additional transport factor
representing visibility along each direction.

Our approach is to precompute for a given object the expensive
transport simulation required by complex transfer functions like
shadowing. The resulting transfer functions are represented as a
dense set of vectors or matrices over its surface. Meanwhile,
incident radiance need not be precomputed. The graphics hard-
ware can dynamically sample incident radiance at a number of
points. Analytic models, such as skylight models [33] or simple
geometries like circles, can also be used.

By representing both incident radiance and transfer functions in a
linear basis (in our case, SH), we exploit the linearity of light
transport to reduce the light integral to a simple dot product
between their coefficient vectors (diffuse receivers) or a simple
linear transform of the lighting coefficient vector through a small
transfer matrix (glossy receivers). Low-frequency lighting envi-
ronments require few coefficients (9-25), enabling graphics
hardware to compute the result in a single pass (Figure 1, right).
Unlike Monte-Carlo and multi-pass light integration methods, our
run-time computation stays constant no matter how many or how
big the light sources, and in fact relies on large-scale, smooth
lighting to limit the number of SH coefficients necessary.

We represent complex transport effects like interreflections and
caustics in the transfer function. Since these are simulated as a
preprocess, only the transfer function’s basis coefficients are
affected, not the run-time computation. Our approach handles
both surface and volume-based geometry. With more SH coeffi-
cients, we can even handle glossy (but not highly specular)
receivers as well as diffuse, including interreflection. 25 coeffi-
cients suffice for useful glossy effects. In addition to transfer
from a rigid object to itself, called self-transfer, we generalize the
technique to neighborhood-transfer from a rigid object to its
neighboring space, allowing cast soft shadows, glossy reflections,
and caustics on dynamic receivers, see Figure 7.

Figure 1: Precomputed, unshadowed irradiance from [34] (left) vs. our
precomputed transfer (right). The right model can be rendered at 129Hz
with self-shadowing and self-interreflection in any lighting environment.

Our Design Goals

1.High-performance preview
■ Low-latency feedback
■ Fast initial precomputation

2.Seamless integration
■ Same input: RenderMan scene & shaders

■ Same output: high quality image

3.Ease of implementation & maintenance

System Overview

System Overview

RenderMan
scene &
shaders

System Overview

RenderMan
scene &
shaders

cache &
preview
shaders

automatic
caching

System Overview

RenderMan
scene &
shaders

preview image
cache &
preview
shaders

relighting
engine
(gpu)

automatic
caching

System Overview

RenderMan
scene &
shaders

preview image
cache &
preview
shaders

relighting
engine
(gpu)

lighting parameters

iterative preview

automatic
caching

one-time precomputation

System Overview

RenderMan
scene &
shaders

preview image
cache &
preview
shaders

relighting
engine
(gpu)

lighting parameters

Automatic
for real production scenes
‣ specialization & translation
‣ cache compression

Automatic
for real production scenes
‣ specialization & translation
‣ cache compression

automatic
caching

System Overview

RenderMan
scene &
shaders

preview image
cache &
preview
shaders

relighting
engine
(gpu)

lighting parameters

Automatic
for real production scenes
‣ specialization & translation
‣ cache compression

High fidelity
antialiasing, motion blur,
transparency
‣ indirect framebuffer

automatic
caching

Automatic Caching

RenderMan
scene &
shaders

cache &
preview
shaders

automatic
caching

preview image

relighting
engine
(gpu)

lighting parameters

Program Analysis

Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

what part of the code depends on
the lighting parameter L?

dynamic

Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

everything else is static

static
dynamic

Program Analysis

values at the boundary are cached
for reevaluation

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

static
cache

dynamic

Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

albedo

c Texture

U V

shade

Light BRDF

L N

Deep Framebuffer Generation

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

Deep Framebuffer Generation

mySurfaceCache(color c) {
albedo = c*Texture(U,V);
cache(N);
cache(albedo);

}

caching
shader

Deep Framebuffer Generation

albedo
N

mySurfaceCache(color c) {
albedo = c*Texture(U,V);
cache(N);
cache(albedo);

}

deep
framebuffer
cache

caching
shader

final
renderer

Deep Framebuffer Generation

albedo
N

deep
framebuffer
cache

caching
shader

Deep Framebuffer Generation

albedo
N

mySurfaceDynamic(vector L) {
N = lookup();
albedo = lookup();
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}
preview
shader

deep
framebuffer
cache

caching
shader

Deep Framebuffer Generation

albedo
N

mySurfaceDynamic(vector L) {
N = lookup();
albedo = lookup();
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}
preview
shader

deep
framebuffer
cache

caching
shader

Deep Framebuffer Generation

albedo
N

preview
shader

deep
framebuffer
cache

rendered
imageshade

caching
shader

Automatic Caching

Automatic Caching

RenderMan
shaders

scene preprocessor
RenderMan
scene

Automatic Caching

RenderMan
shaders

scene preprocessor

program
analysis

RenderMan
scene

Automatic Caching

RenderMan
shaders

scene preprocessor

program
analysis

RenderMan
scene

caching
shaders

Automatic Caching

RenderMan
shaders

scene preprocessor

final
renderer

program
analysis

RenderMan
scene

deep
framebuffer
cache

P
N

x1
x2

caching
shaders

Automatic Caching

RenderMan
shaders

scene preprocessor

dynamic
preview
shaders

final
renderer

program
analysis

RenderMan
scene

deep
framebuffer
cache

P
N

x1
x2

caching
shaders

Automatic Caching

RenderMan
shaders

scene preprocessor

dynamic
preview
shaders

final
renderer

program
analysis

RenderMan
scene

deep
framebuffer
cache

conservative

many cached terms

large caches

(hundreds)

(gigabytes)

program analysis is

generates

P
N

x1
x2

caching
shaders

challenge: cache size

P
N

x1
x2

Cache Compression

scene preprocessor

final
renderer

program
analysis

Remove redundant
values after caching

RenderMan
shaders

dynamic
preview
shaders

RenderMan
scene

deep
framebuffer
cache

caching
shaders

P
N

x1
x2

Cache Compression

scene preprocessor

final
renderer

program
analysis

Remove redundant
values after caching

RenderMan
shaders

dynamic
preview
shaders

RenderMan
scene

deep
framebuffer
cache

cache
compression

P
N

caching
shaders

P
N

x1
x2

Cache Compression

scene preprocessor

final
renderer

program
analysis

Remove redundant
values after caching

→ 5x compressionRenderMan
shaders

dynamic
preview
shaders

RenderMan
scene

deep
framebuffer
cache

cache
compression

P
N

caching
shaders

System Overview

scene preprocessor

final
renderer

program
analysis

cache
comp.

RenderMan
shaders

dynamic
preview
shaders

RenderMan
scene

deep
framebuffer
cache

P
N

caching
shaders

scene preprocessor

final
renderer

program
analysis

RenderMan
shaders

RenderMan
scene

cache
compr.

caching
shaders

System Overview

scene preprocessor

final
renderer

program
analysis

cache
comp.

RenderMan
shaders

dynamic
preview
shaders

RenderMan
scene

deep
framebuffer
cache

P
N

caching
shaders

System Overview

preview image

relighting
engine
(gpu)

scene preprocessor

final
renderer

program
analysis

cache
comp.

RenderMan
shaders

dynamic
preview
shaders

RenderMan
scene

deep
framebuffer
cache

P
N

caching
shaders

lighting parameters

System Overview

preview image

relighting
engine
(gpu)

scene preprocessor

final
renderer

program
analysis

cache
comp.

RenderMan
shaders

dynamic
preview
shaders

RenderMan
scene

deep
framebuffer
cache

antialiasing?
transparency?

P
N

caching
shaders

lighting parameters

Classical Deep Framebuffer

A

B

Classical Deep Framebuffer

A

B

Classical Deep Framebuffer

P
N

x1

x2

A

B

cache

shade

deep
framebuffer
cache

rendered
image

Cache one sample per-pixel
Shade cache values to render image

Classical Deep Framebuffer

P
N

x1

x2

A

B

cache

shade

How can we do antialiasing?

deep
framebuffer
cache

rendered
image

P
N

x1

x2

Classical Deep Framebuffer

A

B

cache

shade

How can we do antialiasing?
transparency?

supersample image

Classical Deep Framebuffer

A

B

cache

shade

How can we do antialiasing?
transparency?

P
N

x3

x4supersample
cache

supersample
shading

Classical Deep Framebuffer

A

B

cache

shade

How can we do antialiasing?
transparency?

P
N

x3

x4

...?

...?

Our Indirect Framebuffer

■Decouple shading from visibility
■ only supersample visibility

‣Do what RenderMan does

■Compress samples
based on static visibility

RenderMan / REYES

A

B

show
filtering
pixel color?

RenderMan / REYES

b1

A

B

b2

a1

show
filtering
pixel color?

dice into micropolygons

RenderMan / REYES

b1

A

B

b2

a1

show
filtering
pixel color?

shade micropolygons

RenderMan / REYES

b1

A

B

b2

a1

show
filtering
pixel color?

rasterize micropolygons

RenderMan / REYES

b1

A

B

b2

a1

show
filtering
pixel color?

RenderMan / REYES

b1

A

B

b2

a1

1 2

3 4

a1

1

a1

3

a1

4

b2

2

show
filtering
pixel color?

a1pixel = +b2+a1+a1

RenderMan / REYES

b1

A

B

b2

a1

1 2

3 4

a1

1

a1

3

a1

4

b2

2

show
filtering
pixel color?

a1pixel =
4

+b2+a1+a1

RenderMan / REYES

b1

A

B

b2

a1

1 2

3 4

a1

1

a1

3

a1

4

b2

2

show
filtering
pixel color?

a1pixel =
4

+b2+a1+a1 = 0.75*a1+0.25*b2

RenderMan / REYES

b1

A

B

b2

a1

1 2

3 4

a1

1

a1

3

a1

4

b2

2

show
filtering
pixel color?

pixel =?

b1

RenderMan / REYES

a1

A

B

b2

pixel =?

b1

RenderMan / REYES

a1

A

B a1

α=0.3
b1

α=1.0

1

0.3*a1+0.7*b1

b2

pixel =?

1

b1

RenderMan / REYES

a1

A

B a1

α=0.3
b1

α=1.0

1

0.3*a1+0.7*b1

b2

α=1.0

2

1.0*b2

b2

pixel =?

1 2

b1

RenderMan / REYES

a1

A

B a1

α=0.3
b1

α=1.0

1

0.3*a1+0.7*b1

a1

α=0.3

3

0.3*a1

a1

α=0.3
b2

α=1.0

4

0.3*a1+0.7*b1

b2

α=1.0

2

1.0*b2

b2

pixel =?

1 2

3 4

b1

RenderMan / REYES

a1

A

B a1

α=0.3
b1

α=1.0

1

0.3*a1+0.7*b1

a1

α=0.3

3

0.3*a1

a1

α=0.3
b2

α=1.0

4

0.3*a1+0.7*b1

b2

α=1.0

2

1.0*b2

b2

pixel = 0.225*a1+0.35*b1+0.25*b2

1 2

3 4

Indirect Framebuffer

Indirect Framebuffer
b1

b2a1

Indirect Framebuffer

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4

b1
b2a1

no longer image space
(per-micropolygon)

deep
buffer

Indirect Framebuffer

shading
samples

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4

b1
b2a1

shade

deep
buffer

shaded like a conventional deep-framebuffer

Indirect Framebuffer

shading
samples

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4

b1
b2a1

shade

indirect framebuffer
deep
buffer

Indirect Framebuffer

shading
samples

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4
0.225 0.35 0.25

b1
b2a1

shade

indirect framebuffer
deep
buffer

densely stored in vertex array, on GPU

Indirect Framebuffer

shading
samples

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4
0.225 0.35 0.25

final
pixel

b1
b2a1

shade

blend

indirect framebuffer
deep
buffer

4 subpixel samples, 2 transparent layers
only 3 unique micropolygons

Indirect Framebuffer

shading
samples

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4
0.225 0.35 0.25

final
pixel

b1
b2a1

shade

blend

indirect framebuffer
deep
buffer

all contributions linearized into a single weight

4 subpixel samples, 2 transparent layers
only 3 unique micropolygons

shading
samples

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4
0.242 0.331 0.245

final
pixel

b1
b2a1

shade

blend

indirect framebuffer

More samples,
Same cost

deep
buffer

shading
samples

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4
0.242 0.331 0.245

final
pixel

b1
b2a1

shade

blend

indirect framebuffer

More samples,
Same cost

deep
buffer

deep
buffer

shading
samples

P
x2

PP

x3

N
x1

x2

x3

∅ x4

b2b1a1

x4

final
pixel

b1
b2a1

shade

blend

More samples,
Same cost

0.242 0.331 0.245

indirect framebuffer

Indirect Framebuffer Results
antialiasing
motion blur
transparency
identical to RenderMan

Indirect Framebuffer Results
antialiasing
motion blur
transparency
identical to RenderMan

RenderMan
45M micropolygons

60M subpixel samples

brute-force
>100M samples

Indirect framebuffer
 10M deep fb
+15M indirect fb

720x389, 64x supersampling

System Architecture

System Architecture

RenderMan
shaders

scene preprocessor
RenderMan
scene

System Architecture

RenderMan
shaders

scene preprocessor

program
analysis

RenderMan
scene

System Architecture

RenderMan
shaders

scene preprocessor

preview
shaders

program
analysis

RenderMan
scene

caching
shaders

System Architecture

RenderMan
shaders

scene preprocessor

preview
shaders

final
renderer

program
analysis

RenderMan
scene

caching
shaders

System Architecture

RenderMan
shaders

scene preprocessor

preview
shaders

final
renderer

program
analysis

cache
compr.

RenderMan
scene

P
N

x1
x2

caching
shaders

deep fb indirect fb

System Architecture

RenderMan
shaders

relighting engine (GPU)scene preprocessor

preview
shaders

final
renderer

program
analysis

cache
compr.

RenderMan
scene

P
N

x1
x2

caching
shaders

deep fb indirect fb

System Architecture

RenderMan
shaders

relighting engine (GPU)scene preprocessor

preview
shaders

final
renderer

program
analysis

cache
compr.

RenderMan
scene

P
N

x1
x2

caching
shaders shade

deep fb indirect fb

rendered image

System Architecture

RenderMan
shaders

relighting engine (GPU)scene preprocessor

preview
shaders

final
renderer

program
analysis

cache
compr.

RenderMan
scene

P
N

x1
x2

caching
shaders shade

deep fb indirect fb

blend

rendered image

System Architecture

RenderMan
shaders

relighting engine (GPU)scene preprocessor

preview
shaders

final
renderer

program
analysis

lighting
parameters

cache
compr.

RenderMan
scene

P
N

x1
x2

caching
shaders shade

deep fb indirect fb

blend

iterative preview one-time precomputation

Additional Features

■Shadows

■Subsurface Scattering

■Performance
enhancement
■ Progressive Refinement

■ Light Caching

■ Tiling
…

Results

Lightspeed
720x389

initial feedback: 0.05 sec
full refinement: 0.7 sec

offline render: 5 mins

Results

LightspeedRenderMan
720x389

initial feedback: 0.05 sec
full refinement: 0.7 sec

offline render: 5 mins

Results

Results

914x389
13x13 antialiasing
42 lights

offline render: 59 mins

initial feedback: 0.11 sec
full refinement: 2.7 sec

caching: 16 mins

Results

Lightspeed

RenderMan
914x389
13x13 antialiasing
42 lights

offline render: 59 mins

initial feedback: 0.11 sec
full refinement: 2.7 sec

caching: 16 mins

Results

Lightspeed

RenderMan
914x389
13x13 antialiasing
42 lights

offline render: 59 mins

initial feedback: 0.11 sec
full refinement: 2.7 sec

caching: 16 mins

Results

Results

Results

Results

Limitations

■GPU programming model
■Dynamic calls to external C code
■Complex data structures
■GPU limits (bandwidth, memory, registers)

■ Fully-accurate dynamic ray tracing

■Unbounded dynamic loops

■Additional features not yet implemented

■ Indirect diffuse

■Deep shadows

■Non-linear lights

Discussion

■Automatic and manual specialization
(Lpics) both have advantages
■Manual specialization allows hand optimization
■Compiler requires up-front R&D, never perfect

(especially on the GPU)

■ Saves significant time in production
■ Some material parameters are editable

■Cache compression is key to practical
automatic specialization
much simpler than fancy static analysis

■ Indirect Framebuffer is powerful, scalable

Summary

■ Interactive lighting preview
milliseconds instead of hours

■Automatic caching for our production scenes
■ Program analysis
■Cache compression

■ Indirect framebuffer
■ Efficient antialiasing, motion blur, transparency
■ Progressive refinement

■ In use on current productions

Acknowledgments

Inception: Pat Hanrahan, Ujval Kapasi

Compilers: Alex Aiken, John Kodumal

Tippett: Aaron Luk, Davey Wentworth

ILM: Alan Trombla, Ed Hanway, Dan Goldman,
 Steve Sullivan, Paul Churchill

Images: Michael Bay, Dan Piponi

Money: NSF, NVIDIA, MSR, Sloan & Ford
 fellowships

Summary

■ Interactive lighting preview
milliseconds instead of hours

■Automatic caching for our production scenes
■ Program analysis
■Cache compression

■ Indirect framebuffer
■ Efficient antialiasing, motion blur, transparency
■ Progressive refinement

■ In use on current productions

EXTRAS

Cache Compression

Remove redundant
values after caching
■ non-varying

same for many pixels

■ non-unique
same within a pixel

→ 4-5x compression

varying

unique

deep framebuffer cache

Cache Compression

shader dynamic
(static analysis)

varying unique
(compressed)

generic surface 402 145 97

metallic paint 450 150 97

Visibility Compression

RenderMan
Indirect

Framebuffer

scene res. samples shade subpix shade indirect

robot 914x389 13x13 2.1M 32M 633k 1.6M

robot
(blur)

720x306 13x13 1.5M 21M 467k 3.8M

pirate 640x376 4x4 2.5M 2.3M 327k 716k

hairs 720x389 8x8 43M 58M 11M 17M

