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Lighting Design

■End of pipeline
fixed geometry, viewpoint, material

■Slow feedback
10-60 mins to render



1 hour later...

Lighting Design

■End of pipeline
fixed geometry, viewpoint, material

■Slow feedback
10-60 mins to render

another hour later...



Goal: Fast Lighting Preview

Exploit redundancy between previews
■ geometry
■ view
■material



High-Level Approach

■Precompute deep-framebuffer cache

■Preview dynamically on GPU
as the user specifies new light parameters

...e.g.

normal position diffuse
texture

specular
texture



Prior Work



Parameterized Ray Tracing [Séquin & Smyrl 1989]

G-Buffer [Saito & Takahashi 1990]

Fast Relighting Engine [Gershbein & Hanrahan 2000]

■Precomputed buffer
(normals, texture)
with BRDF*light reevaluated at runtime

■Shortcomings
■ Simplistic shading
■No antialiasing, motion blur, transparency

Render Caching



Pixar’s Lpics

■Production shaders
& lights (RenderMan)

■Exploit programmable GPUs

■No antialiasing, transparency

■Requires extra shader-writing work
■ (final) RenderMan version

+ extra caching code

■GPU preview version

[Pellacini et al. 2005]



Specializing Shaders

■Given dynamic parameters, automatically 
split shader code into:
■ static
■ dynamic

■Simple language
no control flow

■Simple shaders

[Guenter et al. 1995]
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Plate 1:  Test image. 
 

 

Plate 2:  Image obtained by reshading image of Plate 1.  This 

took 12  seconds unspecialized, 0.5 seconds specialized. 
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Plate 1:  Test image. 
 

 

Plate 2:  Image obtained by reshading image of Plate 1.  This 

took 12  seconds unspecialized, 0.5 seconds specialized. 



Precomputed Radiance Transfer

e.g. Sloan et al. 2002, Ng et al. 2003

Inappropriate for our application
■ Large precomputation cost
■ Largely ignore light functions
■ Limitations on shading models

 

 

Precomputed Radiance Transfer for Real-Time Rendering  
in Dynamic, Low-Frequency Lighting Environments  
Peter-Pike Sloan Jan Kautz John Snyder 
Microsoft Research 
ppsloan@microsoft.com 

Max-Planck-Institut für Informatik 
jnkautz@mpi-sb.mpg.de 

Microsoft Research 
johnsny@microsoft.com 

Abstract 
We present a new, real-time method for rendering diffuse and 
glossy objects in low-frequency lighting environments that cap-
tures soft shadows, interreflections, and caustics.  As a preprocess, 
a novel global transport simulator creates functions over the 
object’s surface representing transfer of arbitrary, low-frequency 
incident lighting into transferred radiance which includes global 
effects like shadows and interreflections from the object onto 
itself.  At run-time, these transfer functions are applied to actual 
incident lighting.  Dynamic, local lighting is handled by sampling 
it close to the object every frame; the object can also be rigidly 
rotated with respect to the lighting and vice versa.  Lighting and 
transfer functions are represented using low-order spherical 
harmonics. This avoids aliasing and evaluates efficiently on 
graphics hardware by reducing the shading integral to a dot 
product of 9 to 25 element vectors for diffuse receivers.  Glossy 
objects are handled using matrices rather than vectors.  We further 
introduce functions for radiance transfer from a dynamic lighting 
environment through a preprocessed object to neighboring points 
in space.  These allow soft shadows and caustics from rigidly 
moving objects to be cast onto arbitrary, dynamic receivers.  We 
demonstrate real-time global lighting effects with this approach. 

Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques, 

Rendering, Shadow Algorithms. 

1. Introduction 

Lighting from area sources, soft shadows, and interreflections are 
important effects in realistic image synthesis.  Unfortunately, 
general methods for integrating over large-scale lighting environ-
ments [8], including Monte Carlo ray tracing [7][21][25], rad-
iosity [6], or multi-pass rendering that sums over multiple point 
light sources [17][27][36], are impractical for real-time rendering.   

Real-time, realistic global illumination encounters three difficul-
ties – it must model the complex, spatially-varying BRDFs of real 
materials (BRDF complexity), it requires integration over the 
hemisphere of lighting directions at each point (light integration), 
and it must account for bouncing/occlusion effects, like shadows, 
due to intervening matter along light paths from sources to receiv-
ers (light transport complexity).  Much research has focused on 
extending BRDF complexity (e.g., glossy and anisotropic reflec-
tions), solving the light integration problem by representing 
incident lighting as a sum of directions or points.  Light integra-
tion thus tractably reduces to sampling an analytic or tabulated 
BRDF at a few points, but becomes intractable for large light 
sources.   A second line of research samples radiance and pre-
convolves it with kernels of various sizes [5][14][19][24][34].  
This solves the light integration problem but ignores light trans-
port complexities like shadows since the convolution assumes the 
incident radiance is unoccluded and unscattered.  Finally, clever 
techniques exist to simulate more complex light transport, espe-
cially shadows.  Light integration becomes the problem; these 
techniques are impractical for very large light sources.   

Our goal is to better account for light integration and light trans-
port complexity in real-time.  Our compromise is to focus on low-

frequency lighting environments, using a low-order spherical 
harmonic (SH) basis to represent such environments efficiently 
without aliasing.  The main idea is to represent how an object 
scatters this light onto itself or its neighboring space. 

To describe our technique, assume initially we have a convex, 
diffuse object lit by an infinitely distant environment map.  The 
object’s shaded “response” to its environment can be viewed as a 
transfer function, mapping incoming to outgoing radiance, which 
in this case simply performs a cosine-weighted integral.  A more 
complex integral captures how a concave object shadows itself, 
where the integrand is multiplied by an additional transport factor 
representing visibility along each direction.   

Our approach is to precompute for a given object the expensive 
transport simulation required by complex transfer functions like 
shadowing.  The resulting transfer functions are represented as a 
dense set of vectors or matrices over its surface.  Meanwhile, 
incident radiance need not be precomputed.  The graphics hard-
ware can dynamically sample incident radiance at a number of 
points.  Analytic models, such as skylight models [33] or simple 
geometries like circles, can also be used.   

By representing both incident radiance and transfer functions in a 
linear basis (in our case, SH), we exploit the linearity of light 
transport to reduce the light integral to a simple dot product 
between their coefficient vectors (diffuse receivers) or a simple 
linear transform of the lighting coefficient vector through a small 
transfer matrix (glossy receivers).  Low-frequency lighting envi-
ronments require few coefficients (9-25), enabling graphics 
hardware to compute the result in a single pass (Figure 1, right).  
Unlike Monte-Carlo and multi-pass light integration methods, our 
run-time computation stays constant no matter how many or how 
big the light sources, and in fact relies on large-scale, smooth 
lighting to limit the number of SH coefficients necessary.  

We represent complex transport effects like interreflections and 
caustics in the transfer function.  Since these are simulated as a 
preprocess, only the transfer function’s basis coefficients are 
affected, not the run-time computation.  Our approach handles 
both surface and volume-based geometry.   With more SH coeffi-
cients, we can even handle glossy (but not highly specular) 
receivers as well as diffuse, including interreflection.  25 coeffi-
cients suffice for useful glossy effects.   In addition to transfer 
from a rigid object to itself, called self-transfer, we generalize the 
technique to neighborhood-transfer from a rigid object to its 
neighboring space, allowing cast soft shadows, glossy reflections, 
and caustics on dynamic receivers, see Figure 7.  

  
Figure 1: Precomputed, unshadowed irradiance from [34] (left) vs. our 
precomputed transfer (right).  The right model can be rendered at 129Hz 
with self-shadowing and self-interreflection in any lighting environment. 

 



Our Design Goals

1.High-performance preview
■ Low-latency feedback
■ Fast initial precomputation

2.Seamless integration
■ Same input: RenderMan scene & shaders

■ Same output: high quality image

3.Ease of implementation & maintenance
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System Overview

RenderMan 
scene & 
shaders

preview image
cache & 
preview 
shaders

relighting 
engine
(gpu)

lighting parameters

Automatic
for real production scenes
‣ specialization & translation
‣ cache compression

High fidelity
antialiasing, motion blur, 
transparency
‣ indirect framebuffer

automatic
caching



Automatic Caching

RenderMan 
scene & 
shaders

cache & 
preview 
shaders

automatic
caching

preview image

relighting 
engine
(gpu)

lighting parameters
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Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}



Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

what part of the code depends on 
the lighting parameter L?

dynamic



Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

everything else is static

static
dynamic



Program Analysis

values at the boundary are cached 
for reevaluation

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

static
cache

dynamic
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mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return 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}



Program Analysis

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}

albedo

c Texture

U V

shade

Light BRDF

L N



Deep Framebuffer Generation

mySurface(color c) {
albedo = c*Texture(U,V);
shade = Light(L)*BRDF(N,L);
return albedo*shade;

}



Deep Framebuffer Generation

mySurfaceCache(color c) {
albedo = c*Texture(U,V);
cache(N);
cache(albedo);

}

caching 
shader



Deep Framebuffer Generation

albedo
N

mySurfaceCache(color c) {
albedo = c*Texture(U,V);
cache(N);
cache(albedo);

}

deep 
framebuffer 
cache

caching 
shader

final 
renderer



Deep Framebuffer Generation
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Deep Framebuffer Generation

albedo
N

mySurfaceDynamic(vector L) {
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= lookup();
albedo = lookup();
shade 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Light(L)*BRDF(N,L);
return 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Deep Framebuffer Generation
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mySurfaceDynamic(vector 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{
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= lookup();
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Deep Framebuffer Generation

albedo
N

preview 
shader

deep 
framebuffer 
cache

rendered 
imageshade

caching 
shader
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Automatic Caching

RenderMan 
shaders

scene preprocessor

dynamic
preview 
shaders

final 
renderer

program 
analysis

RenderMan
scene 

deep 
framebuffer 
cache

conservative

many cached terms

large caches

(hundreds)

(gigabytes)

program analysis is

generates

P
N

x1
x2

caching 
shaders

challenge: cache size
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preview image
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Classical Deep Framebuffer
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Classical Deep Framebuffer
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cache

shade

deep 
framebuffer 
cache

rendered 
image

Cache one sample per-pixel
Shade cache values to render image



Classical Deep Framebuffer
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Classical Deep Framebuffer
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Our Indirect Framebuffer

■Decouple shading from visibility
■ only supersample visibility

‣Do what RenderMan does

■Compress samples
based on static visibility
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Indirect Framebuffer Results
antialiasing
motion blur
transparency
identical to RenderMan

RenderMan
45M micropolygons

60M subpixel samples

brute-force
>100M samples

Indirect framebuffer
  10M deep fb
+15M indirect fb

720x389, 64x supersampling
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System Architecture

RenderMan 
shaders

relighting engine (GPU)scene preprocessor

preview 
shaders

final 
renderer

program 
analysis

lighting
parameters

cache 
compr.

RenderMan
scene 

P
N

x1
x2

caching 
shaders shade

deep fb indirect fb

blend

iterative preview one-time precomputation



Additional Features

■Shadows

■Subsurface Scattering

■Performance
enhancement
■ Progressive Refinement

■ Light Caching

■ Tiling
…
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Limitations

■GPU programming model
■Dynamic calls to external C code
■Complex data structures
■GPU limits (bandwidth, memory, registers)

■ Fully-accurate dynamic ray tracing

■Unbounded dynamic loops

■Additional features not yet implemented

■ Indirect diffuse

■Deep shadows

■Non-linear lights



Discussion

■Automatic and manual specialization 
(Lpics) both have advantages
■Manual specialization allows hand optimization
■Compiler requires up-front R&D, never perfect

(especially on the GPU)

■ Saves significant time in production
■ Some material parameters are editable

■Cache compression is key to practical 
automatic specialization
much simpler than fancy static analysis

■ Indirect Framebuffer is powerful, scalable



Summary

■ Interactive lighting preview
milliseconds instead of hours

■Automatic caching for our production scenes
■ Program analysis
■Cache compression

■ Indirect framebuffer
■ Efficient antialiasing, motion blur, transparency
■ Progressive refinement

■ In use on current productions
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Cache Compression

Remove redundant 
values after caching
■ non-varying 

same for many pixels

■ non-unique
same within a pixel

→ 4-5x compression

varying

unique

deep framebuffer cache



Cache Compression

shader dynamic
(static analysis)

varying unique
(compressed)

generic surface 402 145 97

metallic paint 450 150 97



Visibility Compression

RenderMan
Indirect 

Framebuffer

scene res. samples shade subpix shade indirect

robot 914x389 13x13 2.1M 32M 633k 1.6M

robot 
(blur)

720x306 13x13 1.5M 21M 467k 3.8M

pirate 640x376 4x4 2.5M 2.3M 327k 716k

hairs 720x389 8x8 43M 58M 11M 17M


