
The Lightspeed Automatic Interactive Lighting

Preview System

by

Jonathan Millard Ragan-Kelley

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2007

Certified by. .
Frédo Durand

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

The Lightspeed Automatic Interactive Lighting Preview

System

by

Jonathan Millard Ragan-Kelley

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

We present an automated approach for high-quality preview of feature-film rendering
during lighting design. Similar to previous work, we use a deep-framebuffer shaded on
the GPU to achieve interactive performance. Our first contribution is to generate the
deep-framebuffer and corresponding shaders automatically through data-flow analysis
and compilation of the original scene. Cache compression reduces automatically-
generated deep-framebuffers to reasonable size for complex production scenes and
shaders. We also propose a new structure, the indirect framebuffer, that decouples
shading samples from final pixels and allows a deep-framebuffer to handle antialiasing,
motion blur and transparency efficiently. Progressive refinement enables fast feedback
at coarser resolution. We demonstrate our approach in real-world production.

Thesis Supervisor: Frédo Durand
Title: Associate Professor

3

4

Acknowledgments

This thesis is derived from a project done in collaboration with Charlie Kilpatrick,

Brian Smith, Doug Epps, Paul Green, Christophe Héry, and Frédo Durand. The

final implementation was a joint effort with Charlie, Brian, and Paul, in which they

contributed major ideas central to the successful application in production. Charlie

and Brian are responsible for cache compression, and both centrally contributed to

the scalability of the system including tiling, texture atlases, and the interaction of

light caching with progressive refinement. Charlie was instrumental in bringing the

compiler approach to production quality, addressing cache-required code, exceptions,

dynamic loop unrolling, message passing, and other issues. Doug also wrote code, and

he, Christophe, and Frédo were centrally involved in many stages of design. Frédo

has been intimately involved in the crafting of the paper. Other graduate students

should be so lucky.

Numerous additional people have contributed to this project in its many years of

exploration and implementation.

This work started under the advising of Pat Hanrahan, initially in collaboration

with Ujval Kapasi. Alex Aiken and John Kodumal proposed dependence analysis

by graph reachability and provided the first analysis library we used. Matt Pharr,

John Owens, Aaron Lefohn, Eric Chan, and many members of the Stanford and MIT

Graphics Labs provided years of essential advice and feedback.

Tippett Studio took great risk in actively supporting early research. Dan Goldman

introduced the work to ILM, where Alan Trombla, Ed Hanway, and Steve Sullivan

have overseen it. Many developers have contributed code, including Sebastian Fernan-

dez, Peter Murphy, Simon Premoz̆e, and Aaron Luk. Hilmar Koch, Paul Churchill,

Tom Martinek, and Charles Rose provided a critical artist’s perspective early in de-

sign. Dan Wexler, Larry Gritz, and Reid Gershbein provided useful explanations of

commercial lighting technologies.

We thank Michael Bay for graciously sharing unreleased images from his movie,

Dan Piponi for generating our hair data, and the anonymous reviewers for their

5

insightful discussion and criticism. Sylvain Paris, Ravi Ramamoorthi, Kevin Egan,

Aner Ben-Artzi, and Kayvon Fatahalian provided critical writing feedback.

This work was supported by NSF CAREER award 0447561, an NSF Graduate

Research Fellowship, NVIDIA Graduate Fellowship, Ford Foundation Graduate Fel-

lowship, Microsoft Research New Faculty Fellowship and a Sloan fellowship.

6

Chapter 1

Introduction

Configuring lights is a critical bottleneck in modern production rendering. Recent

advances have sought to provide real-time preview using deep-framebuffers and

graphics hardware [7, 23]. A deep-framebuffer caches static values such as normals and

texture samples in image space, and each time the user updates light parameters, real-

time shaders interactively recompute the image from the cache. Unfortunately, such

approaches require substantial additional work from shader authors. For example,

in the lpics system deployed at Pixar [23], at least two versions of each shader need

to be written in place of just one: the usual RenderMan shader used for the final

rendering (with additional code paths to cache data), and a Cg version used for

real-time preview.

Automatic shader specialization has been proposed for simplified shading lan-

guages with no control flow [8], but, in the practical context of production, Pellacini

et al. [23] concluded that, while they “believe that automatic translation might be a

superior solution in the future, current approaches are not ready for use.”

This is the first challenge that our work tackles: we alleviate the need to author

multiple versions of a shader by automatically translating unmodified production

RenderMan shaders into real-time shaders and precomputation shaders. This

translation is part of a larger process that automatically generates deep-framebuffer

data from unmodified existing scenes. In theory, some RenderMan code cannot be

translated into GPU shaders, but we have found that, in practice, the dynamic parts

of our production shaders translate well.

7

In contrast to pure static compiler analysis, we use post-execution cache com-

pression to supplement a relatively simple compiler analysis. Cache compression

effectively reduces automatically-generated deep-framebuffers to reasonable size for

complex production shaders.

In addition, transparency, motion blur and antialiasing can be critical to judge

appearance. We introduce the indirect framebuffer, which enables these effects

without linearly scaling rendering time. Similar to RenderMan, it decouples shading

from visibility, but also precomputes the final weight of each shading sample for the

relevant final pixels. Given the complexity of shots that we handle, we also use

progressive refinement to offer both interactive feedback (multiple frames per second)

and faithful final quality (potentially after a few seconds).

Finally, it is important to facilitate the implementation of new passes in a preview

system. We use a computation graph that directly expresses the dependencies and

data-flow between passes to implement shadows and translucency, while maintaining

orthogonal extensibility for future multipass effects.

Contributions We make the following contributions:

• We introduce compiler techniques to automatically translate an original,

unmodified RenderMan shader into a precomputation shader that caches values

in a deep-framebuffer, and a shader for real-time preview.

• We introduce the indirect framebuffer to efficiently support transparency and

multisampling (including antialiasing and motion blur).

• We show that cache compression through static preprocessing of deep-framebuffer

caches is an effective approach for managing the visibility and shading complexity

of antialiased, motion-blurred, and transparent scenes.

• We use a computation graph architecture to encode the dependencies between

different computations during multipass preview rendering with shadows, subsur-

face scattering, and progressive refinement.

• We describe a full production relighting system that is being deployed in

two studios with different rendering workflows. We discuss major challenges and

8

design goals, in particular real-time performance, seamless integration in existing

pipelines, and ease of implementation and maintenance.

1.1 Prior Work

Fast relighting has long been a major area of research [6, 18]. Software renderers can

be optimized for repetitive re-rendering by caching intermediate results at various

stages of the rendering process, as pioneered by TDI in the 1980s [1, 24, 19, 29].

However, such optimizations must be integrated at the core of a rendering system

and are still far from interactive for film scenes.

Séquin and Smyrl [27] introduced a parameterized version of ray tracing that

enables the modification of some material and light properties after precomputation

(although not the light direction or position). They also perform cache compression.

Gershbein and Hanrahan created a system for lighting design [7] which cached

intermediate results in a deep-framebuffer inspired by G-Buffers [26]. They cached

a fixed set of data, and approximated shading with multitexturing. Pellacini et al.

performed shading on programmable graphics hardware [23] using manually-written

shaders that emulate RenderMan shaders. These systems require manual segmenta-

tion of shaders into light-dependent and light-independent components, and manual

translation of preview shaders. While this allows for manual optimization to maximize

preview performance, it is a significant burden. We chose to potentially sacrifice

performance but tremendously improve pipeline integration and maintainability by

automating the segmentation and translation of shaders. Furthermore, we extend

prior deep-framebuffer systems by enabling the efficient rendering of transparent

surfaces and multisampling effects, such as motion blur. Finally, our approach also

automatically supports editing many (user-selected) surface properties because it

employs data-flow analysis with respect to arbitrary parameters.

Wexler, et al. implemented high-quality supersampling on the GPU [30], but

they focus on final rendering, while we optimize for static visibility, resulting in a

different data structure. We build on recent work on direct-to-indirect transfer, which

exploits linearity for global illumination in cinematic relighting [11]. We apply similar

9

principles to multisampling, transparency and subsurface scattering.

Jones et al. segmented shaders into static and dynamic subsets and cached

shading information in texture-space to accelerate rendering the same scene multiple

times under similar configurations [14]. However, their technique only cached

shading computation—not tessellation, displacement, etc.—and required manual

shader segmentation.

Our goals cannot be met fully by pre-computed radiance transfer (PRT) tech-

niques [28, 18], because they usually make assumptions on the reflectance or lighting

and have significant precomputation cost (many times the cost of a single final-frame

render). In contrast, we need to handle the effect of local point light sources and

arbitrary reflectance, and cannot afford such expensive precomputation. Furthermore,

computing illumination, itself, is a large part of our run-time calculation, as

production light shaders are very complex.

Compiler specialization of graphics computation was first used for ray tracing

[9, 17, 2]. Guenter, Knoblock & Ruf developed data specialization to reduce the

cost of recomputation when only certain shading parameters vary, by automatically

segmenting shaders into parameter-dependent and -independent components [8, 15].

We leverage their approach in the context of lighting design and extend their

analyses to global data-flow through existing real-world RenderMan shaders. We

solve specialization using a graph formulation, mentioned but not implemented by

Knoblock and Ruf [15]. This allows us to not only specialize with respect to dynamic

parameters, but also to perform dead-code elimination and other analyses, all from a

single dependence analysis.

Olano and Lastra mapped RenderMan-like shading onto an architecture akin to

a modern programmable GPU [20]. Peercy et al. [21] and Bleiweiss and Preetham [4]

addressed the compilation of RenderMan shaders onto graphics hardware. We, too,

exploit the fact that a large subset of the RenderMan Shading Language (RSL)

can be compiled to a GPU. Our interest, however, is not in using RSL as a GPU

shading language, but in automatically specializing final-frame shaders and creating

an appropriate deep-framebuffer for interactive relighting.

10

Chapter 2

System Design

2.1 Design Goals

Our primary objective is, given a fixed scene geometry, material and viewpoint, to

enable the interactive manipulation of all light source parameters, including intensity,

position, and falloff, as well as to create and remove light sources. The restriction to

lights came first from current production workflow where light source placement is

a separate step at the end of the pipeline, after all other aspects have been frozen.

We were also motivated by technical limitations: surface shaders tend to be more

complex and could prove harder to map to graphics hardware.

However, it also became apparent that our approach can enable the modification

of many (but not all) material appearance parameters. We have sought to facilitate

this, although only as a secondary objective.

In order to receive widespread adoption in production, a lighting design system

must meet the following three major design goals.

High-performance preview Minimizing feedback time is our primary goal.

Specifically, we wish to provide:

• Low-latency feedback – When the user modifies a light parameter, image refresh

must be instantaneous. Final quality might take a few seconds through progressive

refinement, but low-latency feedback is critical to seamless user interaction.

11

automatic preprocessor interactive previewcomputation graphinput scene

rendering engine modeling gui

surface
shaders

GPU
shaders

caching
surface
shaders

caching
scene

specializing
compiler

auxiliary data
e.g. shadow geometry,

translucency samples

deep- and
indirect
framebuffer
caches

dynamic
light shaders

dynamic
surface shaders

rendered image

light
shaders

RenderMan

GPU

cache
compression

caches

temp

aux

parameter controls

Figure 2-1: Our system takes as input the original RenderMan scene with its
shaders. Our specializing compiler automatically separates a shader into static and
dynamic parts and uses RenderMan to cache static computation and auxiliary data.
The dynamic part is translated into Cg. Cache compression greatly reduces the size
of the cached data. The preprocess generates a computation graph that encapsulates
the computation and data binding necessary to re-render the scene. The real-time
rendering engine executes the graph to generate intermediate data (shadow maps, etc.)
and run the dynamic shaders over the cache on the GPU. The indirect framebuffer
enables antialiasing and transparency. The GUI application modifies light parameters
through the graph API.

• Fast initial precomputation – To be accepted by artists, this tool should not

increase the time it takes to begin work on a shot. We seek to keep the initial

preprocessing time as short as rendering one frame with the offline renderer.

• High absolute rendering speed – Although secondary to latency and startup

time, absolute rendering speed must be optimized.

Seamless integration with existing pipelines A preview system should be

transparent to the user and require no additional work to use within an existing

pipeline. This means that it should stand in for the existing offline rendering pipeline

by:

• Taking the same input – unmodified RenderMan scenes and shaders.

• Producing the same output – using shading and visibility computation with

extremely high fidelity to the final rendering, including antialiasing, motion blur,

and transparency.

• Using the same workflow – in particular the existing light editing GUI, which

12

varies from studio to studio. This requires our system to integrate with different

GUI software.

Ease of implementation and maintenance Production rendering pipelines

are complex and continually evolving. A preview system cannot afford the same

implementation investment and should not require major re-implementation whenever

the final-frame renderer is updated, the shaders changed, or the pipeline altered. Our

system must achieve effective:

• Reuse – Our system seeks to reuse the existing pipeline wherever possible,

offloading most precomputation directly to the existing offline pipeline.

• Flexibility – Our system is developed for two independent studios, with different

pipelines and toolsets, so we wish to reuse as much as possible between these two

environments.

• Extensibility – It should be as easy as possible to support new functionality—

from using new shaders to implementing new multipass effects—in a simple,

modular fashion.

2.2 System Architecture

Our approach (Fig. 2-1) can be decomposed into an automatic preprocess and a run-

time phase that communicate through a dynamically-generated computation graph.

We take as input the same RenderMan scene and shaders used for final rendering.

Automatic specialization First, we automatically slice all surface shaders into a

static component that can be cached and a dynamic component that will be executed

by the real-time engine (Section 3). For surface shaders, we then generate two new

shaders: a static precomputation shader, which is executed once in the final-frame

renderer to generate a deep-framebuffer cache, and a dynamic re-rendering shader (in

Cg), which is executed repeatedly over the deep-framebuffer to generate interactive

previews. We directly translate light shaders to execute together with the re-rendering

13

surface shaders on the GPU.

The automatic specialization of shaders can yield a performance penalty for the

interactive preview compared to manually optimized and simplified code [7, 23],

but in our context, seamless integration took precedence over final performance.

Another potential limitation of automatic translation is that not all RenderMan code

can be mapped to the GPU. However, for our production shaders this has been a

surmountable challenge.

Indirect framebuffer Our core real-time rendering technique is similar to tra-

ditional deep-framebuffer approaches and uses Cg shaders to perform computation

on all deep-framebuffer samples on the GPU. However, we introduce a new level of

indirection through the indirect framebuffer to decouple shading samples from final

pixel values, thereby efficiently handling antialiasing, motion blur, and transparency.

This indirectly also enables flexible progressive refinement (Chapters 4, 5).

Cache & visibility compression We rely on static preprocessing of the cached

data to compensate for overestimates of the compiler analysis, as well as to cull the

deep-framebuffer and indirect framebuffer based on visibility. This provides at least

an order of magnitude reduction in total cached data sizes while allowing the compiler

to remain relatively simple.

Multipass rendering We enable multipass effects such as shadow mapping

and subsurface scattering. This requires the preprocessor to output additional,

auxiliary data, such as geometry needed for shadow mapping or lighting samples

for translucency. Although translucency currently incurs substantial cost for our

preview, it demonstrates the generality of our architecture.

Computation graph The overall re-rendering algorithm is encoded as a compu-

tation graph, generated during preprocessing from the original scene and shaders.

The graph provides a specification of how to re-shade an image from the cache under

new lighting configurations (Section 6). The computation graph provides two critical

14

abstractions. First, it encodes dependencies between different elements computed

during real-time rendering, which is particularly critical for progressive refinement

and multipass effects. Second, the graph abstracts the preprocessing from the editing

GUI. So long as the generated graph conforms to certain basic conventions, the

preprocessing stage can be updated and extended without affecting the GUI tool.

This is important to our design goal of integrating seamlessly with multiple different

workflows.

15

16

Chapter 3

Automatic Deep-Framebuffer

Caching

We wish to automatically generate a deep-framebuffer and real-time preview from an

unmodified RenderMan scene. We first determine which parts of the computation

are static vs. dynamic with respect to the light parameters. We then create new

RenderMan Shading Language (RSL) shaders that compute and output the static

values, and use RenderMan to create a deep-framebuffer cache. We preprocess the

cache output by RenderMan to compress redundant and irrelevant values. Finally, we

translate the dynamic part of the computation into real-time GPU shaders that access

the deep framebuffer as textures. Previous work has achieved these steps manually.

Our contribution is to make this process fully automatic.

3.1 Data-flow Analysis for Specialization

We build on techniques from data-flow analysis to label the static and dynamic parts

of a shader [12, 25]. We need to conservatively identify all expressions that depend

directly or indirectly on dynamic input parameters. This can naturally be turned into

a graph reachability problem: an expression in a shader is dynamic if it is “reachable”

from a dynamic parameter. RenderMan separates surface and light shaders and we

focus on specializing surface shaders, since light shaders are mostly dynamic with

17

labeled graphdependency graphabstract syntax tree (AST)

translation
& codegen

codegen

dynamic Cg shader

caching RSL shader

deep-framebuffer
cache

texture
lookup

RenderMan
cache
compression

input
shader

parse
shader

augment
AST with
reachability
rules

static/dynamic
and caching
analysis

<dynamic> <dynamic>

Figure 3-1: Specializing compiler. The input shader is represented as an abstract
syntax tree (AST). We augment it to encode dependence between variables and
expressions. We create a special <dynamic> node and connect it to all dynamic
inputs. To decide if an expression is dynamic, we query whether it depends on any
dynamic parameters by testing if it is reachable from the <dynamic> node. Once the
shader has been split, we generate two new shaders, a caching shader (in RSL) and a
real-time shader (in Cg). RenderMan executes the caching shader over the scene and
the cached values are compressed to generate a dense deep-framebuffer, which is read
by the dynamic shader during preview.

respect to light parameters, and lights have no natural domain for pre-sampling and

caching values. We instead directly translate light shaders, and bind them to surfaces

at runtime.

3.1.1 Dependence Analysis

To facilitate the analysis of a shader, we parse it into an abstract syntax tree

(AST), the standard internal program representation in a compiler. The AST

only encapsulates local dependencies within expressions, and we need to add global

dependencies introduced by the assignment of variables. The first step of our analysis

(Fig. 3-1) adds global dependencies to transform an abstract syntax tree (AST)

representation of the shader into a dependency graph that encodes all dependencies

between expressions. (Note that this is different from our computation graph

introduced in Chapter 6).

The new directed graph is a strict superset of the AST and includes additional

edges representing dependencies due to assignments, control structures and function

calls. We augment the AST by applying a number of simple rules that create

appropriate edges for variable assignment and function calls, taking into account

control structures such as conditionals and loops.

18

dif = dot(N,L)dif = dot(N,L)
...

c = dif*tex

dif = 0
for i in 1..n
 ...if dif < 0

...

c = dif*tex

 dif = dif +
 dot(N,Li) ...

 c = dif*tex
 end

(b) (c)(a)

Figure 3-2: (a) The value of a variable depends on its last prior assignment.
However, this notion of “last prior” is affected by conditionals (b) and loops (c).

Variables Variable assignments introduce dependences: an expression that uses a

variable depends on the last prior assignment to this variable (Fig. 3-2(a)). Ignoring

control structures, we simply add an edge connecting each use of a variable to its last

prior assignment.

Pointers (and the resultant variable aliasing) create the most challenging problems

in traditional data-flow analysis, but the original RenderMan specification [10] does

not include pointers, simplifying variable analysis. Pass-by-reference could generate

aliasing if a function of multiple variables is called with the same variable used multiple

times as an argument, e.g. f(x,x). We have not encountered such cases in practice

and can generate an error if we do.

Control-flow Conditionals and loops affect this notion of “last prior” (Fig. 3-2(b)

and (c)). They cause branching in the execution, and each branch can produce a

different last prior assignment. At every control structure we therefore create new

nodes in our graph that act as virtual last prior assignments and depend on the

multiple possible prior assignments, as well as the branch conditions.

Loops The iterative nature of loops makes assignment dependencies wrap around

from the end of the loop back to the beginning: an assignment at the end of an

iteration has influence at the start of the next (Fig. 3-2(c)). In addition, the iteration

bounds can influence the final value of any assignment inside the loop. For a variable

reference inside a loop, we therefor look for the last prior assignment. If it is also

19

inside the loop, we create one edge between assignment and reference. If the last

prior assignment is outside the loop, we create the corresponding edge, but we also

search backwards starting from the end of the loop for any last prior assignment from

a prior iteration.

Loop control statements such as break and continue must be handled too, and

additional dependencies are added at the end of the loop to assignments defined

before them. RenderMan includes additional constructs—illuminance, illuminate

and solar—that integrate over illumination by iterating over all light sources from

each surface, and all surfaces from each light. They are treated similarly: their bounds

are defined geometrically, but they are logically similar to traditional loops.

Function Calls In RenderMan, function calls are inlined, which simplifies our

analysis. For user-defined functions, we simply perform the inlining before analysis,

and the dependence graph is constructed without any notion of function calls. Since

built-in functions are not represented in the source code, the analysis engine uses a

priori knowledge of their implementation to directly insert the appropriate graph at

each call site.

The data-flow model of the RenderMan shader interface allows shaders of a given

type to access parameters of other shader types using a function-call interface called

“message passing.” Our analysis treats all message passing calls as static, except

for those receiving dynamic arguments or those accessing dynamic values (mostly

lightsource() calls).

3.1.2 Static/Dynamic and Caching Analysis

Given a graph of dependencies, we add a single new node called dynamic. To

define which parameters can be edited, we connect it to all dynamic input variables

(specified to the compiler by regular expressions matched against parameter names).

An expression is static with respect to those parameters only if it is not reached by

the dynamic node.

Additional rules are applied for caching analysis to ensure that the generated

20

shaders are valid, as described in Knoblock & Ruf’s work [15]. They further propose

a range of more complex constraints and code transformations to improve the quality

of generated caches by detecting redundant values and trading increased dynamic

code to reduce cache size. In contrast, we cannot afford to increase dynamic code,

since our shaders are already at the limits of our deployed hardware, and we find

that simply post-processing the actual cached data is much simpler and performs

better in practice than inherently pessimistic compiler analysis to detect redundancy,

since it can detect values which are only redundant due to their dynamic evaluation.

(Sec. 3.4).

We perform dead-code elimination using the same dependence graph by connecting

output values to a new output node. Any expression which does not reach output is

dead. Dead code exists because shaders often output secondary values during final

rendering for use in compositing or other subsequent operations, but which are not

necessary during preview.

3.1.3 Cache-Required Code

Our caching analysis constrains dynamic shaders to operations that can be executed

on the GPU. We can force certain operations—namely calls to external C routines,

and unimplemented shadeops (e.g., trace)—to be labeled cached even if the

dependence analysis labeled them dynamic. Static/dynamic analysis eliminates most

such operations in our shaders.

We can recognize light-dependent cache-required nodes as errors, but we find

simply warning the user and computing the values statically at cache time often

provides usable preview results. For example, Figure 7-2 used ray traced, as well

as environment mapped reflections. While the environment map dominates the

appearance, and is easily computed on the GPU, ray tracing is essential for some

self reflection effects. We were surprised at first to find that cache-time static

reflection values still provided a good preview, since it was the rough shapes of the

reflected geometry, more than their exact shaded colors, which mattered most to the

appearance. In cases where useful preview requires dynamic evaluation of these terms,

21

we implement dynamic equivalents using multipass algorithms, as we have already

done for shadows and subsurface scattering, described in Chapter 6.

3.2 Code Generation and Translation

Once we have decided which computations to cache, and which to execute dynamically

during preview, we generate two new surface shaders, one for each phase.

3.2.1 RenderMan Precomputation

Caching computations are emitted as a new RSL shader. Each node labeled cached

is wrapped in an expression which caches and returns the value of the node, making

caching transparent to the rest of the code. The caching shader also outputs

bookkeeping data—namely, a unique shader ID and micropolygon ID for each sample.

When branch conditions are dynamic, control flow in the dynamic preview shader

may differ from the caching execution. If values are cached inside a dynamic

conditional, the caching shader must execute both potential branches. However, this

can introduce exceptions (e.g. divide-by-zero) when static branches, used to prevent

illegal values, are disabled for caching. This is a major problem in practice which

Knoblock & Ruf were unable to solve [15]. We avoid this by recording and restoring

the appropriate assignment state before, between, and after the flattened conditional

in the caching shader.

We must lay out the data so that caching and dynamic shaders can reliably use

a common indexing scheme to access data. We represent cache values at a given

deep-framebuffer sample using compile-time static offsets, rather than dynamically

incremented indices, to avoid order of evaluation discrepancies. Static indices are

problematic when values are cached inside of dynamic loops. In practice, we find

such loops in our shaders can usually be given a reasonable static upper bound (e.g.

loops over the body of a shader to produce multi-layered materials never use more

than a small constant number of layers), which we hint using #pragmas to statically

unroll them.

22

Finally, we generate a new RenderMan scene that replaces each shader by

its caching equivalent. We run it through RenderMan to generate the deep-

framebuffer (Fig. 3-1). Caches are output as pointcloud (ptc) files during baking.

Deep-framebuffer values are output per-micropolygon, along with bookkeeping data

to uniquely identify each micropolygon and the surface shader bound to each

point. Micropolygon IDs are correlated with a separate pixel samples pointcloud

to reconstruct the visible point list and build the indirect framebuffer (see Ch. 4).

3.2.2 Cg code generation

Dynamic surface shaders are emitted as new Cg shaders which read the deep-

framebuffer cache as textures.

The key issue in translating RSL to Cg is to mimic RenderMan’s richer data-flow

and execution semantics. Communication of light color and direction between surfaces

and lights is accomplished through shared global variables, as in RSL. However, RSL

also allows surfaces and lights to access each other’s parameters by name through

message-passing. We implement this by communicating parameters through global

variables.

We represent string tokens, including message passing identifiers, by encoding

static string values in floats using unique IDs. This enables runtime code to pass and

compare (though not modify) strings on the GPU. RSL also uses strings to represent

transforms and texture handles, so our Cg string type includes the necessary texture

samplers and matrices for all major uses of strings.

Finally, RSL supports the computation of arbitrary derivatives over the surface.

Cg also supports derivatives, but its fast approximations are low-quality. In practice,

we find that high quality derivatives are only significant in dynamic code when used

for large texture filter kernels. These primarily depend on surface partial derivatives,

which are not dynamic, so we simply cache them when necessary.

23

3.2.3 Light translation

While surface shaders are specialized, light shaders are directly translated through the

same Cg code generator. Similar to RenderMan, we generate Cg light and surface

shaders separately and combine them at load time. They communicate primarily

through Cg interfaces [16].

This approach can only automatically translate light shaders which do not rely on

cache-required functionality—most significantly, external C calls. (Ray tracing may

be used in lights to compute shadows, but we can replace these with shadow maps

during preview.) In practice, our lights only call C DSOs for simple operations like

fast math routines, which are trivially replaced with native instructions on the GPU,

so we have not found this problematic.

3.3 Specialization Results

Figure 3-3 summarizes the results of our shader specialization approach. Note that the

dynamic shader complexity depends on both the light and surface shaders. Generic

Surface is a multipurpose “übershader” that forms the basis of most of our custom

shaders. However, it does not result in dramatically larger dynamic shaders than a

simpler surface because most of the code is static and dynamic code is dominated by

lighting computation. For comparison, note that RSL instructions tend to be higher-

level, and the equivalent computation requires a larger number of GPU instructions.

In particular, RSL includes all standard library and DSO calls as single ops, whereas

they become many machine instructions on the GPU. The sizes of our caching shaders

are 28k and 22k RSL instructions for Generic Surface and Metallic Paint, respectively.

Pellacini et al. [23] describe challenges with binding overhead for the number of

unique surfaces generated by specialization. Our technique has no more shaders than

the original shot and our shots usually use at most a dozen unique shaders, which

contrasts with the thousands of unique shaders per shot used in other studios [23].

This further emphasizes that, in our context, automatic specialization is primarily

motivated by the rate at which shaders change (as well as the ability to edit surface

24

Configuration RSL instr. GPU instr. GPU regs.
Generic Surface 19,673 (combined surface/light)
spot +1290 4653 28
point +626 3941 24
reflection +351 1942 20
reflection environment +733 2721 23
ambient environment +367 2724 22
occlusion msg +28 863 12
Metallic Paint 22274
spot +1290 4461 26
“Simple” Surface 4171
spot +1290 3368 21

Figure 3-3: Compiled RenderMan (RSL) vs. compiled GPU assembly instructions,
and number of GPU registers. Note that the indicated total complexity of the GPU
dynamic shader includes both light and surface, while RenderMan instructions are
given separately.

parameters), not their total number. Still, given increased program size limits in latest

GPUs, Cg codegen could generate a single compound shader performing dynamic

dispatch to subroutines implementing each surface or light. This technique is already

used effectively in games.

3.4 Cache Compression

The main challenge for specialization lies in the number of values that need to be

cached for large shaders. It can easily reach hundreds of scalars per deep-framebuffer

element, potentially exceeding the GPU’s memory. This makes cache compression

critical, and it is very effective in practice. (However, because the system is built

to scale beyond GPU memory and texture size limits, using the tiling described in

Chapter 5, this is only a performance issue and not a functionality concern.)

Static code analysis is challenging and tends to be conservative. In contrast,

we find that applying simple post-processes to our final cached data provides

tremendous reductions in cache complexity, sufficient to enable effective automatic

deep-framebuffer generation in production scenes with a simple compiler. After

caching, we analyze all channels in the deep-framebuffer and eliminate those whose

25

Shader dynamic varying unique
(caching analysis) (compressed)

generic surface 402 145 97
metallic paint 450 150 97

Figure 3-4: The number of (scalar) values per deep-framebuffer sample for the scene
in Fig. 7-2 under compression. Dynamic terms are determined by the initial caching
analysis. Varying terms remain after elimination of values that are constant over the
frame. Unique terms remain after further elimination of duplicated values.

values are:

• Constant over the frame – non-varying terms are converted to static constants in

the code.

• Identical to other channels – non-unique terms are replaced with references to a

single common channel.

The implemented optimizations are limited. We only compress non-varying values

over entire surfaces—we don’t compress uniform sub-regions of the sampled surface.

We also give up some potential optimization possible in compiler analysis. For

example, while the basic redundancy check works well, data-only analysis lacks the

semantic information to easily detect trivial variations of some expression (e.g. x and

2×x). However, it can detect values which are not semantically equivalent but which

are redundant under a given evaluation, and works very well in practice.

These optimizations can reduce the number of cached components by more than

a factor of 4 (Fig. 3-4). Because these optimizations inline significant new static data

in the dynamic Cg shaders, this also helps the Cg compiler reduce runtime shader

complexity through constant folding.

3.5 Specializing for Surface Parameters

A key advantage of automatic specialization is to allow users to selectively tweak

some surface, as well as light parameters. When users select surface parameters

as dynamic, the compiler can just as easily generate code with configurable surface

parameters (Fig. 3-5). Many of the most commonly tuned parameters, such as gain

26

Editable surf. parameters GPU instr. regs. relative perf.
0 (baseline) 3518 21 100%
18 (gain) 3856 27 90%
41 (gain & specularity) 3973 29 86%

Figure 3-5: Preview performance as a function of the number of editable surface
parameters for a variant of Generic Surface. Editing 41 scalar and vector surface
parameters does not significantly slow rendering compared to light parameters alone.

factors and specular roughness can be dynamically edited. This significantly extended

the initially-planned range of application from just lighting to material look-design.

In practice, the main overhead in editing surface parameters is that it requires the

reevaluation of all light sources, which is costly when tens of lights are used. We have

not yet implemented restricting the shading to only the modified surface samples.

27

28

Chapter 4

The Indirect Framebuffer

Traditional deep-framebuffers are pure image-space structures, which allows them to

scale with image size, not scene complexity. However, because they interpret pixels as

discrete surface shading samples, they cannot directly express effects where multiple

shading samples contribute to a single pixel, such as antialiasing, motion blur, depth-

of-field, and transparency. A direct extension would use supersampling, but this

greatly increases storage and shading cost and scales poorly with the variable depth

complexity introduced by transparency.

Inspired by the decoupling between shading and visibility computation central

to RenderMan’s REYES pipeline, we introduce a layer of indirection between deep-

framebuffer shading and visibility/display samples through a second data structure

we call the indirect framebuffer. We first review the multisampling approach used in

RenderMan before introducing our new data structure.

Background RenderMan’s REYES architecture achieves high quality and gen-

erality of antialiasing, motion blur, and depth-of-field by supersampling visibility

computation, while reducing shading cost by reusing shading values rather than

supersampling them [5, 3]. While smooth reconstruction of motion blur, depth-of-

field, or fine geometry may require 100 or more visibility samples, the shading rate is

commonly just roughly one shading sample per output pixel.

29

For this, RenderMan uses three core data structures to encode shading and

visibility (Fig. 4-1.i,ii):

• Shading is performed in object space on surface shading samples called microp-

olygons.

• Pixels contain a uniform density of subpixel samples, distributed in screen-

space (spatial antialiasing), time (motion blur), and aperture location (depth-of-

field).

• Each subpixel sample maintains a depth-ordered visible point list of pointers to

the micropolygons visible along that “ray”.

RenderMan first tessellates all primitives into micropolygons. Shaders execute

over all vertices of the micropolygon grids, producing a color per vertex (Fig. 4-1.i).

RenderMan then computes visibility (hiding) by testing each micropolygon against

each subpixel sample it potentially covers (using rasterization), taking into account

the aperture and time value of the sample. It performs a depth test and handles

transparency by maintaining a z-ordered list of micropolygon pointers at each subpixel

sample (Fig. 4-1.ii).

The color of a subpixel sample is then computed by looking up the color and

opacity of each micropolygon and compositing them in depth-order. The final pixel

value is the weighted average color of the subpixels, and since the subpixels are jittered

in space, time, and aperture location, this achieves high quality multisampling effects

while keeping shading cost tractable.

4.1 Indirect Framebuffer Data Structure

We note that each final, filtered pixel color ultimately corresponds to a simple

linear combination of the shaded colors of all micropolygons visible under that pixel.

Even transparency, which traditionally presents challenges due to order-dependence,

ultimately factors into a single weight because we have a fixed viewing configuration.

Consider the example in Fig. 4-1.ii: the first subpixel’s color is a linear combination

30

Lightspeed / Indirect Framebuffer

RenderMan / REYES

(i) Micropolygons

b

b
2

b
1
b
1

a

a
1

1 2

3
4

(ii) Pixel-sample Hit Lists

b
2

α=1.0

a
1

α=0.3

Ca
1
*0.3+Cb

2
*(1.0-0.3)

4

Ca
1
*0.3

a
1

α=0.3

3

b
2

α=1.0

Cb
2
*1.0

2

b
1

α=1.0

a
1

α=0.3

Ca
1
*0.3+Cb

1
*(1.0-0.3)

1

x1
N

a
1

P

x4
x3

x2

b
1

P

x4
x3

x2

b
2

P

(iii) Deep-framebuffer

shading

shading

samples

0.175 0.225 0.425

final pixel color

(iv) Indirect framebuffer

weighted
combination

Figure 4-1: The indirect framebuffer densely encodes variable-rate visibility
information to enable efficient antialiasing and transparency under a static view. It
resamples a densely-packed deep-framebuffer into screen-space to precisely reproduce
RenderMan’s high-quality antialiasing, but is linearized and consolidated for the given
static visibility configuration, requiring far fewer unique samples for the same result.

31

of shading samples a1 and b1 with weights given by a1’s transparency. The final

pixel value is a combination of the colors of shading samples a1, b1, and b2 with

weights 0.175, 0.225 and 0.435. When visibility is static, these cumulative linear

weights similarly become static. This is similar to the principle of the direct-to-

indirect transfer [11] but in the context of multisampling and transparency.

We directly exploit this static linearity while decoupling shading from the final

pixel value. We use a standard deep-framebuffer, but instead of organizing it per

pixel, our preprocess caches data for each shading sample (Fig. 4-1.iii). Our real-time

dynamic shaders execute over this cache and output per-shading-sample colors.

Our indirect framebuffer encapsulates the linear nature of the final color and stores,

for each pixel, a list of weights and pointers to the deep-framebuffer output (Fig. 4-

1.iv). For example, the pixel in Figure 4-1.iii corresponds to three entries in the

indirect framebuffer.

We need to efficiently represent the variable-length list of shading values influenc-

ing each pixel and enable progressive rendering. We use a “scatter” strategy where

points are blended into each pixel location to accumulate color contribution. Each

indirect framebuffer entry is encoded into a vertex array as a point, containing a

pointer to a shading sample (a texture coordinate), a weight, and an output pixel

coordinate (x, y). Rendering the vertex array with blending enabled scatters the

weighted colors into final pixels.

Because rendering time is dominated by shading cost, scattering time is inconse-

quential. Further, the fine granularity of scattering this way is valuable because it

allows arbitrary progressive shading and image refinement. This is a key advantage of

introducing this indirection which is not necessarily achieved by other precomputed

coverage structures.

Note that one entry in the deep-framebuffer, and the resulting shaded color, often

contributes to multiple neighboring pixels, especially in the presence of motion blur.

This highlights the effectiveness of our decoupling (and that of RenderMan) where

complex multisampling effects are achieved without scaling the cost of shading. The

total number of unique shading samples can even decrease due to sharing between

32

RenderMan our approach
Figure resolution samples shade subpix shade indir.
7-2 914x389 13x13 2.1M 32M 633k 1.6M
4-3 720x306 13x13 1.5M 21M 467k 3.8M
6-2 640x376 4x4 2.5M 2.3M 327k 716k
7-4 (α: 0.1) 720x389 8x8 54M 121M 21M 35M
7-4 (α: 0.6) 720x389 8x8 43M 58M 11M 17M
7-4 (α: 1.0) 720x389 8x8 25M 17M 3.9M 5.7M

Figure 4-2: Original RenderMan micropolygon and pixel-sample output complexity
compared to our compressed indirect framebuffer, in numbers of samples, for Figs. 4-
3, 6-2, 7-2, and 7-4. Static visibility compression losslessly reduces deep-framebuffer
shading samples by 3-8x relative to RenderMan’s shaded micropolygons, and reduces
the number of unique indirect framebuffer samples by 3-20x relative to RenderMan’s
subpixel samples.

neighbors.

Our implementation is currently limited to static opacity. Dynamic transparency

could be supported by recomputing the weights on the fly, but light-dependent

transparency does not occur in our shaders. We also do not currently handle colored

transparency, though it simply requires storing an RGB (instead of alpha) weight and

independently blending each color channel.

4.2 Caching Visibility

During caching, we bind an additional volume shader in a special mode (vpvolume)

which fires once per entry in the visible point list of each subpixel sample. This shader

reads the micropolygon ID of the corresponding micropolygon at each point in the

list and outputs it into a second pointcloud at the current x, y, z location. These

points are projected into screen space, sorted by depth, and the micropolygon IDs

correlated with those in the deep-framebuffer to reconstruct the full visible point lists

of each subpixel sample.

33

4.3 Visibility Compression

Using the static visibility information of the indirect framebuffer, we apply two key

transformations on the cached data to losslessly compress its size:

• The static linearization of the indirect framebuffer coalesces all visibility samples

which reference the same shading sample at the same pixel into a single combined

indirect framebuffer weight. This provides a 3-20x reduction in the size of the

indirect framebuffer while producing the same output (Fig. 4-2).

• We cull all deep-framebuffer shading samples not referenced by at least one

indirect framebuffer sample. We maintain a local neighborhood where necessary

for derivative computation.

These optimizations reduce the number of indirect framebuffer samples by 3-20x,

and the number of deep-framebuffer samples by 3-8x (Fig. 4-2), with no loss of

generality, even for complex scenes involving motion blur (Fig. 4-3) and transparent

hair (Fig. 7-4). This reduces not only storage size, but also computation, because

shading is applied once per-deep-framebuffer sample, and resampling once per-

indirect framebuffer sample. Combined with dense packing of shading values, these

optimizations generally allow even heavily multisampled shots, with transparency,

to require little more storage than a simple, single-sampled image-space deep-

framebuffer, and to be rendered interactively.

34

Figure 4-3: Lightspeed rendering from a motion-blurred RenderMan frame with
13x13 pixel samples and shading rate 1. At 720x306, RenderMan shades 1.5M
micropolygons and filters 21M subpixel samples in rendering this image, while our
preprocessing distills this to only 467k visible shading samples and 3.8M unique
subpixel contributions to produce identical results. Shading time still significantly
dominates resampling time.

Figure 4-4: Interacting motion blur and transparency. Left: Lightspeed. Right:
RenderMan. The difference is statistically insignificant (� 0.1%).

35

36

Chapter 5

Scalability and Progressive

Refinement

Our system must scale to final-resolution previews of massive scenes with complex

shaders, while maintaining interactivity.

5.1 Tiling

High resolution previews and more complex shaders may increase cache size beyond

GPU memory or texture size constraints. We divide oversized caches into screen-

space tiles small enough for all hardware constraints. Each tile contains an

indirect framebuffer coupled with a deep-framebuffer of all shading samples visible

at those indirect framebuffer samples. We also use texture atlases because our

deep-framebuffer may contain more channels than the number of bindable textures.

(DirectX 10 texture arrays could increase performance by removing the arithmetic

necessary to index into the deep-framebuffer atlas.)

5.2 Progressive Refinement

We rely on progressive refinement to offer both interactive feedback and slower yet

faithful final image quality. We progressively refine the resolution, typically in four

37

steps. In the first step, we begin with 4x4 then 2x2 pixel blocks. Next, we increase

to full resolution but with only one indirect framebuffer value per pixel. In the final

step, we use full multisampling for the highest quality.

Each refinement stage is represented by a group of samples in our indirect

framebuffer. We order the indirect framebuffer samples for a given pixel by weight

and accumulate them progressively in passes. By simply normalizing subpixel weights

for SRC ALPHA,ONE MINUS SRC ALPHA (instead of additive) blending, we maintain

appropriate brightness. Shading is only updated for the points referenced by the

indirect framebuffer samples in a given refinement batch. This also helps guarantee

performance on massive scenes, because the first few refinement levels can be

constrained to fit entirely on the GPU. Finally, we often disable shadows at the

lowest refinement. Resampling could be performed framelessly for smoother results,

but shading must still be batched for reasonable performance.

Tiles of our deep-framebuffer are stored as sets of shading samples grouped by

surface type, and into batches for multiple progressive refinement passes. Passes are

stored in 2D textures with arbitrary layout (2x2 quads are maintained for derivatives).

In practice, shading samples are stored according to the order in which RenderMan

outputs them.

5.3 Light Caching

Like prior lighting design systems, we exploit the linearity of (most) lighting by

caching the contribution from all lights not currently being edited by the user. We

store a light cache that gets updated when a subset of lights is temporarily “frozen.”

In practice, when a light is “unfrozen”, its contribution is subtracted from the cache,

and a new frozen light’s contribution is added. We retain the old parameter state with

which the cache was generated to maintain correctness when subtracting. This speeds

up freezing when working with tens of light sources, and has proven numerically stable

over long edit sessions when using a 32-bit floating-point cache.

Changing surface parameters requires reshading the surface with all lights. In

38

scenes with few lights, this is still comfortably interactive. In near-final shots with

dozens of lights, it may be sub-interactive, but still takes only a few seconds for useful

feedback.

Light caching is complicated by the introduction of progressive refinement.

Because we wish to provide initial feedback to the user as quickly as possible, it

is common for the lowest refinement level of the light cache to be valid, while higher

refinement levels are in various invalid states. In order to update the cache, we

maintain a table of the cached light parameters for each light at every refinement

level. A given cache level is valid for a light if the cached parameters match the light’s

current parameters. If not, the cache is updated by reshading and subtracting the

contribution of the old configuration, then shading and adding the new contribution.

Light configurations can be quickly compared using parameter hashes.

39

40

Chapter 6

Multipass Rendering and

Management

So far, we have focused entirely on local illumination computation. However, global

effects such as shadowing and translucency must also be reproduced. We first show

how they can be included in our approach using multipass rendering and discuss

both the necessary preprocessing and real-time components. We then address critical

software architecture issues in making the development of our system tractable.

The complex dependencies between multipass effects, the indirect framebuffer, and

progressive refinement made it important to develop an abstraction to facilitate the

inclusion of new effects and manage dependencies, as well as abstract key low-level

aspects such as data-flow and bindings on the GPU.

Figure 6-1 summarizes the data-flow for our final real-time computation including

shadow mapping, translucency, and indirect framebuffer effects. In this section,

we explain the individual components as well as the underlying data structure,

the computation graph (which is the dual of the data-flow graph since it encodes

computation dependencies).

6.1 Shadow Mapping

Shadow mapping illustrates how multipass effects from the final rendering pipeline can

be included in our architecture. Shadow maps necessitate one extra pass per light and

41

main shading sample

deep-framebuffer

shaded color
indirect

framebuffer

shadow geometry

shadow mapping light 1

...
shading refinement 1

shading refinement 2

...

subsurface scattering

translucency

contribution

shadow map

image

indices

render

add

shade

accumulate

accumulate

shaded

color

hierarchy

accumulate

shade

translucency gather samples

deep-framebuffer

light cache

update

Figure 6-1: Data-flow dependencies in multipass rendering with progressive
refinement. We abstract and manage dependencies using a computation graph
automatically generated for the features of a specific scene during preprocessing. Our
Computation Graph data structure encodes the dependencies between cached data,
shaders, and multipass outputs. It also manages communication and low-level resource
management on the GPU.

42

require auxiliary data from the preprocessor (scene geometry). For real-time preview,

the shadow map pass communicates with the main pass through a texture and our

graph interface (presented below) manages communication and dependencies when

parameters are edited.

During caching, we run RenderMan a second time over the scene to extract

micropolygons after all transforms and displacements are applied. We store object

IDs to support selective shadow casting and receiving per-object. For specialization,

RenderMan shadow mapping calls are flagged and marked dynamic. They are

replaced in the dynamic code by a Cg shadow map lookup. When rendering the

shadow map, we also render the object IDs to allow shadow assignments to be

modified in real-time on a per-object basis. For progressive refinement, we usually

disable shadowing at the coarsest resolution, similar to some modes shown by Pellacini

et al. [23].

6.2 Translucency

Subsurface scattering requires the integral of incident light flux times a BSSRDF

diffusion kernel over a neighborhood at each visible point. We have adapted Jensen

and Buhler’s hierarchical two-pass approach [13], exactly as used in our existing offline

shaders, for real-time preview. This method first creates a hierarchy of irradiance

samples which enables fast hierarchical evaluation of the integral. Our scheme builds

on the work by Hašan et al. [11] for indirect lighting, but instead of a wavelet approach,

we directly use Jensen and Buhler’s octree hierarchy [13].

For translucency, we must distinguish the shading of visible shading samples as

described in Chapter 4 from the irradiance computation at gather samples used

to estimate subsurface scattering [13]. In particular, the latter cannot have view-

dependent terms and usually only requires albedo and normal information. We “bake”

this information during preprocessing into a separate translucency deep-framebuffer

and generate a simple dynamic Cg shader, based on our offline irradiance shader, to

evaluate irradiance (diffuse shading) during runtime. For each visible shading sample,

we cache the indices of the set of nodes of the irradiance hierarchy that contribute

43

to the translucency. We also store the corresponding BSSRDF coefficient weight (the

dipole kernel) [13] and distance to allow dynamic editing of the scattering depth.

For interactive preview, we first evaluate the irradiance at each gather sample

using the dynamic diffuse shader and the translucency deep-framebuffer. This

provides us with the leaf values of our hierarchy, stored in a texture. We then use

d iterative blending passes for the d levels of the octree to accumulate the values of

higher-level nodes as a sum of their children. All octree values are stored in the same

texture map as the leaves.

We can then compute the color of the visible shading samples. Because only

the accumulation weights, not the actual octree traversal, depend on the BSSRDF

coefficients, lookups into the octree are recorded statically during preprocessing

and encoded as vertex arrays, much like the indirect framebuffer. We store static

BSSRDF attenuation and distance terms per-lookup, and albedo modulation per-

visible-point. We then dynamically compute the BSSRDF contribution based on

dynamic scattering depth (sigma) values using a fragment shader, while accumulating

each lookup into the hierarchy’s irradiance values using the static indices recorded

during preprocessing. Note that translucency computation is performed at the

granularity of shading samples and benefits from the decoupling of our indirect

framebuffer, both for progressive refinement and overall efficiency.

Results Our initial results (Fig. 6-2), while promising in their fidelity, demonstrate

the need for a progressive shading technique. While final scattering contributions

are evaluated progressively, per visible shading point, the static octree lookups

require the translucency deep-framebuffer to be completely shaded prior to any

accumulation. In practice, these deep-framebuffers can be even larger than the

primary deep-framebuffer—1.3M points, in this example. This means that, while

the base shader renders at 2-10 Hz for initial refinement (excluding scattering

computations), and changing scattering coefficients render interactively (2 Hz) for

this scene, reevaluating the full subsurface scattering result takes several seconds to

reach initial refinement (though subsequent refinement is very fast because the octree

is already evaluated). We are considering subsampling and approximation techniques

44

Figure 6-2: Subsurface scattering coefficients can be edited interactively. Top: less
translucency. Bottom: more translucency. The preview renders initial refinement
at 2 Hz under changing coefficients, but reshading the 1.3 million-point translucency
buffer takes several seconds. The eyes contain multiple transparent layers, and appear
black without the indirect framebuffer.

45

for progressive refinement, but leave this to future work.

Compressing the accumulation process like Hašan et al. [11] could accelerate

that process further, but accumulation is already interactive, and it would preclude

dynamically editing scattering coefficients.

6.3 The Multipass Computation Graph

Multipass algorithms such as shadow mapping and translucency, together with the

indirect framebuffer and progressive refinement, introduce complex data-dependencies

between and computations. Furthermore, making our system extensible, and

enforcing abstraction between the various components, required more care than we

initially anticipated, and our original, monolithic engine quickly became challenging

to maintain.

We therefore chose to abstract individual algorithms from the overall data-

flow through the real-time rendering pipeline (Fig. 6-1) by using a dependency

graph structure in which individual computations are encapsulated as nodes. Nodes

communicate through ports, which abstract computation from dependency and data-

flow, and global data-flow is encoded as edges between ports. Our core computation

graph library also abstracts low-level aspects of shader and data management on

the GPU, and includes a library of basic building block nodes. These nodes, and

the core graph runtime, provide services including texture and framebuffer object

management, caching, and the binding of Cg parameters and interface objects.

The graph instance for a scene is generated automatically by the compiler and

preprocessing stages of our pipeline, and is used internally by the user interface

application to drive the real-time renderer. In this way, the graph API also provides

an interface between preprocessing, the real-time rendering engine, and the GUI

application. So long as the generated graph conforms to certain basic conventions, the

preprocessing stage can be updated and extended without affecting the GUI tool.

46

Chapter 7

Implementation and Results

Figure 7-1 summarizes our system’s fully-automatic performance on two of our shots

(Figs. 7-2, 6-2). Cache sizes fit within current GPU resources, though our system

scales to support out-of-core shots at much higher resolutions or with even more

complex shaders.

We report all results for our current, deployed artist workstations, with dual

2.6GHz AMD Opteron 2218 processors, 8GB RAM, and NVIDIA Quadro FX 5500

(G71) graphics cards. We are generally at the limit of the capability/performance

curve for our current hardware, but preliminary results suggest major performance

improvements on next-generation hardware.

Our system has been integrated into the pipelines of two special effects studios. It

is currently in initial release with a number of artists in production for both lighting

and look-design. We have focused our efforts on ironing out the major, previously-

unsolved technical challenges with such a system. As such, some technically

straightforward but practically significant aspects of our implementation, such as

shadow map rendering, currently lack extensive optimization, while significant effort

has been paid to ensure the fidelity and scalability of the core compiler, preprocessing,

and real-time shading components on complex scenes. Our subsurface scattering

implementation is only a proof-of-concept and requires further optimization.

Nevertheless, initial feedback has been extremely positive. For example, artists

love the freedom to experiment with complex features such as noise: “[we] usually

47

Pirate (6-2) Robot (7-2)
resolution 640x376 914x389
supersampling 4x4 13x13
lights 3 42
RenderMan (total) 409 sec 3406 sec
irradiance shading 111 sec
material shaders 1 2
material instances 4 44
light shaders 1 5
light instances 3 42
Caching (total) 1425 sec 931 sec
initialization 8 sec 18 sec
shader specialization 24 sec 63 sec
deep-framebuffer caching 627 sec 499 sec
shadow geometry caching 105 sec 164 sec
cache compression 60 sec 187 sec
octree compression 600 sec
Preview
irradiance shading (1 light) 7 sec
interaction (irradiance cached) 0.5 sec
coarse refinement, 4x4 blocks 0.1 sec
full refinement (1 light changed) 10 sec 2.7 sec
full refinement (n lights) 29 sec (3 lights) 31.7 (42 lights)
deep-framebuffer 104 MB 256 MB
indirect framebuffer 33 MB 29 MB
irradiance deep-framebuffer 83 MB
scattering index buffer 436 MB

Figure 7-1: System performance compared to our RenderMan-based offline pipeline
for two production shots (Figs. 7-2 & 6-2). In both, initial feedback is accelerated
several orders of magnitude, to interactive rates. Caching time for Robot is
significantly less than even a single offline render (common for most complex
shots), because we cache with lights turned off. Caching time for the Pirate
example is dominated by unoptimized octree caching and compression processes which
(unnecessarily) read and write multiple GB of octree data on disk several times during
caching.

48

shy away from noise because it takes so long to edit...this interactivity makes it

much more useful.” In general, there was a strong feeling that interactive feedback

not only accelerated the adjustment of key parameters (“getting that level right

[previously] took me an hour!” after just tuning a light to match the background in

under 10 seconds), but left users more willing to experiment aggressively. Where they

previously were “timid” out of fear that, if they ran out of time during an aggressive

edit, they would look bad during dailies the next morning, now they felt more free to

experiment.

Caching performance Because we cache data using a modified version of the

original scene and shaders run through the same offline rendering pipeline, caching

performance is generally on the order of the cost of a single offline render at the same

level of quality. Caching time often increases (e.g. for Robot), because we usually

compute the cache with lights turned off, which can save significant time in shots with

many lights. However, caching time for Pirate is dominated by an unoptimized octree

preprocessing mechanism which reads and writes many gigabytes of octree data on

disk several times during precomputation.

GPU vs. specialization speedup We have estimated the gain due to special-

ization vs. GPU execution. Since we do not have a software preview runtime, we

can only perform back of the envelope calculations comparing the GPU shaders to

RenderMan shaders, and prman timing with real vs. trivial shaders. Specifically,

we calculate savings due to specialization by comparing the op counts for offline

RSL and specialized GPU shaders, counting the sum of light and surface shaders

given in figure 3-3. We measure RenderMan’s non-shading overhead (scene setup,

tessellation, displacement, and visibility computation) by subtracting the time to

render our scenes with trivial no-op shaders from the same scenes with full shaders

and lights demonstrated in our results. For the included scenes, we estimate that

specialization and caching provide a 100x speedup while execution on the GPU brings

another 20x. The coarsest level of refinement provides an extra 10-100x.

49

LightspeedLightspeed

RenderManRenderMan

Lightspeed

RenderMan

0%

25%Difference

Figure 7-2: An automatically-generated preview at 914x389 resolution with 13x13
supersampling for a scene featuring 42 spot, environment, and message-passing lights
and multiple 20k instruction surface shaders. The upper-left half of the image is
rendered with our approach while the lower right is the final RenderMan frame – the
seam is barely visible. The error heat map is in percentage of maximum 8-bit pixel
value and is mostly due to shadow map artifacts. This scene renders interactively
at 4x4 subsampled resolution at 9.2 Hz, while refining to the above antialiased final-
quality in 2.7 seconds, compared to 57 minutes in RenderMan.

LightspeedLightspeed

RendermanRenderman

Lightspeed

Renderman
0%

10%

Difference

Figure 7-3: The upper-right half of the image is rendered with our approach while the
lower left is the final RenderMan frame. Initial refinement renders at over 20 Hz with
our full 4k instruction specialized surface shader and spot light, including shadows.
Error is in percentage of max pixel value.

50

Figure 7-4: 430k transparent hairs (α = 0.6, opacity threshold: 0.96) rendered
at 720x389 with 8x8 sampling. This generates 43M micropolygons and 58M pixel
samples in RenderMan, and condenses to 11M visible shading samples and 17M
unique visibility samples through lossless visibility compression, rendering at 12 Hz
and fully refining in 33 secs. Compression and performance are even better at α = 1.0,
but α = 0.1 (threshold: 0.996) generates 21M visible shading samples, overflowing the
16M sample textures we currently use (cf. Fig. 4-2).

7.1 Scalability

Shadow geometry scales with scene complexity and is the main scalability limitation,

in practice. Using micropolygons instead of source primitives was a design decision

to avoid re-implementing displacement and every primitive supported by prman. We

control shadow-geometry level of detail by altering the shading rate of the shadow

bake pass. Additional mesh decimation passes could be useful.

Aside from shadowing, our system effectively scales with image complexity.

The indirect framebuffer and cache compression dramatically reduce memory costs.

Transparency is the main difference from previous techniques because it adds an

unbounded number of samples. We created a complex scene to test scalability (Fig. 7-

4): 430k transparent hair fibers (α = 0.1, opacity threshold= 0.996), resulting in

55M prman micropolygons and 20M visible Lightspeed shading samples rendered at

51

720x389 with 64x supersampling. This overflows our shade sample texture because

of the GPU’s 4k×4k (16M) texture limit. However, with α reduced to 0.6, the same

scene only requires 11M shade samples (vs. 43M in prman) and works at 12 Hz (33

secs for full refinement because the full cache is 2GB and needs to be paged). With no

transparency, Lightspeed shades just 4M samples (vs. 25M for prman) at 22 Hz (5.5

secs for full refinement). The 16M limit can trivially be increased by using multiple

textures or 8k textures in DirectX 10.

For our production scenes, however, we have not encountered such extreme

cases. Our artists avoid transparent hair in favor of smaller sub-pixel hair because

these same scalability problems apply in prman. In fact, though unbounded,

transparency consistently contributes much less to total frame complexity than

(bounded) multisampling in our scenes.

While the worst case scales with supersampled image complexity (times depth

complexity for transparency), the key goal of our design—visibility compression and

the linearization of visibility into the indirect framebuffer—is to provide real-world

scaling much closer to pixel-complexity, even with motion blur (Fig. 4-3), sub-pixel

microgeometry like hair (Fig. 7-4), and a modest average transparency depth.

The overall conclusion of our tests, ignoring shadowing, is:

• We can handle a lot of fine geometry, or probably handle a lot of very transparent

coarse geometry, but our current implementation will not handle a lot of very

transparent and fine geometry that completely fills the image, with antialiasing.

• We can handle a lot of fine geometry that is semi-transparent even if it fills the

image, with high antialiasing.

Where scene complexity can become an issue for the indirect framebuffer is during

caching. Because simple methods of caching (bake3d) extract all shaded grids from

prman, initial cache sizes can be very large, and compression becomes disk i/o

bound. We addressed this by pushing compression in-memory with the renderer

during caching (as a DSO), which greatly accelerates caching and culling.

The number of unique shaders can also be an issue. However, if a given surface

52

shader is used for multiple surfaces with different parameters, we only need to

specialize it once. The total number of dynamic shaders is the product of the

number of different light shaders and the number of surface shaders (not the number

of instances). Because we mostly use übershaders, this is not a problem for our

workloads (≤10-100 combinations in practice, Fig. 7-1), though it would be for studios

with thousands of unique shaders in a shot. This might be addressed with established

techniques, as discussed in Footnote 1.

7.2 Challenges and Limitations

In practice we find our approach quite robust. Major challenges we have addressed

include:

• Automatically specialized shaders fit within current GPU limits. Future shaders

will surpass the limits of our current hardware, but newer GPUs have already

elevated the relevant program and register size limits by at least an order of

magnitude.

• Dynamic calls to external C routines are largely eliminated during specialization,

and, where they aren’t, they have been effectively emulated on the GPU or made

cache-required.

• Generated deep-framebuffers are compressed to modest sizes, even for our more

complicated scenes and shaders.

• GPU texture limits are abstracted through tiling.

• Complex visibility is effectively compressed, even at high multisampling rates.

• Interactivity is maintained in the face of complexity by progressive refinement.

Our key limitations are the same faced by any GPU shading system—namely, that

operations not easily expressed as native GPU instructions require special handling.

Most importantly, non-local shading must be handled explicitly using multipass

algorithms. We have achieved this for shadows and translucency, but additional

implementation is required for other effects.

53

Still, a number of features cannot be translated and would result in an error

message if deemed dynamic. Fortunately, most such features are usually not used in

the dynamic parts of shaders in our studio. This may not be true in all studios.

Ray Tracing We do not perform ray casting. Note that specular ray tracing could

be previewed in a deep-framebuffer using indirect buffers (ray intersections do not

change unless the index of refraction is edited for transmitted rays). This is future

work. The main limitation concerns ray-casting for shadows and inter-reflections.

Ambient occlusion Lightspeed would require re-caching of occlusion if object-

object occlusion assignments changed. Our artists only edit occlusion gain during

lighting design, and inter-object occlusion, itself, can be cached.

Shadows Our system currently does not implement deep shadows and this is a

serious limitation for scenes with hair. Similarly, we do not implement area shadows.

Brickmaps and pointclouds Memory management would present challenges for

implementing brickmaps. We do not support them in dynamic code. This is a

particular problem if brickmaps are used in a light shader. Our subsurface scattering

implementation is an example where a point cloud is statically sampled through a

complex data structure at cache time, but the returned values are dynamic.

Non-linear lights Non-linear contributions are not easily cached.

Dynamic loops Dynamic loops containing cached expressions are a limitation. We

support them in the special case where they are bounded, since we statically allocate

space in the deep-framebuffer. Figure 6-2 uses bounded dynamic loops for layered

materials.

54

Chapter 8

Conclusions and Future Work

We have introduced a system for the real-time preview of RenderMan scenes

during lighting design. Our method automatically specializes shaders into a static

RenderMan pass that generates a deep-framebuffer, and a dynamic Cg pass that

uses the deep-framebuffer to enable real-time preview on a GPU. Cache compression

enables automatically generated deep-framebuffers to fit in modest GPU memory

for complex production shots. We have introduced the indirect framebuffer which

efficiently encodes multisampling for high-quality rendering with transparency and

motion blur. Our computation graph-based system architecture is flexible and is

amenable to multipass rendering algorithms and progressive refinement, which we

demonstrate with shadow mapping and subsurface scattering.

We were surprised by the effectiveness of cache compression. Initially, we assumed

we would build complex compiler analyses to control cache size. However, due to the

data-parallel nature of shading, redundancy abounds, and simple post-processes easily

uncover savings which static analysis could not recognize.

As a whole, our system brings a level of automation that greatly simplifies

interactive lighting preview and alleviates the need to write and maintain different

shaders for final rendering, preprocessing, and preview. However, it does not close the

debate between manual instrumentation and automatic specialization. The manual

programming of preview shaders can bring an extra level of flexibility, in particular

to adapt the level of detail to further accelerate preview, as illustrated in lpics

55

[23], though Pellacini separately showed that automatic level-of-detail can help [22].

In the long run, we believe that lighting preview should be addressed in a way

similar to traditional programming: automatic tools are provided for compilation

and optimization, and the programmer can provide hints or manually optimize and

simplify critical portions of the code based on profiling tools.

Our specialization is not restricted to a fixed viewpoint. We have effectively

specialized shaders against a dynamic view direction. Using 3D point rendering of

the shaded deep-framebuffer has produced promising initial results with dynamic view

direction.

Still, the greatest limitation to deep-framebuffer rendering is its basis in local

shading. As global illumination becomes prevalent in production rendering, the

ability to integrate global effects into this system will determine its future success.

Fortunately, our techniques are also not specific to GPUs. Rather, they are generally

useful for reducing complex shading to efficient data-parallel execution, including on

future manycore CPUs, and this may ultimately be the avenue through which global

effects such as ray tracing, which greatly benefit from adaptive data structures, are

most efficiently achieved.

56

Bibliography

[1] Alias. Interactive photorealistic rendering, 1999.

[2] Peter Holst Andersen. Partial evaluation applied to ray tracing. In W. Mackens
and S.M. Rump, editors, Software Engineering in Scientific Computing, pages
78–85. Vieweg, 1996.

[3] Anthony A. Apodaca and Larry Gritz. Advanced RenderMan: creating CGI for
motion pictures. Morgan Kaufmann, 2000.

[4] Avi Bleiweiss and Arcot Preetham. Ashli—Advanced shading language interface.
ACM SIGGRAPH Course Notes, 2003.

[5] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The reyes image
rendering architecture. In Computer Graphics (Proceedings of SIGGRAPH 87),
pages 95–102, July 1987.

[6] Julie Dorsey, James Arvo, and Donald Greenberg. Interactive design of complex
time dependent lighting. IEEE Computer Graphics & Applications, 15(2):26–36,
March 1995.

[7] Reid Gershbein and Patrick M. Hanrahan. A fast relighting engine for interactive
cinematic lighting design. In Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, pages 353–358, July 2000.

[8] Brian Guenter, Todd B. Knoblock, and Erik Ruf. Specializing shaders.
In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual
Conference Series, pages 343–350, August 1995.

[9] Pat Hanrahan. Ray tracing algebraic surfaces. In Proc. of SIGGRAPH 1983,
pages 83–90, 1983.

[10] Pat Hanrahan and Jim Lawson. A language for shading and lighting calculations.
In Proc. of SIGGRAPH 1990, pages 289–298, 1990.

[11] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Direct-to-indirect transfer for
cinematic relighting. ACM Transactions on Graphics, 25(3):1089–1097, July
2006.

57

[12] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and Systems,
12(1):26–60, 1990.

[13] Henrik Wann Jensen and Juan Buhler. A rapid hierarchical rendering technique
for translucent materials. ACM Transactions on Graphics, 21(3):576–581, July
2002.

[14] Thouis R. Jones, Ronald N. Perry, and Michael Callahan. Shadermaps: a
method for accelerating procedural shading. Technical report, Mitsubishi Electric
Research Laboratory, 2000.

[15] Todd B. Knoblock and Erik Ruf. Data specialization. In Proc. of SIGPLAN
1996, pages 215–225, 1996.

[16] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.
Cg: A system for programming graphics hardware in a C-like language. ACM
Transactions on Graphics, 22(3):896–907, July 2003.

[17] T. Mogensen. The application of partial evaluation to ray-tracing. Master’s
thesis, DIKU, U. of Copenhagen, Denmark, 1986.

[18] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shadows using
non-linear wavelet lighting approximation. ACM Transactions on Graphics,
22(3):376–381, July 2003.

[19] Nvidia. Sorbetto relighting technology, 2005.

[20] Marc Olano and Anselmo Lastra. A shading language on graphics hardware: The
pixelflow shading system. In Proceedings of SIGGRAPH 98, Computer Graphics
Proceedings, Annual Conference Series, pages 159–168, July 1998.

[21] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive
multi-pass programmable shading. In Proceedings of ACM SIGGRAPH 2000,
Computer Graphics Proceedings, Annual Conference Series, pages 425–432, July
2000.

[22] Fabio Pellacini. User-configurable automatic shader simplification. ACM
Transactions on Graphics, 24(3):445–452, August 2005.

[23] Fabio Pellacini, Kiril Vidimče, Aaron Lefohn, Alex Mohr, Mark Leone, and John
Warren. Lpics: a hybrid hardware-accelerated relighting engine for computer
cinematography. ACM Transactions on Graphics, 24(3):464–470, August 2005.

[24] Pixar. Irma, 2001.

[25] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural data
flow analysis via graph reachability. In Proc. of SPPL 1995, pages 49–61, 1995.

58

[26] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d
shapes. In Computer Graphics (Proceedings of SIGGRAPH 90), pages 197–206,
August 1990.

[27] Carlo H. Séquin and Eliot K. Smyrl. Parameterized ray tracing. In Computer
Graphics (Proceedings of SIGGRAPH 89), pages 307–314, July 1989.

[28] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting environments. ACM
Transactions on Graphics, 21(3):527–536, July 2002.

[29] Eric Tabellion and Arnauld Lamorlette. An approximate global illumination
system for computer generated films. ACM Transactions on Graphics, 23(3):469–
476, August 2004.

[30] Daniel Wexler, Larry Gritz, Eric Enderton, and Jonathan Rice. Gpu-accelerated
high-quality hidden surface removal. In Graphics Hardware 2005, pages 7–14,
July 2005.

59

