
Mutual Information Based Tracking With Mobile

Sensors

by

John A. Russ

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

© John A. Russ, MMX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

June 11, 2010

Certified by. .
Daniela Rus

Professor
Thesis Supervisor

Certified by. .
John Fisher

Principal Research Scientist
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students

2

Mutual Information Based Tracking With Mobile Sensors

by

John A. Russ

Submitted to the Department of Electrical Engineering and Computer Science
on June 11, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In order to utilize mobile sensor nodes in a sensing and estimation problem, one must
carefully consider the optimal placement of those sensor nodes and simultaneously
account for the cost incurred in moving the sensor nodes. We present an approximate
dynamic programming approach to a tracking problem with mobile sensor nodes.
We utilize mutual information as the objective for optimal sensor placement. We
show how a constrained dynamic programming approach allows us to balance estima-
tion quality against mobility costs. However this constrained optimization problem
is NP -hard. We present a set of approximations that allow this dynamic program
to be solved with polynomial complexity in the number of sensors. We present a
greedy multiple time step planning algorithm that greedily selects the most informa-
tive paths over a fixed planning horizon. These approximation algorithms are verified
via simulation to give a comparative analysis of estimate quality and mobility costs.

Thesis Supervisor: Daniela Rus
Title: Professor

Thesis Supervisor: John Fisher
Title: Principal Research Scientist

3

4

Acknowledgments

I would like to thank Professor Daniela Rus for her support and guidance throughout

my graduate school experience. She allowed me the freedom to explore those areas

where my passions drove me. I am grateful to Dr. John Fisher for providing me with

an interesting problem and giving me everything I needed to take on the challenge.

I am also grateful to all of my fellow lab mates in the DRL group for acting as a

sounding board for my ideas and for keeping graduate life fun and interesting.

Most of all I would like to thank my wife, Emily. She has sustained me and

supported me in all of my pursuits. I will be forever grateful to her, and I am excited

to have her by my side as we move on to life’s next adventure. I am also grateful to

my children for always seeing the best in me and inspiring me to better myself and

the world around me for their benefit.

5

6

Contents

1 Introduction 11

1.1 Sensor Networks . 11

1.2 Optimal Sensing Under Constraints 12

1.3 Contributions . 14

1.4 Outline . 15

2 Optimal Sensing 17

2.1 Types of Sensor Networks . 18

2.1.1 Smart vs. Dumb Sensors . 18

2.1.2 Static vs. Mobile Sensors . 20

2.2 Measurement Quality . 22

2.2.1 Conditional Entropy . 22

2.2.2 Maximum Entropy . 23

2.2.3 Mutual Information Metric . 25

2.3 Measurement Costs . 29

2.4 Multistep Planning . 30

3 Related Work 33

3.1 Information Theoretic Sensor Management 33

3.2 Bounded Cost Optimizations . 34

3.3 Finite Horizon Planning . 35

3.4 Comparison With Our Work . 36

7

4 Problem Formulation 39

4.1 Modeling . 39

4.1.1 Target Object Model . 39

4.1.2 Sensor Model . 40

4.1.3 Cost Model . 41

4.2 Tracking Estimator . 43

5 Approximate Dynamic Programming Algorithms 47

5.1 Dynamic Programming Approach . 48

5.1.1 Objective Function . 48

5.1.2 Constrained Dynamic Programming 50

5.1.3 Linearized Gaussian Approximation 55

5.2 Approximation Algorithms . 56

5.2.1 Brute Force . 57

5.2.2 Decoupled . 58

5.2.3 Greedy . 60

5.2.4 General Simplifications . 68

6 Simulation 71

6.1 Autonomous Robotic Kayaks . 71

6.2 Tracking Simulation . 73

6.3 Comparative Analysis . 77

7 Conclusion 85

7.1 Significant Findings . 85

7.2 Lessons Learned . 86

7.2.1 Intelligent Path Selection . 86

7.2.2 Efficient Implementation . 87

7.3 Future Work . 87

A Simulation MATLAB Code 89

8

List of Figures

2-1 Two different deployments of sensor nodes in the same environment.

The diamonds are for the maximum entropy based deployment and

the squares are for the mutual information based deployment. Figure

originally from [16]. 25

2-2 Mutual information as a function of the number of sensors placed in

the example deployment from Figure 2-1. Figure originally from [16]. 28

6-1 MIT SCOUT autonomous kayak [9]. 72

6-2 Main on board computer and 802.11b (Wi-Fi) radio [9]. 72

6-3 Typical simulation at the beginning before kayaks have had the chance

to move into position or take very many measurements. The cloud

of dots are sample particles from the current particle filter. The true

position of the target is marked by a + and the current mean of all

particles is marked with a ×. 75

6-4 Later on in a typical simulation after kayaks have had the chance to

move into position and take more measurements. 76

6-5 A comparison of average estimation entropy over the full 200 time steps

of the simulations. We use ”-MS” to indicate multistep algorithms that

plan over a rolling N = 10 time step horizon. 77

6-6 A comparison of the average cumulative motion costs over the full

200 time steps of the simulation. We use ”-MS” to indicate multistep

algorithms that plan over a rolling N = 10 time step horizon. 79

9

6-7 A comparison of average estimate entropy for cost constrained versus

unconstrained solutions. 81

6-8 A comparison of average cumulative motion costs for cost constrained

versus unconstrained solutions. 82

6-9 Typical simulation for the unconstrained greedy multistep algorithm.

Notice that without cost constraints all of the kayaks tend to move

towards the target. 83

6-10 A comparison of average estimate entropy versus cumulative motion

costs. 84

10

Chapter 1

Introduction

1.1 Sensor Networks

Advancements in electronics, robotics, and computer science have made it possible to

create networks of sensors and actuators that can autonomously observe and interact

with their environment. These networks open the door to a vast array of fascinating

and valuable applications. To design and operate such networks one must address

problems with communications, control, reliability, and planning to name only a few.

Regardless of the application or specific problem of focus, the goal is to ensure that

the network is obtaining the information that will provide the best possible estimate

and doing so in the most efficient manner possible.

These networks might consist of thousands of very small, simple sensor nodes that

are capable of little more than taking very a simple measurement and communicating

it back to neighboring nodes. These nodes could be spread around a large building

to monitor environmental conditions, in a hospital to help monitor patients, around

a fire or chemical spill to track the hazard as it progresses, on a battlefield to detect

intruders, or along a river to detect flood conditions. At the other end of the spectrum,

a network could just as easily consist of only a handful of highly capable nodes with

multiple sensors, powerful processors, and complex actuators. Some examples would

be a small team of unmanned aerial vehicles performing a search and rescue operation,

a small team of unmanned underwater vehicles clearing a harbor of mines, or a team

11

of ground robots doing routine security surveillance.

1.2 Optimal Sensing Under Constraints

In each of these cases the collection of the desired information is constrained by the

costs associated with obtaining it. The cost of taking a measurement can come in

a variety of forms. For many networks the most significant cost may be the cost

of communicating the measurement back for processing. Communication might be

costly because of the actual energy expended by the radio or it might be costly because

it further congests a limited communication channel. For a mobile sensor the energy

consumed by moving to a new measurement location may be the primary concern.

For others applications, such as search and rescue, the time required to obtain the

information may be the primary concern. On the other hand the cost may actually

be the monetary cost of purchasing and deploying more sensors. Regardless of what

the specific costs are they all place constraints on what a given network is capable of

achieving.

A significant but less obvious challenge is that of identifying and quantifying the

value of potential measurements or sensor locations prior to actually taking the mea-

surements. Common approaches consist of attempting to take measurements every-

where possible, taking measurements as close as possible to the object or phenomenon

of interest, or selecting the sensor locations that maximize the entropy with respect

to the other selected locations. We use a mutual information based approach. Mutual

information is an ideal metric because, unlike the previously mentioned approaches,

it relates directly to the quality of the a posteriori estimate rather than just relying

on intuitive heuristics. Also mutual information has some desirable properties that

allow us to develop a greedy algorithm with provable bounds on the performance.

We wish to select the optimal set of measurements to take, while simultaneously

trying to minimize the cost of taking those measurements. However, this is an NP -

hard problem [11, 15]. Left with only approximate solutions there are a variety of

paths to take. Dividing the problem into two parts, one part for selecting the most

12

informative sensor locations and another part for selecting the lowest cost deployment,

isn’t feasible. This approach is problematic because the optimal sensor selection

is often very costly, and likewise the lowest cost solution will often perform very

poorly. Other approximation algorithms are designed around static sensor networks

and planning for a single fixed deployment and therefore don’t lend themselves to

dynamic networks of mobile sensor nodes.

Our work is an extension of work done in [26, 27] for sensor management in a

communications constrained static sensor network. In [26, 27] the authors develop an

approximate dynamic programming approach that allows a static sensor network to

balance estimation performance against the cost of communicating measurements and

estimation parameters through the network. Their approach also facilitates planning

sensor selections over a rolling time horizon rather than only considering a single time

step. They demonstrate their algorithm with a simulated tracking exercise. Their

problem was concerned with selecting the subset of sensors to be activated at each

given time step and selecting which sensor would act as leader node for data fusion

and processing.

In this thesis we extend their work to accommodate mobile sensor networks that

have mobility cost constraints rather than communication constraints. We utilize a

very similar formulation to [27] for the dynamic programming approach and for our

tracking simulation, as we describe in Chapter 4 through 6. However, this dynamic

programming formulation is intractable in its pure form. The complexity grows ex-

ponentially in the number of sensors. In [27] a set of approximations are utilized to

allow a tractable solution to be found. However, these approximations rely on the

structure of the leader node selection problem and the fact that the sensor nodes are

static. For our mobile sensor network problem we are not concerned with the leader

node selection problem and we cannot depend on sensor nodes being in the same

locations over time. Therefore, new types of approximations are necessary before this

dynamic programming approach can be utilized with mobile sensor networks.

13

1.3 Contributions

The main contributions of our work are the extension of this dynamic programming

approach to mobile sensor networks, and the development of new approximations

that are appropriate for mobile sensors. We model a mobile sensor network as a

series of static networks. With each time slice consisting of a static network of vir-

tual sensor nodes that represent the potential sites that the real mobile sensors can

occupy during the next time step. We then utilize a slightly modified version of the

dynamic programming approach from [27] to identify the ideal subset of virtual sen-

sor nodes that the real sensor nodes should occupy at the next time step. Where

the ideal subset consists of those locations that optimally balance the informational

value of the measurements with the cost of moving our sensors to those locations.

Our primary contribution is the development of two approximation algorithms that

provide tractable solutions to this dynamic program even in the case of mobile sensor

networks.

In Section 5.2.2 we present our decoupled multistep algorithm. This approxima-

tion reduces the complexity of the solution to being linear in the number of sensors.

It also has the advantage of facilitating a decentralized distributed implementation.

However, this approximation tends to overestimate the informational value of mea-

surements, which tends to result in less efficient solutions.

In Section 5.2.3 we present our greedy multistep algorithm which relies on the

key insight that we can greedily select entire paths of sensor locations rather than

just greedily selecting individual sensor placements. The complexity of this greedy

multistep algorithm grows as the square of the number of sensors. Therefore it is only

slightly more computationally intensive than the decoupled algorithm, but has much

better theoretical motivation and performs better in simulation.

Alternate approaches typically reduce the complexity by addressing only part of

the problems our algorithms address. For example there are many information only

based solutions that neglect to address cost constrained optimization at all. Others

tackle the cost constrained sensor placement problem but do so only for static sensor

14

networks, and thus don’t deal with the complexity of planning over a fixed time

horizon. Those that do solve a bounded cost sensor placement problem typically

suffer from severe restrictions, like only being able to plan for two or three steps

ahead. Recent work in [24] presents a bounded cost path planning algorithm for

data collection for spatial estimation applications. Their work is based on a recursive

greedy algorithm [5] that recursively subdivides the measurement paths and greedily

optimizes over the subpaths. Comparisons between our approach and other leading

solutions are presented with the related work in Chapter 3.

We fully implemented each of our algorithms in a simulation of a tracking exercise

with a team of autonomous kayaks. We demonstrate that our approach performs

nearly as well as the optimal for a single step case where the optimal solution can

be found explicitly. We also show that our multistep algorithms are able to achieve

equivalent or better performance at a lower cost than purely information based, or

myopic single step approaches.

1.4 Outline

This thesis will be organized as follows. Chapter 2 discusses optimal sensing in

static and mobile networks, along with concepts for determining measurement quality,

handling bounded costs, and creating multistep plans. Chapter 3 presents some of the

related work and work that influenced our current approach. Chapter 4 shows how we

chose to model and formulate our particular tracking problem and the estimators that

we use. Chapter 5 presents the dynamic programming approach we employ along with

the approximation algorithms we developed to provide tractable solutions. Chapter

6 explains our particular implementation and MATLAB simulations. Also the results

and analysis of the simulations are discussed.

15

16

Chapter 2

Optimal Sensing

Optimal sensing is the problem of choosing which measurements should be taken

such that the most accurate estimate is obtained. The nature of the measurement

selection problem takes on a variety of forms. It could be selecting the locations of

the sensors, selecting which subset of a larger set of sensors to utilize, or selecting

when the sensors should take measurements, to name a few possibilities.

Solving the optimal sensing problem is important to any real sensor network. In

the worst case the network will fail completely because it is unable to acquire the

information needed to achieve its purpose. This could be from egregious errors like

holes in the coverage or from more subtle errors because there is insufficient data

to find an accurate or unique solution to the estimation problem. Even in the best

case, if the optimal sensing problem isn’t solved then the sensor network may be

functioning but it will be doing so inefficiently. This could be because too much

data is being collected. So energy and resources are being consumed collecting and

processing redundant information. So an equally accurate estimate could be obtained

at a much lower cost. On the other hand the network may be functioning far below

its potential because a more optimal utilization of the same sensors and resources

could produce a much more accurate estimate.

Before looking at solutions to this problem it will be useful to look more closely

at the structure of sensor networks and what the criteria are for determining the

optimality of a given network deployment.

17

2.1 Types of Sensor Networks

Sensor networks can be characterized in numerous ways based on their structure and

capabilities. Distinctions are most frequently based on the number and capability of

the individual nodes. On one extreme a “network” might consist of a single node

that is very complex and highly capable. The various rovers sent to explore other

planets are a prime example of this approach. On the other extreme a network might

consist of thousands of tiny nodes with minimal capabilities. This type of network

was popularized by the Smart Dust project at Berkeley [25, 20]. One can imagine such

a network being used for environmental monitoring to track changes in temperature

or on a battlefield to measure vibrations from intruders. Often it is the case that

the capabilities of the individual nodes is inversely proportional to the number of

nodes in the network. Each of these design decisions provides different advantages

and disadvantages for sensing applications.

2.1.1 Smart vs. Dumb Sensors

The capabilities of an individual node usually fit into one of four areas: sensing,

communication, computation, and actuation. By definition most sensors nodes will

have the first three capabilities in some form, though it may be severely diminished.

An object that is capable actuation to move around or manipulate its environment is

usually considered to be a robot rather than a sensor node. For our purposes we will

treat such multi-robot systems within the sensor network framework. So actuation is

simply viewed as a capability that aids the sensor node in obtaining measurements.

A smart sensor would be one that has superior function in some or all of these areas,

and a dumb sensor would be one that has the minimal function necessary or is missing

some of these capabilities completely.

Each of these capabilities will significantly influence the structure and solution to

the optimal sensor placement problem. The design of a sensor network must consider

the trade off between accomplishing its goals with smart sensors vs. dumb sensors.

There are obviously exceptions but generally the trade off is between using a small

18

number of more capable smart sensors or using a larger number of less capable dumb

sensors. Smarter sensors could take more accurate measurements or do so at longer

ranges. A smart node may have multiple sensors or more complex sensors that provide

information that can’t be obtained via simpler methods. They could communicate

at higher data rates or over longer distances. They may be able to leverage greater

computation to perform adaptive processing or data fusion in the network before

sending the data back. Actuation may allow them to move to obtain more accurate

measurements.

However, all of these capabilities of smart nodes come with costs. The nodes

themselves will have higher material costs. They will generally be larger in size and

weight. Their greater complexity increases the risk of something breaking or failing.

They will also consume more energy which limits the lifetime or range of the network.

All of these costs tend to limit the size of a sensor network consisting of smart nodes.

A great deal of recent work has focused on moving in the other direction. Namely

using dumb nodes in larger numbers to achieve the same purpose. These nodes

generally have no actuation. They have simple sensors that are less accurate and

may only provide a few bits of data. Their communication abilities are limited and

usually rely on multihop communication to send information through their immediate

neighbors. They may only have enough computational power to manage the sensor

and communications hardware.

These networks with dumb sensors make up for their limited capabilities with

their size and numbers. These nodes can be very small and cheap. Their size and

cost allows them to be deployed in large numbers. The network can compensate for

sensing, communication, and mechanical failures through redundancy. However, a

large network has new problems. Wireless communications take place over the same

channel so self interference can severely constrain the bandwidth available within

the network. Recharging or replacing batteries can be difficult because of the number

and locations of nodes. So they often must operate under severe energy constraints to

maintain a useful lifetime for the network. These variations in sensor node capabilities

strongly influence the optimal sensor placement problem. For example a large network

19

of dumb sensors may have more nodes than it is feasible to process data for. Too

many measurements could overwhelm the bandwidth or the computational capacity

of the network. In an energy constrained network using all the sensors at once may

significantly reduce the lifespan of the network. So the optimal sensing problem is to

select the optimal set of sensors to activate at a given time. In another application

utilizing smarter sensor nodes, the estimate might be very sensitive to the precise

location of the nodes. So optimal sensing problem in this case is primarily concerned

with where the nodes should be deployed.

2.1.2 Static vs. Mobile Sensors

In this thesis we focus on an approximate solution to the optimal sensor placement

problem for mobile sensor nodes. Most of the work on sensor placement has focused

on static sensor networks. Making the jump from static to mobile sensor networks

brings several advantages but also introduces several complications.

The two most significant advantages that mobility provides are the ability to han-

dle dynamic situations, and to get the same work done with fewer nodes. Most of

the phenomena that one would be interested in measuring via a sensor network are

dynamic. They change over time and space. The usual remedy is to overcompensate

and use more nodes than are needed so that unforeseen situations can be handled.

Even more challenging for a static network are cases where the initial conditions are

unknown. This is the norm for many military operations or search and rescue situa-

tions. In each case the environment may be new and foreign or may be undergoing

significant changes. Mobile sensor nodes can move quickly to accommodate the un-

known or dynamic elements of the environment or the phenomenon that is being

measured.

Fewer mobile sensors can accomplish the same work as a larger group of static

sensors for several reasons. First as mentioned above there is less need to overcom-

pensate for the unknown. Rather than making sure all possibilities are covered, it is

often sufficient to ensure that they can be covered by moving the necessary nodes.

The following paradigm, which we use in our algorithmic development later, will help

20

illustrate another way a mobile node can often accomplish the work of multiple static

nodes. A mobile sensor network can be viewed as if it is a static sensor network

consisting of a large number of inactive virtual nodes. These virtual nodes represent

all of the locations to which a real mobile node can potentially move. A virtual node

is activated when a real node moves to that location and takes a measurement. In

this paradigm it is easy to see that in many situations a single mobile node can col-

lect the same data that a large group of static nodes would by periodically sampling

the same locations the static nodes would occupy. This is particularly useful when

the sampling rate is slow or in situations where a sensor is particularly complex or

expensive and it simply isn’t feasible to have a large number of them. Also in some

situations a static network may interfere with the regular use of a space. Imagine

a busy harbor patrolled by a single unmanned vehicle instead of hundreds of buoys

floating around interfering with traffic.

Two of the main trade offs of utilizing mobile sensors are energy requirements

and computational complexity. Using mobile nodes allows a network to use fewer

nodes and to be more versatile and responsive to changes, but these benefits are paid

for with increased energy or fuel requirements. The amount of energy used to move

a sensor node will generally be orders of magnitude more than what is required for

sensing, computation, and communications. This means that mobile nodes will need

to recharge or refuel much more frequently than static nodes. Many current motes

that are used in static sensor networks may last years on a single charge. But most

mobile platforms would need to recharge in hours or days.

Mobility can also dramatically increase the computational requirements of the net-

work, even if only the sensor placement problem is considered. With a static network

the placement is determined when the nodes are deployed, so the problem only needs

to be solved once. Returning to the paradigm of a mobile network consisting of snap-

shots of static networks, each time step can be thought of as a deployment of a static

network. So not only does a mobile sensor network need to solve the problem many

times, it needs to do it quickly enough to act on the solution and implement it before

the next time step. Because of the computational complexity most work in optimal

21

sensor placement has focused on the simpler case of deploying static networks.

2.2 Measurement Quality

Optimal sensor locations cannot be found without first developing a rigorous definition

of what constitutes an optimal measurement. In general the value of the information

contained in a measurement will depend on what information is obtained from the

other measurements being taken. We will assume that we have discrete set V of

potential sensor locations. The challenge is to identify the set S ⊆ V of n sensor

locations that will provide the best possible measurements. Measurements taken

from the optimal S should provide the most accurate estimate of the object state X
that we are interested in.

2.2.1 Conditional Entropy

An intuitive and natural method of determining measurement quality is via the con-

cept of conditional entropy. Conditional entropy is a measure of the remaining un-

certainty about one random variable when conditioned on another random variable.

For our problem conditional entropy is defined as follows,

H(X|ZS) = −
∫
p(x, z) log p(x|z) dxdz, (2.1)

where X is a random variable representing the object state we would like to estimate,

and ZS is a random variable representing the measurements taken at the sites in S.

The conditional entropy is simply the entropy of our object state conditioned on the

measurements ZS .

Decreasing the entropy of X is the same as decreasing our uncertainty about the

current state. Therefore, the natural and intuitive approach would be to attempt

to choose S such that the conditional entropy H(X|ZS) is minimized. Or more

22

rigorously, the optimal set S∗ is defined as follows:

S∗ = arg min
S⊂V:|S|=n

H(X|ZS). (2.2)

Unfortunately, finding this optimal subset S∗ that minimizes the conditional entropy

has been shown to be an NP -hard problem [13]. Fortunately, several approximate

solutions have been proposed. We first present the maximum entropy criteria for

comparison, and then we present the mutual information criteria that we utilize in

our algorithms.

2.2.2 Maximum Entropy

The maximum entropy criteria is based on the concept that we should choose the set

of sensor locations that has the maximum uncertainty about each other, or formally,

S∗ = arg max
S⊂V:|S|=n

H(ZS). (2.3)

The maximum entropy criteria arises because in some special cases the maximum

entropy set will also minimize the conditional entropy of the variables of interest.

This is the case when using a subset of sensors to estimate some spatial phenomenon

over all of the uninstrumented locations in some region of interest [16]. However,

as is pointed out in [22, 16] using this maximum entropy criteria is problematic in

practice. We present the maximum entropy criteria here as a basis of comparison to

allow us to explain some of the advantages of using the related but superior mutual

information criteria.

Seeking the set of sensor locations that is maximally uncertain about each other

turns out to be an intuitive approach. We might get the most bang for the buck

by taking measurements in the places that we collectively know the least about, i.e.

where the uncertainty and entropy is the highest. This should ensure the sensors are

distributed evenly through the space and avoid situations where we have multiple

sensors collecting redundant information. However, just like finding the minimum

23

conditional entropy subset, finding the maximum entropy subset is NP -hard [13].

Approximation algorithms do exist. The most commonly used algorithm put forth

in [18, 8] uses a greedy approach to iteratively select the maximum entropy locations.

The reasoning for this approach can be seen clearly by dividing up the objective

function using the chain rule for entropy. Let Si = {s0, s1, . . . , si} be the set of

selected sensor locations at the ith iteration. Then the entropy H(ZSi) of that set of

locations can be broken down as follows:

H(ZSi) = H(Zsi|ZSi−1
) + . . .+H(Zs2|ZS1) +H(Zs1|ZS0). (2.4)

Therefore if we start with S0 = ∅, at each step we simply choose the next location

that has the highest entropy when conditioned on the set of previous measurements.

si = arg max
s

H(Zs|ZSi−1
) (2.5)

This algorithm is straightforward and distributes the sensors in a natural and

intuitive way. If we assume that sensors are most informative about the region closely

surrounding the sensor. This algorithm should tend to place sensors in locations far

apart from each other where the least information is available. This should provide

good even coverage of the space. However, in practice this can be problematic.

In Figure 2-1 an example of an experimental deployment of temperature sensors

is shown [16]. From the figure we can see that this tendency to place sensors far

apart from each other frequently results in deployments with a large portion of the

sensors along the boundaries of the region. Typically we are not interested in the

information outside the boundary or there is simply no information available (e.g. a

wall). Therefore sensors placed along the boundary are only partially utilized and in

a sense “wasted”.

This shortcoming of maximum entropy deployments is highlighted in [22] along

with some heuristics to mitigate the effect. The problem arises from the fact that

the selection criteria, namely maximizing H(ZS), only considers the selected sensor

locations. It doesn’t directly consider the state X that we want to estimate.

24

0 5 10 15 20

2
4

6
8

Figure 4: An example of placements chosen using entropy and mutual information criteria on a
subset of the temperature data from the Intel deployment. Diamonds indicate the positions chosen
using entropy; squares the positions chosen using MI.

This phenomenon has been noticed previously by Ramakrishnan et al. (2005), who proposed a
weighting heuristic. Intuitively, this problem arises because the entropy criterion is indirect: the cri-
terion only considers the entropy of the selected sensor locations, rather than considering prediction
quality over the space of interest. This indirect quality of the entropy criterion is surprising, since
the criterion was derived from the “predictive” formulation H(V \A | A) in Equation (3), which is
equivalent to maximizing H(A).

Caselton and Zidek (1984) proposed a different optimization criterion, which searches for the subset
of sensor locations that most significantly reduces the uncertainty about the estimates in the rest of
the space. More formally, we consider our space as a discrete set of locations V = S ∪U composed
of two parts: a set S of possible positions where we can place sensors, and another set U of positions
of interest, where no sensor placements are possible. The goal is to place a set of k sensors that will
give us good predictions at all uninstrumented locations V \ A. Specifically, we want to find

A∗ = argmaxA⊆S:|A|=k H(XV\A)−H(XV\A | XA), (6)

that is, the set A∗ that maximally reduces the entropy over the rest of the space V \ A∗. Note that
this criterion H(XV\A)−H(XV\A | XA) is equivalent to finding the set that maximizes the mutual
information I(XA;XV\A) between the locations A and the rest of the space V \ A. In their follow-
up work, Caselton et al. (1992) and Zidek et al. (2000), argue against the use of mutual information
in a setting where the entropy H(XA) in the observed locations constitutes a significant part of the
total uncertainty H(XV). Caselton et al. (1992) also argue that, in order to compute MI(A), one
needs an accurate model of P (XV). Since then, the entropy criterion has been dominantly used
as a placement criterion. Nowadays however, the estimation of complex nonstationary models for
P (XV), as well as computational aspects, are very well understood and handled. Furthermore, we
show empirically, that even in the sensor selection case, mutual information outperforms entropy on
several practical placement problems.

8

Figure 2-1: Two different deployments of sensor nodes in the same environment. The
diamonds are for the maximum entropy based deployment and the squares are for
the mutual information based deployment. Figure originally from [16].

2.2.3 Mutual Information Metric

Mutual information is a related metric that overcomes some of the shortcomings of

using maximum entropy [4, 14]. Mutual information between the object state X and

the measurements ZS is defined as the expected reduction in entropy of the object

state X when conditioned on the measurements ZS . Or formally mutual information

is defined as follows:

I(X ;ZS) = H(X)−H(X|ZS). (2.6)

Recall, from Equation (2.2) that our goal is to minimize the conditional entropy

H(X|ZS). Since the first term in Equation (2.6) is independent of the measurements

ZS , selecting the set S∗ that minimizes H(X|ZS), is the same set that will maximize

the mutual information I(X ;ZS) [10]. So we want to select the set of sensors that

maximize the mutual information between the measurements and the object state we

25

are trying to estimate, or specifically,

S∗ = arg max
S⊂V:|S|=n

I(X ;ZS) (2.7)

= arg max
S⊂V:|S|=n

H(X)−H(X|ZS). (2.8)

As can be seen in Figure 2-1 using mutual information as the selection criteria

leads to a more reasonable uniform distribution throughout the interior of the space.

This way each sensor is fully utilized and we don’t end up wasting sensing capacity

along the boundaries. This is because mutual information is directly related to the

estimate of the object state X . Whereas the maximum entropy selection criteria in

Equation (2.5) ended up only focusing on the entropy of the actual measurement

sites. This only indirectly affects the entropy of the object state X .

Mutual information is an ideal metric for our sensor placement problem, because

it results in minimizing the conditional entropy of our object state. However, it still

poses challenges to use in practice. One of the challenges is the need to have a good

model for P (X), which is needed for the entropy calculations. We utilize a particle

filter, as described in Section 4.2, for this purpose. Second, like maximum entropy,

finding a set of sensor locations that optimizes mutual information has been shown

to be an NP -hard problem [13, 14].

Approximation Algorithm

In addition to having a performance advantage over other metrics, mutual information

also has several nice mathematical properties that have aided in developing approx-

imation algorithms with good provable bounds on performance. We will cover some

of these properties here and introduce a simple approximation algorithm that we will

build off in our solution to the mobile sensor tracking problem. The algorithms will

be discussed in more rigorous detail in Chapter 5 .

Recently research [11, 14] points out that mutual information has the desirable

property of being submodular and monotonic which allows us to use a greedy algo-

rithm that is a (1 − 1/e)OPT approximation. In simple terms the approximation

26

algorithm says we should sequentially select the sensors. At each stage choosing the

sensor that has the highest mutual information given the previously selected sensors.

So at each stage we would select,

si = arg max
s

I(X ;Zs|ZSi−1
) (2.9)

= arg max
s

H(X|ZSi−1
)−H(X|ZSi−1

,Zs) (2.10)

= arg max
s

H(Zs|ZSi−1
)−H(Zs|X ,ZSi−1

) (2.11)

= arg max
s

H(Zs|ZSi−1
)−H(Zs|X), (2.12)

where we have removed the conditioning on the measurements from the other sensors

ZSi−1
from the second term in Equation (2.12) because we make the conservative

assumption that the measurements are independent when conditioned on the object

state X [27].

Comparing Equation (2.12) with the selection criteria for greedy maximum en-

tropy algorithm in Equation (2.5) we see that the mutual information criteria contains

the same term, H(Zs|ZSi−1
), which was the sole consideration of the maximum en-

tropy criteria. As previously stated, maximizing this term will tend to favor sensors

which are far apart and have high entropy with regard to one another. Notice in

Equation (2.12) that the mutual information algorithm contains an additional term,

H(Zs|X). In order to maximize mutual information we will want to minimize this

second term in Equation (2.12). Because of the conditioning on X , minimizing this

term will tend to favor sensors that are informative about our object state X . So

maximizing mutual information involves the delicate balance of selecting sensors that

have information about the object state but don’t share information in common with

the other previously selected sensor locations. As can be seen in Figure 2-1 this

second term helps avoid the problem of pushing all the sensors to the boundaries

that maximum entropy suffers from, and is what can give mutual information based

deployments performance advantages in practice.

In [19] it was shown that a greedy selection algorithm like the one above will be at

27

0 10 20 30 40
0

5

10

15

20

25

Number of sensors placed

M
ut

ua
l i

nf
or

m
at

io
n

(a) Temperature data

0 50 100 150
0

5

10

15

20

25

Number of sensors placed

M
ut

ua
l i

nf
or

m
at

io
n

(b) Precipitation data

Figure 6: Mutual information of greedy sets of increasing size. It can be seen that clearly mutual in-
formation is not monotonic. MI is monotonic, however, in the initial part of the curve corresponding
to small placements. This allows us to prove approximate monotonicity.

“diminishing returns”: adding a sensor y when we only have a small set of sensorsA gives us more
advantage than adding y to a larger set of sensors A′. Using the “information never hurts” bound,
H(y | A) ≥ H(y | A∪B) (Cover and Thomas, 1991), note that our greedy update rule maximizing
H(y | A)−H(y | Ā) implies

MI(A′ ∪ y)−MI(A′) ≤ MI(A ∪ y)−MI(A),

wheneverA ⊆ A′, i.e., adding y toA helps more than adding y toA′. Hence we have shown:

Lemma 3 The set function A 7→ MI(A) is submodular.

A submodular set function F is called monotonic if F (A ∪ y) ≥ F (A) for y ∈ V . For such
functions, Nemhauser et al. (1978) prove the following fundamental result:

Theorem 4 (Nemhauser et al., 1978) Let F be a monotone submodular set function over a finite
ground set V with F (∅) = 0. Let AG be the set of the first k elements chosen by the greedy
algorithm, and let OPT = maxA⊂V,|A|=k F (A). Then

F (AG) ≥
(
1−

(
k − 1

k

)k
)
OPT ≥ (1− 1/e)OPT .

Hence the greedy algorithm guarantees a performance guarantee of (1− 1/e)OPT, where OPT is
the value of the optimal subset of size k. This greedy algorithm is defined by selecting in each step
the element y∗ = argmaxy F (A ∪ y) − F (A). This is exactly the algorithm we proposed in the
previous section for optimizing sensor placements (Algorithm 1).

Clearly, MI(∅) = I(∅;V) = 0, as required by Theorem 4. However, the monotonicity of mutual
information is not apparent. Since MI(V) = I(V, ∅) = 0, the objective function will increase and
then decrease, and, thus, is not monotonic, as shown in Figures 6(a) and 6(b). Fortunately, the proof
of Nemhauser et al. (1978) does not use monotonicity for all possible sets, it is sufficient to prove
that MI is monotonic for all sets of size up to 2k. Intuitively, mutual information is not monotonic

11

Figure 2-2: Mutual information as a function of the number of sensors placed in the
example deployment from Figure 2-1. Figure originally from [16].

least (1− 1/e)OPT if the objective function is monotonic and submodular. In order

to show monotonicity and submodularity for this formulation we will rely on the well

known “information never hurts” property of entropy, which states that the entropy

of A will never increase given we observe some variable B. More formally we have

H(A|B) ≤ H(A) [7].

For monotonicity we must show that I(X ;Zs|ZSi−1
) ≥ 0, ∀s. Utilizing the “infor-

mation never hurts” property we know,

I(X ;Zs|ZSi−1
) = H(X|ZSi−1

)−H(X|ZSi−1
,Zs) ≥ 0. (2.13)

Therefore, each time we add an additional sensor, we will add a nonnegative quantity

of information and thus our mutual information metric will be monotonic. This seems

straightforward and obvious, but care should be taken to ensure monotonicity because

other formulations can result in mutual information metrics that won’t always increase

monotonically.

A common example can be found in [16] where they are utilizing a set of sensor

nodes S to estimate a spatial phenomenon over the uninstrumented locations V\S. So

they are concerned with the mutual information between the instrumented locations

and the uninstrumented locations, I(V \ S;S). In this scenario, each time a sensor

s is added to S, it is also removed from V \ S. This results in a mutual information

28

function that grows like the one shown in Figure 2-2. Clearly mutual information is

not monotonic in this case. However, in [16] they show that as long as the deployment

of sensors is small enough mutual information can be considered monotonic (e.g. the

first half of the plot in Figure 2-2).

Submodularity is informally the same concept as that of diminishing returns. For

a submodular set function, the increase from adding an additional member to the set

will be inversely proportional to the size of the set. So if we have two sets of sensors

S and S ′ where S ⊆ S ′. Then we should gain more information by adding a sensor

s to S than we would if we add it to S ′. In general mutual information will not be

a submodular function, but under the previously stated assumption that measure-

ments are conditionally independent given the object state, it has been shown that

mutual information will be submodular [11, 14]. Since mutual information satisfies

the requirements of monotonicity and submodularity [19], the greedy approximation

can be guaranteed to be within (1− 1/e)OPT or approximately 63% of the optimal

deployment.

2.3 Measurement Costs

Up to this point we have only considered one side of the sensor selection problem,

that of choosing the most informative sensor locations. However, if this is all that

is considered there is an implicit assumption that all of those measurements can be

obtained for the same cost. For some applications this may essentially hold true, but

can’t be assumed to be true in general. In most cases differing costs will be incurred

to take and process different measurement. There are computational costs for signal

processing, etc. There are communication costs incurred to transmit the data for

processing and reporting. And in mobile sensor networks there is a significant cost

incurred to move the sensing platform. In static networks the communications cost

are usually orders of magnitude higher than the cost of computation [21, 20]. In which

case it is standard to only focus on the most significant cost and ignore the others. In

this work we are primarily focusing on utilizing mobile nodes in a tracking exercise.

29

Since the energy required for mobility is significantly higher than that required for

communications or computation we will focus solely on the cost of movement.

If movement costs were ignored then the solution to our tracking scenario would be

to move all sensors as close as possible to the target being tracked. This is obviously

a waste and would reduce the effectiveness of the sensor network. In a tracking

scenario these costs could be time or energy. If it takes too long to get to a specific

location then the opportunity to get the needed measurement will be lost. Naturally

moving around unnecessarily will also waste energy or fuel and limit the lifetime of

the network. Typically there will be a clear constraint on costs that a robot or sensor

platform can incur. It may be limited by amount of energy in its battery, it may be

limited by the total distance it can travel, or by the amount of time it has to finish

the tasks. We will attempt to solve the challenge of selecting the most informative

locations for the mobile sensors while subject to these constraints on the cost of

moving. The specific modeling of costs and problem formulation will be discussed in

Chapter 4.

2.4 Multistep Planning

There are several approaches to planning the movements of these mobile sensors. One

method which we will look at would be to take a myopic solution that only considers

the next time step. This can be done in a straightforward manner by treating the

next time step as a deployment of a static network and simply deploying the nodes

optimally according to the current conditions. This approach can directly leverage

some of the previously mentioned greedy algorithms with little modification.

These myopic approaches can be problematic for a mobile sensor network, par-

ticularly when cost constraints are also being considered. As previously mentioned

a mobile sensor network is typically more sparsely distributed and relies on mobility

to provide adequate coverage. If we only consider the next time step a node will

usually find that moving will incur a cost and no beneficial information is gained, so

the optimal thing to do is to sit still. So there will be a bias towards doing nothing

30

and the network can fail to accomplish its goals.

Planning ahead is meant to remedy this by identifying opportunities where moving

early on will incur some cost that is offset by obtaining information we need later

on. We will plan ahead over a fixed time horizon by using an approximate dynamic

programming approach that builds off of work done for static networks in [26, 27].

Unfortunately, in its pure form the dynamic program is intractable. The complexity

grows exponentially in the number of nodes and in the length of the time horizon. So

even for a small number of nodes and a very short planning horizon the computation

will take too long for it to be actionable in a tracking exercise. In the original work in

[27] the structure of the problem is slightly different than ours. They were selecting

which subset of sensors to activate in a static network, and they were also selecting

a leader node for data fusion and processing. Approximations were introduced that

rely on the static nature of the network and the structure of the leader node selection

problem to prune down the possible plans, making the problem tractable. However,

these approximations are not applicable without the structure of the leader node

selection or if the nodes are moving. Our main contributions are new approximations

to this dynamic program that are appropriate for our mobile sensor network problem.

The key insight is to utilize a greedy selection over whole paths instead of individual

locations.

31

32

Chapter 3

Related Work

Our contributions in this thesis build off of several recent developments in the sensor

network and tracking communities. Here we will highlight related work, in particular

those contributions that provide the framework for the algorithms we developed for

the mobile sensor tracking problem. We look at work loosely organized into three

areas that are critical for the problem of tracking with mobile sensors, namely sensor

management, bounded costs, and planning.

3.1 Information Theoretic Sensor Management

Recent improvements in power efficiency, miniaturization, and computation have been

mirrored by increased interest and research on sensor networks and sensor manage-

ment. A great deal of work has been done on optimal sensor placement in static sensor

networks. As previously discussed most of the information theoretic metrics, such as

conditional entropy and mutual information, lead to NP -hard optimization problems.

That is why even though information theoretic approaches to sensor placement are

popular, they have consisted of mostly greedy approaches and heuristics.

Guestrin and Krause [11, 14] were the first to present an elegant greedy algorithm

for the sensor selection problem with nice provable bounds. As discussed in Section

2.2.3, they were able to utilize the submodularity of mutual information to show that

their simple greedy selection will be at least (1 − 1/e) times the optimal. However,

33

this greedy algorithm doesn’t automatically extend to the case where we do multistep

look ahead planning like we would for tracking with mobile sensors. We developed

a modified version of this greedy algorithm that works appropriately with mobile

sensors and while planning over a finite time horizon.

Hoffmann and Tomlin [12] present a mutual information based algorithm for mo-

bile sensors that utilizes particle filters to avoid dependence on Gaussian assumptions

or extended Kalman filters. They mitigate the complexity by only considering single

node and pairwise node mutual information calculations. This is the same as implic-

itly assuming the sensor measurements have zero mutual information between each

other and thus can operate independently of each other. This can allow the network

to function in a distributed rather than a centralized fashion and will scale well. This

is one assumption that we consider and implement in our simulation for comparison.

3.2 Bounded Cost Optimizations

Much of the work in information based sensor management tends to neglect the issue

of cost and focuses on optimizing for information only. For tracking with mobile

sensors, the movement costs must be considered if the results are going to be feasible

in practice.

Zhao et al. [29] discusses a variety of different information based metrics for use

in tracking in static sensor networks. They propose a distributed algorithm where

each node chooses which of its neighbors to hand off to based on local estimates of in-

formation utility. They do acknowledge the costs of communication and computation

but the costs are not addressed directly in their formulation.

Krause and Guestrin [15] extended their previous work to also consider commu-

nication costs while solving for optimal sensor placements for a static network. They

present a clustering algorithm that utilizes their greedy algorithm and then optimizes

costs of over the clusters. They prove that they can achieve similar bounds under

this cost constrained scenario as well.

Williams and Fisher [26, 27] develop an approximate dynamic programming ap-

34

proach to solve the constrained cost sensor management problem. They develop a

dynamic program that allows the information utility and communications costs bud-

get to be broken down and optimized on a per-stage basis. Interestingly this also

provides a solution to the dual problem of having a fixed estimation quality require-

ment and then optimizing the costs while subject to that requirement. In its standard

form the dynamic program is intractable. In addition to the choosing which sensors

to activate at each time step, they also select a leader node for data fusion and

processing. The authors introduce an approximation that prunes down the possible

plans to make the problem more tractable. However, this pruning technique relies on

the particular structure of the leader node selection problem and the static nature of

the network, and therefore doesn’t carry over to our mobile sensor network scenario.

They demonstrate their algorithm with a specific implementation in a tracking exer-

cise. We also use a dynamic programming approach for our tracking problem that

builds directly off of their work.

3.3 Finite Horizon Planning

There are obvious advantages to being able to do look ahead planning in sensor net-

work management. However, the computation costs are generally prohibitive because

the problem grows quickly with the number of sensors and the length of the time

horizon that we are planning over. So even for a small number of sensors and even

two or three steps ahead the amount of computation can be prohibitive.

Chhetri et al. [6] propose a solution for sensor scheduling in a tracking problem.

They suggest using a brute force approach to examine all of the possible plans. The

experiments only extend from one to three time steps ahead.

Roy and Earnest [23] suggest a mutual information based approach to search for

a target with mobile sensors. They develop a method for creating a multistep look

ahead plan by clustering over the particles in a particle filter and attempting to find

the most informative path over those clusters.

As mentioned previously Williams and Fisher [26, 27] propose utilizing a dynamic

35

programming approach which allows them to create a sensor management plan over a

finite time horizon. The approximations they developed allow them to plan over much

longer horizons. They show experiments with plans extending over 60 time steps. In

[26, 28] they also extend some of the performance guarantees developed by Guestrin

and Krause in [14] to sequential planning problems. One of the approximations is

to utilize a greedy sensor subset selection at each time step. However, as we discuss

in Chapter 5 this tends to be less than ideal when planning motion paths for mobile

sensors. We seek methods that optimize over the paths rather than doing greedy

optimizations at each time step.

Singh et al. [24] extends the work of Chekuri and Pal [5] to the multi-robot

path planning domain. They present an algorithm for finding the most informative

paths for a multi-robot team subject to bounded path costs. They demonstrate their

algorithm with experiments carried out for lake and river monitoring. This is one of

the few works that like us tries to find the most informative paths for a set of mobile

sensors while being subject cost constraints. They accomplish this by recursively

breaking down the paths and optimizing over the subpaths. They choose to take

an offline planning approach. For Gaussian models the mutual information only

depends on the covariance and therefore can be calculated offline. So the complete

plan is produced ahead of time and then carried out. This offline approach isn’t

appropriate for a tracking exercise because of the dynamics of the object being tracked

are unknown.

3.4 Comparison With Our Work

The goal of our work is to create real time plans for the most informative paths

for a set of mobile nodes to follow while subject to a fixed budget for path costs.

The work by Singh et al. [24] is the only one of the related works that attempts

to take on almost all of the same challenges in terms of mobility, cost constraints,

look ahead planning, and information theoretic objectives. However, we are taking

on a tracking problem which poses a different set of challenges, and as such we have

36

a different structure. In Chapter 4 we will present our formulation of the tracking

problem. Then in Chapter 5 we present the dynamic programming structure that

we use, which closely follows the work of Williams and Fisher [27]. We also present

several greedy approximations that build off of the greedy sensor selection algorithm

and bounds developed by Guestrin and Krause [11, 14, 16].

37

38

Chapter 4

Problem Formulation

Here we will present the particular problem formulation we will use for object tracking

with mobile sensor nodes. It should be noted that our algorithms are generally

applicable to estimation problems that employ mobile sensors, and don’t depend on

the specific structure or features of tracking or this particular formulation. We wish

to present a concrete formulation now to aid in clarity and understanding as we

present our algorithms, and for use in the simulation presented in Chapter 6. Our

contributions in this thesis are an extension of the work done in [26, 27]. As such, we

utilize the same formulation for object dynamics, sensor modeling, and the particle

filter estimator as that found in [27]. The primary distinction in problem structure

being that they utilize a communication constrained static sensor network and we will

use motion constrained mobile sensor nodes, which will require the use of different

approximations in the algorithms presented in Chapter 5.

4.1 Modeling

4.1.1 Target Object Model

Our goal is to utilize the mobile sensor network to create and maintain an estimate of

the current state of the object being tracked. Let xk ∈ X be the state of the object

being tracked at time k. For our specific experiments in this thesis we will track the

39

position and velocity in two dimensions of the target object, i.e. xk = [px vx py vy]
T .

Velocity of the object is modeled as a random walk with constant diffusion strength

q. Positions are simply the integral of the velocities. It is assumed that the object

dynamics progess according to a linear Gaussian model, as follows:

xk+1 = Fxk +wk (4.1)

where wk ∼ N{wk; 0,Q}1 is a Gaussian white noise process, and F and Q are known

matrices. If we let T be the sampling interval, then our discrete-time model defines

these matrices as follows [17]:

F =




1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




Q = q




T 3

3
T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2
T



. (4.2)

4.1.2 Sensor Model

We will now define the measurement model used for our mobile sensor network. Let

S = {1, 2, . . . , Ns} be the set of Ns mobile sensor nodes. Let zsk be a measurement

taken at time k from sensor s ∈ S. Then the measurement model for sensor s is

zsk = h(xk, s) + vsk (4.3)

where vsk ∼ N{vsk; 0,Rs} is a Gaussian white noise process. Also vsk is independent

of wk and vjk for j 6= s. Each sensor has a known noise covariance Rs. For the exper-

iments in this thesis we use range measurements, represented by a known nonlinear

function h(·, s), for each sensor s. We define h(·, s) as follows:

h(xk, s) =
a

‖Lxk − ysk‖22 + b
. (4.4)

1We use the notation x ∼ N{x;µ,P} to indicate that the x is normally distributed, that is
p(x) = N{x;µ,P} = |2πP|−1/2 exp{−1/2(x− µ)TP−1(x− µ)}

40

The terms a and b can be adjusted to model the specific SNR (signal to noise ratio) of

each sensor s, and the rate at which SNR decreases with distance. The ‖Lxk − ysk‖22
expression accounts for the actual distance from the sensor to the target object being

tracked. The first term Lxk represents the position of the target at time k, where L

is simply the matrix that selects the target object’s position from the object’s state

xk. The second term ysk represents the position of sensor s at time k.

While the nonlinear measurement model is used to form the actual estimates, we

utilize a simplified linear approximation during the planning process. Specifically

the linearized model is only used to estimate the expected information gain. When

the actual measurements are taken, precise inference is implemented via a particle

filter as described in Section 4.2. While we don’t rely on any specific structure of

the measurement model, we do assume that it is sufficiently smooth that it can be

approximated around a nominal point x0 with a Taylor series expansion as follows:

zsk ≈ h(x0, s) + Hs(x0)(xk − x0) + vsk (4.5)

Hs(x0) = ∇xh(x, s)|x=x0 . (4.6)

For the specific range measurement in Equation (4.4) that we use in our experiments

the linearization will be:

H(x0) =
−2a

(‖Lx0 − ysk‖22 + b)2
(Lx0 − ysk)TL. (4.7)

As discussed in Chapter 5 this linear approximation will allow for a simplification to

the planning algorithm for future sensor paths.

4.1.3 Cost Model

Our algorithm is indifferent to the specific type of costs, but we do assume that there

is some cost associated with taking each measurement. That cost could be the time

to acquire the data, the energy or bandwidth to communicate the measurements, the

computational costs of processing the data, or in our case the cost of moving a sensor

41

node. We limit ourselves to movement costs because the energy expenditures for

moving sensor nodes will be much higher than the energy required for computation

and communications. Also it is directly related to the placement of mobile sensors

which is the problem we are primarily interested in.

At each time step we have Ns mobile sensors that will need to be placed. As

previously mentioned, at any moment we can take a snapshot of our mobile sensor

network, and we can treat it as a static network consisting of real and virtual sensor

nodes. The real nodes represent the current locations of our mobile sensing platforms.

For each real sensor node sk we create a discrete set of Nv virtual nodes Vsk+1 repre-

senting all of the possible locations that the real sensor sk can go to at the next time

step k + 1. Obviously the locations in Vsk+1 will be constrained by the nature of the

mobile sensor node and the controls available to it and the current location of sk at

time k. Our solution relies on a discrete dynamic programming approach and thus

we require the Vsk+1 be a finite discrete set of locations.

For our simulations we chose to discretize the space in a uniform hexagonal grid.

Therefore at each time step a node sk can choose to remain at its current location or

to move to one of its six neighboring virtual nodes arranged in a hexagonal grid. Thus

for our simulations Vsk+1 consisted of Nv = 7 locations, representing the six nearest

neighbors of sk on the hexagonal grid and the current location of sk (representing the

control choice to stand still).

We assume that the energy cost Cs
k of moving a node sk to its current location ysk

at time k from its previous location ysk−1 at time k− 1 is proportional to the distance

between the two locations, specifically

Cs
k ∝ ‖ysk − ysk−1‖2 (4.8)

where ysk is constrained to be the location of one of the virtual nodes in Vsk , i.e. the

virtual nodes in the neighborhood of sk−1. Note that this implies that the cost of

remaining in the same place will be zero. In our planning algorithm we will also be

interested in costs over paths of virtual nodes. We assume that the path costs are

42

likewise proportional to the length of the path and therefore simply equal to the sum

of the costs of the individual segments.

Other more complex cost structures could also be used. For example there may be

different amounts of energy required when changing direction or starting and stopping.

Or perhaps, communication costs will be significant when compared to mobility costs,

or they could be highly sensitive to node to node distances. So a weighted sum of

the movement and communication costs could be used. However, the structure of the

solution would be the same. The only requirement is that we need to be able assign

some cost to each discrete move. While it is true that the structure may not change,

the complexity could change because considering additional costs can increases the

number of options that must be evaluated at each stage.

4.2 Tracking Estimator

Our planning algorithm for sensor placement uses mutual information as the objective

function, and therefore is not dependent on the specific estimator that the measure-

ments are fed to. A variety of estimators could be used that would perform better

by having the optimal set of measurements in terms of mutual information. For our

tracking simulations we chose to use a particle filter to form our estimate of the object

state of the target. A particle filter is particularly appropriate for this application.

The fact that each individual sensor only focuses on its local region and each has a

nonlinear measurement model as described in Equation (4.4) can result in significant

multimodality. A particle filter estimator is well suited to handle such multimodal

behavior.

While the algorithms are not dependent on this particular estimator, we present

the specific details of our implementation for completeness and clarity. Let the con-

ditional pdf of the target object state xk conditioned on the previous measurements

z0:k received up to and including the time k be denoted as p(xk|z0:k). Then we

43

approximate p(xk|z0:k) with a set of Np weighted samples (or particles) as follows:

p(xk|z0:k) ≈
Np∑

i=1

wikδ(xk − xik). (4.9)

Next we want to infer what this pdf will be at the next time step. Specifically, we

want to calculate p(xk+1|z0:k+1). This is accomplished with the standard Sequential

Importance Sampling (SIS) algorithm [1] with resampling at each time step. This

algorithm prescribes how to produce a new sample xk+1 for time k + 1 for each of

the current samples xik. We get xk+1 by sampling the distribution q(xk+1|xik, zk+1),

which is obtained from the linearization of the measurement model from Equation

(4.3) for zk+1. We make the linearization around the point Fxik using Equation (4.5).

We can obtain this distribution, q(xk+1|xik, zk+1), directly using an extended Kalman

filter equations [17]. At time k + 1 we have:

p(xk+1|xik) = N (xk+1; Fx
i
k,Q). (4.10)

Then we update the distribution with the next measurement zk+1 using the extended

Kalman filter update equation to get

q(xk+1|xik, zk+1) = N (xk+1; x̂
i
k+1,P

i
k+1) (4.11)

where

x̂ik+1 = Fxik + Ki
k+1[zk+1 − h(Fxik, s)] (4.12)

Pi
k+1 = Q−Ki

k+1H
s(Fxik)Q (4.13)

Ki
k+1 = Q{Hs(Fxik)}T [Hs(Fxik)Q{Hs(Fxik)}T + Rs]−1. (4.14)

Then a new particle xik+1 is created by sampling from the distribution in Equation

44

(4.11). The weight wik+1 for the new particle is calculated using

wik+1 = cwik
p(zk+1|xik+1)p(x

i
k+1|xik)

q(xik+1|xik, zk+1)
(4.15)

where c is a constant used to normalize the weights and ensure that they sum to one

(i.e.
∑Np

i=1w
i
k+1 = 1), and

p(zk+1|xik+1) = N{zk+1;h(xik+1, s),R
s}. (4.16)

The final resulting approximation for the pdf of xk+1 conditioned on all the measure-

ments z0:k+1 is

p(xk+1|z0:k+1) ≈
Np∑

i=1

wik+1δ(xk+1 − xik+1). (4.17)

At any time we can produce a Gaussian approximation of the current estimate

of the target object’s state. This is done by producing a moment-matched Gaussian

representation of the particle distribution by calculating the mean and covariance

from the particles as follows:

µk =

Np∑

i=1

wikx
i
k (4.18)

Pk =

Np∑

i=1

wik(x
i
k − µk)(xik − µk)T . (4.19)

45

46

Chapter 5

Approximate Dynamic

Programming Algorithms

There a numerous challenges that must be addressed in order to provide a solution

to the tracking problem laid out in the previous chapter. First, there are complexity

challenges associated with the chosen objective function, namely mutual information.

For example finding an optimal subset of n sensor locations that maximizes mutual

information is an NP -complete problem [13, 14]. Second, we wish to optimize mutual

information subject to constraints on the cost. This dual optimization problem adds

to the complexity required of a solution. Third, we want a solution that provides

a plan over a multistep time horizon. This will in general significantly increase the

computational load and lead to tractability challenges.

A dynamic programming approach will very naturally accommodate the cost con-

strained optimization problem as well as the dynamic multistep planning problem

we are interested in [3]. However, this will only provide us with a structure for the

solution. In its pure form the dynamic program will not be tractable for anything

more than a few sensors even for single time step planning.

First we will present our dynamic programming approach to the tracking problem.

We follow closely the formulation for the dynamic program used in [26, 27]. Their

problem focuses on sensor selection in a communication constrained static sensor

network. Their dynamic program is designed to solve for which sensors should be

47

activated at each time step and which sensor should act as the leader node for data

fusion and processing. We make appropriate changes to reflect our use of a mobile

sensor network. We are not concerned with the leader node selection problem at all,

and we want to select a sensor location for all of our real sensors not just some subset

of them.

Next we will present our main contributions, which are some specific approxi-

mations that we developed to create a tractable solution to this dynamic program.

The approximations used for static sensor networks and for the leader node selection

problem don’t carry over to our network with mobile sensors. We will present a set

of new approximation algorithms that allow a tractable solution to this dynamic pro-

gram to be found for mobile sensor nodes. We consider two sets of approximations.

One relies on decoupling the sensor nodes and the other relies on a greedy selection

of sensor paths. We also consider multiple versions that only plan one step ahead or

that create a multistep plan over some fixed horizon of N steps.

5.1 Dynamic Programming Approach

A dynamic programming approach provides the framework to produce a plan that will

optimize the system performance according to the objective function we choose. In

order to find an efficient approximate solution to the dynamic program it is generally

useful to formulate the objective function in such a way that it can be broken down

into a per-stage cost or reward for each stage of the decision tree. Then the overall

objective function can be expressed as the sum of the per-stage costs. Additionally

we can incorporate a per-stage cost constraint term that will allow us to optimize our

objective function subject to the constraint on cost.

5.1.1 Objective Function

We will start with our previously stated objective of finding the subset of sensor

locations that will maximize mutual information. We will break this down into per-

sensor and per-stage formulations. Then we will augment this objective function

48

with our per-stage costs to produce the final augmented objective function. This

final objective function will allow us to consider for each control decision the trade off

between being rewarded with additional information and the cost incurred to obtain

that information.

First let us consider the mutual information objective for the case of a set of

sensors Sk, where the set Sk is the set of real sensor nodes at time k. As discussed

in Section 4.1.3, at the time step k − 1 every real sensor sk−1 ∈ Sk−1 will only be

allowed to move to one of the locations of the virtual nodes associated with sk−1,

specifically those in Vsk . We will use the notation sk ∈ Vsk to indicate this constraint

on the locations of sk. Then according to the discussion on mutual information in

Section 2.2 our objective at time k should be to maximize the mutual information

between the current measurements zSkk and the target object state xk conditioned on

all the previous measurements, where zSkk are the set of measurements taken from the

sensors in Sk at time k. Or more formally,

Sk = arg max
Sk:sk∈Vs

k

I(xk; z
Sk
k |z0:k−1) (5.1)

where z0:k−1 are all of the previous measurements from all sensors. The complexity of

this optimization problem arises from the fact that we must compute I(xk; z
Sk
k |z0:k−1)

for every possible Sk. The number of possibilities for Sk grows exponentially with the

number of sensors Ns and the number of discrete control choices Nv (i.e. the number

of virtual nodes) each mobile sensor node is allowed to make. In general there will

be O(NNs
v) possible sets to consider for Sk.

Because of the additive chain rule for entropy, we can break down the mutual

information objective in Equation (5.1) into the sum of the contributions made by

each individual sensor in Sk, as follows:

I(xk; z
Sk
k |z0:k−1) =

Ns∑

j=1

I(xk; z
Sjk
k |z0:k−1, z

S1:j−1
k

k) (5.2)

where Sjk is the jth element of Sk and S1:j−1
k is the set of the first j − 1 sensors in

49

Sk. This formulation is equivalent to the original and doesn’t actually change the

complexity of the optimization at all. However, this additive form lends itself to the

same greedy approximation algorithm discussed in Section 2.2.3 for the maximum

mutual information sensor subset selection problem. Which is precisely one of the

single-step algorithms we will consider in the next section.

However, we are also interested in the more general problem of optimizing for mu-

tual information over a fixed time horizon of N steps. In this case we are interested in

not only the mutual information between the current measurements and the currents

object state but also the mutual information between future object states and future

measurements. Specifically in the multistep case our object function becomes,

I(xk:k+N−1; z
Sk:k+N−1

k:k+N−1 |z0:k−1) (5.3)

where with a slight abuse of notation z
Sk:k+N−1

k:k+N−1 is substituted for the sets of all future

measurements, {zSkk , . . . ,z
Sk+N−1

k+N−1 }. This objective can be broken into substages for

the selection of each sensor as we did in Equation (5.2). It can also be broken down

additionally into substages for each time step as follows:

I(xk:k+N−1; z
Sk:k+N−1

k:k+N−1 |z0:k−1) =
k+N−1∑

i=k

Ns∑

j=1

I(xi; z
Sji
i |z0:i−1, z

S1:j−1
i

i) (5.4)

where time steps are indexed with i and sensors are indexed with j. Again this

formulation allows us to isolate the contribution from each sensor at each time step

to the total mutual information from all sensors at all times. However, it does not

reduce the overall complexity, which will now grow exponentially with N as well,

specifically there are O(NNsN
v) possibilities to evaluate.

5.1.2 Constrained Dynamic Programming

Currently the objective function only considers part of our ultimate goal, that of

choosing the most informative sensor locations. We also wish to consider the trade

off in terms of mobility costs to reach those sensor locations. A standard approach to

50

handle this trade off is to optimize for mutual information subject to a constraint on

the movement costs. First we will present in general terms the constrained dynamic

programming approach that can solve this constrained optimization problem. Then

we will show our specific implementation for the objective function and costs we

previously discussed. Our approach is derived directly from that used in [27], except

we don’t need to consider the leader node selection problem and we utilize mobile

sensor nodes.

General Approach

Ultimately our objective function and cost constraints will be unified into a single

cost function that we will seek to minimize over an N step rolling time horizon. The

state of the dynamic program will consist of the current pdf of the target object state

conditioned on the previous measurements and the previous controls. We define the

conditional belief state as Xk , p(xk|z0:k−1). The control taken at each time k is

uk = Sk, where Sk is again the set of sensor locations utilized at time k. Let µk(Xk)

be the control policy for time k, and πk = {µk, . . . , µk+N−1} be the set of policies

over the N -step planning horizon. We want to find the control policy that gives the

optimal solution to the following constrained minimization problem:

min
π

E

[
k+N−1∑

i=k

g(Xi, µi(Xi))

]
(5.5)

s.t. E

[
k+N−1∑

i=k

G(Xi, µi(Xi))

]
≤M (5.6)

where g(Xi, µi(Xi)) is the per-stage cost function that we wish to minimize and

G(Xi, µi(Xi)) is the per-stage contribution to the constraint function. As in [27],

we can handle this constrained optimization through a Lagrangian relaxation, which

is a standard approximation approach for discrete optimization problems. This results

51

in the following Lagrangian function:

Lk(Xk, πk, λ) = E

[
k+N−1∑

i=k

g(Xi, µi(Xi)) + λ

(
k+N−1∑

i=k

G(Xi, µi(Xi))−M
)]

. (5.7)

We can now do a standard unconstrained optimization of this Lagrangian function.

The optimization of the Lagrangian function over the primal variable πk gives us the

following dual function:

JDk (Xk, λ) = min
πk

Lk(Xk, πk, λ). (5.8)

We then solve the dual optimization problem by maximizing the dual function over

λ ≥ 0,

JLk (Xk) = max
λ≥0

JDk (Xk, λ). (5.9)

This dual optimization problem can be solved using a standard subgradient method

[3]. Like [27] we take advantage of the fact that we are using a rolling time horizon to

avoid making evaluations for many different values of the dual variable λ. We make

a plan for the next N steps then we only take one step and plan again for the next

N steps. Since we only take one step before replanning we can assume the value of

λ will not change significantly between each planning stage. Therefore we can plan

using a single value of λ then make a simple update to λ, as described in [27], before

the next planning stage.

Notice that the dual function JDk (Xk, λ) in Equation (5.8) has the same form as an

unconstrained dynamic program, but the per-stage cost has been modified so that the

original constraint is incorporated into the per-stage cost function, with the following

structure:

ḡ(Xk, uk, λ) = g(Xk, uk) + λG(Xk, uk). (5.10)

This ability to capture the per-stage objective and per-stage constraint in a single cost

function is key to the approximation algorithms that will follow later. In its pure form

this dynamic program will be intractable because our problem grows exponentially in

52

Ns, and N , specifically there are O(NNsN
v) possible solutions that would all need to

be evaluated. Fortunately the structure in Equation (5.10) will allow us to greedily

select sensor locations by optimizing on a per-stage basis and thus significantly reduce

the complexity.

Constrained Mobility Formulation

We can now show the specific implementation of this dynamic programming approach

for our problem of tracking with with energy constrained mobile sensors. From our

discussion in Section 5.1.1, we know that at each stage we wish to select a set of

sensor locations Sk that will maximize mutual information. So from Equation (5.2)

our per-stage objective function will be

g(Xk, uk) = −I(xk; z
Sk
k |z0:k−1) (5.11)

= −
Ns∑

j=1

I(xk; z
Sjk
k |z0:k−1, z

S1:j−1
k

k). (5.12)

Notice we use the negative of mutual information because our dynamic program

formulation was structured to minimize a cost function subject to a constraint. So

our objective “cost” function is the negative of our reward, mutual information. It

would have been equally valid to formulate the dynamic program as a maximization

of a reward function subject to the negative of the current constraint. Since our

reward is the information we obtain from the measurements taken by the sensors

in Sk at their current locations, the associated cost will be the cost to move from

their previous locations in Sk−1 to their current locations. Our per-stage constraint

contribution will simply be the cost associated with moving all the sensors from their

locations during the previous time step k − 1 to their current locations,

G(Xk, uk) =
Ns∑

j=1

Cj
k (5.13)

We can now substitute the per-stage cost and per-stage constraint into Equation

53

(5.10) to get the augmented per-stage cost function of

ḡ(Xk, uk, λ) = −
Ns∑

j=1

I(xk; z
Sjk
k |z0:k−1, z

S1:j−1
k

k) + λ

(
Ns∑

j=1

Cj
k

)
(5.14)

=
Ns∑

j=1

[
−I
(
xk; z

Sjk
k |z0:k−1, z

S1:j−1
k

k

)
+ λCj

k

]
. (5.15)

Notice that using the formulation in Equation (5.15) we can calculate the augmented

cost for every individual sensor selection. This allows us to balance the estimation

quality against motion costs for each individual sensor placement at each time step.

This is the basis of our greedy optimizations. We can greedily choose the sensor with

the lowest augmented cost conditioned on the previously placed sensors.

To properly solve the unconstrained dual optimization problem in Equation (5.8)

(for a specific value of the Lagrange multiplier λ), we can use the following recursive

dynamic programming equation:

JDi (Xi, λ) = min
ui

{
ḡ(Xi, ui, λ) + EXi+1|Xi,uiJ

D
i+1(Xi+1, λ)

}
(5.16)

for the time indexes i ∈ {k : k +N − 1}, and terminate at time k +N with

JDk+N(Xk+N , λ) = −λM (5.17)

where M is the total budget for our movement costs. The belief state Xi+1 is calcu-

lated using the particle filter update equations describe in Section 4.2.

It should also be noted that this same formulation can be used to solve the dual

problem where we seek to optimize movement costs subject to a constraint on our

estimate quality. Going through the whole derivation will result in precisely the same

solution structure as Equation (5.15) excepted the Lagrangian multiplier is on the

mutual information term instead of the cost term [27].

54

5.1.3 Linearized Gaussian Approximation

In order to evaluate the dynamic program in Equation (5.16) for complex or nonlinear

measurement models, we would need to simulate the measurements from each of the

NNs
v possible configurations of the sensors in Sk at each time step. This could be done

with a particle filter where we generate Np particles to represent the measurements in

zSkk . This would result in a tree structure where for each of the leaves at the previous

stage we must generate NNs
v Np particles to simulate all of the possible measurements

at the next stage. So for a planning horizon of N the complexity will be O(NNsN
v NN

p).

Clearly this will be intractable for even small values of N and Np.

When the dynamics and measurement models are linear and Gaussian then the

problem is dramatically simplified. Lets see what our mutual information objective

will look like under a linear Gaussian assumption. Our measurement model will be:

zSkk = HSkk xk + vSkk (5.18)

where the a priori distribution of xk is N{xk;µk,Pk}. We want to calculate mutual

information as follows:

I(xk; z
Sk
k |z0:k−1) = H(zSkk |z0:k−1)−H(zSkk |xk). (5.19)

Based on linear Gaussian assumptions we know that zSkk |xk ∼ N{zSkk ; HSkk xk,R
Sk},

so we can calculate

H(zSkk |xk) =
1

2
log
∣∣2πeRSk

∣∣ . (5.20)

Also, we know zSkk |z0:k−1 ∼ N{zSkk ; HSkk µk,H
Sk
k PkH

Sk
k

T
+ RSk} for a linear Gaussian

measurement model [17], and therefore we can calculate

H(zSkk |z0:k−1) =
1

2
log
∣∣∣2πe

(
HSkk PkH

Sk
k

T
+ RSk

)∣∣∣ . (5.21)

Now we can combine these two terms to get a final result for our mutual information

55

objective function,

I(xk; z
Sk
k |z0:k−1) =

1

2
log




∣∣∣HSkk PkH
Sk
k

T
+ RSk

∣∣∣
|RSk |


 . (5.22)

Based on the fact that Pk, HSkk , and RSk are all independent of the specific

measurements (they only depend on the specific sensors and their locations) we see

that the mutual information objective will only depend on the specific control uk

chosen and not on the specific measurements that result from that control [26]. This

means that if we have linear Gaussian dynamics and measurement models then we

won’t need to simulate any measurements. We can calculate our objective function

solely using the relevant covariances. This reduces the complexity of solving the

dynamic program in Equation (5.16) from O(NNsN
v NN

p) to just O(NNsN
v).

For our tracking experiment our range measurements are based on the nonlinear

measurement model in Equation (4.4). However, using the Taylor series expansion

from Equation (4.5) will allow us to utilize the above simplifications. This is a common

approach known as a linearized Kalman filter [17, 27].

Unfortunately this only reduces some of the complexity. As previously noted,

evaluating our dynamic program will still have a complexity of O(NNsN
v). So the

tree representing our dynamic program will grow exponentially in both the number

of sensor Ns and the length of our planning horizon N . In order to develop a plan

quickly enough that it can be acted upon in a real-time exercise like tracking, we

will need to introduce some sort of approximation that will make it possible to find

a solution quickly.

5.2 Approximation Algorithms

We will now look at some of the approximation algorithms that we developed for

this problem. The single time step or myopic algorithms only consider a plan for

the next step (i.e. N = 1). These approaches are fairly straightforward and mirror

approximations previously mentioned for use in static sensor networks. The algo-

56

rithms for planning over multiple time steps require more creativity to produce an

approximation that has good performance and is still efficient enough to be useful.

5.2.1 Brute Force

While not technically an approximation, the brute force approach is useful in provid-

ing the foundation for the other approximations and stands as a basis for comparison.

The end product of our the dynamic programming approach was the recursive dy-

namic program in Equation (5.16). Combining that with Equation (5.15) we can see

the specific dynamic program we will be solving for our tracking problem, e.g.

JDi (Xi, λ) = min
ui

{
ḡ(Xi, ui, λ) + EXi+1|Xi,uiJ

D
i+1(Xi+1, λ)

}
(5.23)

= min
ui

{
Ns∑

j=1

[
−I
(
xi; z

Sji
i |z0:i−1, z

S1:j−1
i

i

)
+ λCj

i

]
+ EXi+1|Xi,uiJ

D
i+1(Xi+1, λ)

}

(5.24)

for the time indexes i ∈ {k : k + N − 1}, and we terminate at time k + N with

JDk+N(Xk+N , λ) = −λM .

The challenging aspect of using mutual information as our objective can be seen

by looking more closely at the mutual information term in Equation (5.24),

I
(
xi; z

Sji
i |z0:i−1, z

S1:j−1
i

i

)
. (5.25)

At time step i the measurement from the jth sensor will be z
Sji
i . From the expres-

sion above we see that the mutual information between that measurement and the

object state xi is dependent on all of the previous measurements from all of the sen-

sors, z0:i−1, and on current measurements already selected for other sensors during

this time step, z
S1:j−1
i

i . It is intuitive that the amount of information gained from

some measurement will be highly dependent on what information has already been

obtained from any other measurements. However, this strong interdependence of mu-

tual information between different measurements makes it difficult to divide up or

57

simplify the problem.

The only way to fully evaluate the dynamic program in Equation (5.24) is to

simply calculate all of the possible solutions in a brute force manner. This analysis

will lead to a recursive tree structure. The root node at time k would represent the

current state, which consists of our current set of nodes Sk. Then from the root node

there will be a branch for each possible configuration of sensor nodes at time k + 1.

We have Ns sensors and each one can move to Nv locations at the next step, which

means there are NNs
v possible configurations for Sk+1. Then at the next time step we

would do the same analysis for each of those NNs
v tree nodes. To brute force evaluate

all of the solutions over an N -step planning horizon would result in enumerating

NNsN
v plans, where each plan would consist of a unique set of N -step paths for the

Ns sensors in Sk. This simply isn’t feasible to be accomplished in real time like we

need for a tracking exercise.

5.2.2 Decoupled

We could dramatically simplify the dynamic program if we could decouple the sensors

such that we could plan for each one independent of the others. In other words, for

planning each sensor wouldn’t consider any of the future measurements from other

sensors and would only consider the mutual information between its own measure-

ments and the object state, i.e. if our objective was as follows,

I
(
xi; z

Sji
i |z

Sji
k:i−1

)
(5.26)

where z
Sji
k:i−1 are future measurements (after time k) from only the jth sensor. Note

that we still incorporate all of the previous measurements from all sensors, z0:k−1, in

our actual estimates. It is only for planning ahead and estimating the information

value of future measurements that we decouple the sensors.

With this objective each sensor could then plan its future sensor placements inde-

pendent from the other sensors. Thus, decoupling the sensors like this would result

in evaluation of the dynamic program being linear in the number of sensors Ns rather

58

than being exponential in Ns. It would also allow for a more practical and efficient

distributed implementation where each sensor node could do its own decentralized

planning and only the resulting measurements would need to be shared.

However, we must consider whether this is a valid approximation to make. By

removing the conditioning on z
S1:j−1
i

i (i.e. the measurements of the other sensors)

we are making an implicit assumption that they don’t affect the value of the mutual

information between xi and z
Sji
i . From the definitions of mutual information and

entropy, we can see that this would hold true if measurements from one sensor are

independent of the measurements from the others. Obviously this won’t be the case

unless they are independent of x as well. In which case we wouldn’t be able to use

them to help estimate x. However, when the information from the measurements is

not highly redundant, like when the sensor nodes are very sparsely distributed, this

could be a good approximation.

When using this approximation the error will always tend towards overestimating

the amount of mutual information. This follows from the submodularity property of

mutual information. From submodularity we know that adding a measurement to a

small set of measurements will always cause a larger increase in mutual information

than if the same measurement is added to a larger superset of measurements. With

this approximation each sensor is only considering its own measurements when in fact

they will be combined with a larger set of measurements from all the sensors. There-

fore from submodularity we will always be overestimating the mutual information

when the measurements are not independent.

For our application it is better that the error is biased this way than if it was

biased towards underestimating mutual information. This way we are biased towards

collecting too many measurements (i.e. redundant measurements). So we will tend

towards being inefficient or perhaps missing an opportunity to take a measurement

that wouldn’t have been redundant. If the we were biased the other way we would

be erring towards taking too few measurements, because we would tend to think

the measurement wasn’t valuable. In this situation our sensor network could be

dysfunctional rather than just being inefficient.

59

5.2.3 Greedy

In Section 2.2 when we introduced the concept of mutual information, we showed that

one of its desirable qualities are that there is an efficient greedy algorithm. In [11, 14]

the authors presented this greedy algorithm for use in the optimal sensor subset

selection problem with static sensor networks. They proved that the greedily selected

subset will provide mutual information that is at least (1−1/e)OPT or more than 63%

of the optimal amount. We develop a greedy multistep algorithm that is modeled after

and motivated by this this greedy sensor subset selection algorithm. However, our

objective function does not meet all of the criteria to guarantee the same theoretical

bounds. We will show that our objective function is in fact submodular. Even though

our algorithm will only utilize nonnegative values of the objective function there are

scenarios where the function itself can take on negative values. Therefore we cannot

ensure monotonicity for all values of the objective function, which is required to

guarantee the theoretical (1 − 1/e)OPT bound. We do show, via our simulations

in Chapter 6, that in practice our greedy multistep algorithm performs much better

than the single step and decoupled algorithms.

The greedy sensor selection algorithm relied on the fact that the mutual informa-

tion objective could be broken down into the following form:

I(x; zS) =
Ns∑

j=1

I(x; zS
j |zS1:j−1

). (5.27)

This structure allows sensors to be selected sequentially such that each selection

maximizes the corresponding term in the objective function. This heuristic greedy

algorithm is formally described in Algorithm 1.

If we look again at the augmented objective function from our dynamic program-

ming solution, we see that it has the same structure.

ḡ(Xi, ui, λ) =
Ns∑

j=1

[
−I
(
xi; z

Sji
i |z0:i−1, z

S1:j−1
i

i

)
+ λCj

i

]
. (5.28)

60

Algorithm 1 Greedy Sensor Subset Selection Algorithm
Input: Ns, V
Output: Sensor subset S ⊆ V
S ← ∅
for j = 1 to Ns do
s∗ ← arg maxs∈V\S I(x; zs|zS)
S ← S ∪ s∗

end for

Therefore we should be able to use the same greedy algorithm to select our sensors.

However, before we adapt this greedy algorithm to our problem, there are two

issues that must be addressed. First, because we are solving a cost constrained

problem, we ended up with an augmented objective function. This objective function

is not based purely on mutual information, because we augmented it with the λCj
k

cost constraint. Therefore, we will need to investigate how this augmented cost term

affects submodularity and monotonicity. Second we are utilizing mobile sensors and

planning over a rolling time horizon, and it isn’t immediately clear how well the

greedy sensor selection algorithm will carry over to this different problem structure.

Note that Equation (5.28) is only the per-stage objective function. So we would

be making a greedy sensor subset selection at each time step in our plan, not over the

whole planning horizon. So at each time stage i we will have Ns substages indexed

by j where we greedily select a single sensor that optimizes the correlating term of

our objective function. Specifically, at stage i and substage j we would maximize the

following substage objective:

g̃(Xi, S
j
i , λ) = I

(
xi; z

Sji
i |z0:i−1, z

S1:j−1
i

i

)
− λCj

i . (5.29)

Recall that the theoretical bounds for the greedy algorithm relied on the fact that

the objective function was monotonic and submodular. Looking again at Equation

(5.29), it is clear that our augmented objective isn’t strictly monotonic. Any time the

cost term λCj
i is larger than the mutual information term, our objective function will

be negative and thus we can’t guarantee monotonicity. Intuitively that is what our

objective function was designed to do. It was suppose to help us identify when the

61

cost of moving a sensor is higher than the value of the information we get from the

measurement at the new location. The cost can be higher than the information gained

for multiple reasons. The most obvious reason being that some moves could simply

be prohibitively expensive. However, a more subtle problem is the fact that the value

of information from a particular measurement always decreases as we obtain more

and more measurements. So over time our measurements will contribute less and less

information and the mobility costs will come to dominate the objective function. At

which point, even for relatively cheap moves the costs will outweigh the information

gain, because there simply isn’t much information left to obtain.

In practice our greedy algorithm will never select options that result in negative

values of the objective function. These are precisely the sensor selections we want

to reject because the information is not worth the cost incurred to obtain it. Note

that for every substage, among the Nv possible controls, we always include the option

of not moving, i.e. staying at the same virtual node. From Equation (4.8), we see

that this option always incurs a cost of zero. Combined with the fact that mutual

information is always nonnegative, we know that at every substage there will always

be an option such that the our substage objective in nonnegative. Since we are

maximizing g̃(Xi, S
j
i , λ) and we know there is a control at each substage such that

g̃(Xi, S
j
i , λ) ≥ 0, our cumulative reward will always be nonnegative. Even though our

selected sensor locations will always result in a nonnegative objective in practice, this

is insufficient to prove the (1−1/e)OPT bound. For that bound to hold we would need

to show that our augmented objective is nonnegative for all possible inputs [19, 11],

which we cannot do without putting additional constraints on the cost structure or

the Lagrangian formulation.

Fortunately, we can still show that our augmented objective is submodular. Recall

that a set function F is submodular if for S ⊆ Ŝ,

F (Ŝ ∪ s)− F (Ŝ) ≤ F (S ∪ s)− F (S) (5.30)

In other words adding s to the larger set Ŝ has less impact than adding s to the smaller

62

set S. This is often referred to as the property of diminishing returns. Because of the

fact that the incremental cost of adding a specific sensor location to a set is invariant

of the size of the set, our substage objective will reduce to the same submodularity

property that mutual information has. For S ⊆ Ŝ we have the following expansion

for the set Ŝ,

g̃(X, Ŝ ∪ s, λ)− g̃(X, Ŝ, λ) (5.31)

I(x; zŜ∪s)− λC Ŝ∪s − I(x; zŜ) + λC Ŝ (5.32)

I(x; zŜ) + I(x; zs|zŜ)− λC Ŝ − λCs − I(x; zŜ) + λC Ŝ (5.33)

I(x; zs|zŜ)− λCs (5.34)

and in the same manner we have the following expansion for the set S,

g̃(Xi,S ∪ s, λ)− g̃(Xi,S, λ) (5.35)

I(x; zs|zS)− λCs (5.36)

Now we must show that the expression in (5.34) is less than or equal to the one in

(5.36). Making the comparison we have,

I(x; zs|zŜ)− λCs ≤ I(x; zs|zS)− λCs (5.37)

I(x; zs|zŜ) ≤ I(x; zs|zS) (5.38)

Equation (5.38) is simply stating that adding the measurement from s to those of Ŝ
will add less information than adding the measurement from s to S ⊆ Ŝ. We know

this is true because of the fact that mutual information is submodular. This proves

that our augmented substage objective from Equation (5.29) is in fact submodular.

While we can’t guarantee strict monotonicity, the fact that our substage objective

function is submodular and that we only utilize nonnegative selections in practice,

suggests that a greedy approach will still give favorable results.

For our multistep planning problem our greedy algorithm candidate is shown in

63

Algorithm 2.

Algorithm 2 Greedy Multistep Algorithm Candidate
Input: Ns, N , V , S0
Output: N sensor subsets S1:N ⊆ V

for i = 1 to N do
Si ← ∅
for j = 1 to Ns do

VSji−1 ← {virtual nodes in neighborhood of Sji−1}
s∗ ← arg max

s∈VS
j
i−1

I
(
xi; z

s
i |z0:i−1, z

S1:j−1
i

i

)
− λCj

i

Sji ← s∗

end for
end for

Everything looks great, until we take a closer look to see what is really going on.

Let us use the notation Sk:k+i to denote a sequence of sensor node configurations

Sk → Sk+1 → . . . → Sk+i. Then we can think of Sk:k+i as a set of Ns planned paths

that the sensors will follow from time k to time k + i, where the jth sensor node

will move along the path Sjk:k+i. According to Algorithm 2 at each stage i we should

greedily select a set of sensor locations Si. So at the end of stage i of our planning,

instead of having O(NNsi
v) possible paths to consider we have aggressively narrowed

it down to one path for each of the Ns sensors, namely Sk:k+i.
This means this multistep planning algorithm isn’t planning over our N step

horizon at all. It is aggressively narrowing decision tree down to one branch at each

level. If there is only one option after the first step of planning, then there is no point

in planning any further ahead, because we already know what we are going to do

on the next step. In other words Algorithm 2 is equivalent to just doing the greedy

single time step algorithm found in Algorithm 3.

This is a very important distinction to make. We are trying to optimize over the

entire N -step planning horizon, but we are really only doing the greedy optimizing

on a per-stage basis. The optimal single step solution can be an arbitrarily bad

approximation for the optimal N -step solution. For example imagine a scenario where

the target object being tracked moves out of the range of any of the sensor nodes, and

none of the sensor nodes can get back in range over the next time step. In this case

64

Algorithm 3 Greedy Single Step Algorithm
Input: Ns, V , Sk−1
Output: Sk ⊆ V
Sk ← ∅
for j = 1 to Ns do

VSjk−1 ← {virtual nodes in neighborhood of Sjk−1}
s∗ ← arg max

s∈VS
j
k−1

I
(
xk; z

s
k|z0:k−1, z

S1:j−1
k

k

)
− λCj

k

Sjk ← s∗

end for

the optimal single step solution would be for every sensor node to not move at all and

stay where it currently is. That is because every other possible move over the next

time step won’t provide any additional information but they would all incur a cost.

However, the optimal N -step solution would be able to find solutions that incurred

the early cost to get back in range because those costs would be compensated for by

the information gained at the later stages.

What we really want is a way to find a plan consisting of paths that are op-

timized over our entire N -step planning horizon, rather than creating a plan of N

independently optimized single stages as the greedy single step algorithm would do.

The key insight to making this possible is to note that our objective has the same

structure over entire paths not just only over nodes. In other words we can take our

per-stage objective function and sum it up over the entire path. Then we use that

cumulative function as our new per-path objective function. We just need to show

that this per-path objective function has the same structure as our previous per-stage

objective. If that is true, then we can utilize the same algorithm to greedily select

entire paths Sjk:k+N rather than just greedily selecting individual nodes Sjk. If we

plug our augmented per-stage objective function from Equation (5.28) back in to the

original Lagrangian function in Equation (5.7) we see the cumulative objective for

our dynamic program has the following form:

−
k+N∑

i=k

Ns∑

j=1

[
I
(
xi; z

Sji
i |z0:i−1, z

S1:j−1
i

i

)
− λCj

i

]
. (5.39)

65

Again we see that our augmented objective can be split into the per-stage and per-

sensor contributions of each selection. All we need to do is change the order of

summation and we can see our new per-path objective function:

k+N∑

i=k

[
I
(
xi; z

Sji
i |z0:i−1, z

S1:j−1
i

i

)
− λCj

i

]
. (5.40)

Previously we were summing over j first, which is the same as selecting locations for

each sensor at time step i before moving to the next time step i + 1. Now we are

summing over i first, which is the same as selecting an entire path of locations from

time k to time k + N for a specific sensor Sj, before moving on to the next sensor

Sj+1. This per-path objective has the identical structure to our per-stage objective

in Equation (5.15). Because the incremental costs of adding an entire path is still

independent of the size of the previous set of selected paths and the additive property

of mutual information, the proof for submodularity of the per-path objective follows

the proof for the per-stage objective exactly. With the only difference being that

there are now N terms instead one term.

The same considerations still exist for monotonicity as did with the per-stage

objective. The only caveat being the interpretation was different. In the previous

case the greedy algorithm would reject sensor locations for which the costs was higher

than the expected information gain. Likewise we will now select only those paths

that cumulatively have more information than they do cumulative costs. Again in

practice our objective function will be nondecreasing, but we cannot guarantee the

it will be nondecreasing for all possible inputs. However, note that since we are

using the cumulative costs and cumulative information reward over the entire path

as our objective, we can now consider individual nodes along the path that would

have been rejected under the per-stage objective. That is, we don’t have to maintain

monotonicity as we sum along the path. We can take on extra costs and have the

objective go negative as long as the cumulative objective function of the whole path

is nonnegative.

In simple terms our multiple time step greedy algorithm consists of each sensor

66

evaluating the per-path objective in Equation (5.40) for each length N path it could

take. Then at each step we select one path from all of the paths from all of the

sensors, that maximizes the per-path objective. Then we fix that path and iterate

conditioning on the measurements from the previously selected paths. The greedy

multistep algorithm is formally explained in Algorithm 4.

Algorithm 4 Greedy Multistep Algorithm
Input: Ns, Nv, N , V , Sk
Output: Ns sensor paths Sk:k+N
Sk+1:k+N ← ∅
for j = 1 to Ns do

Get all length N paths from the j remaining sensors in Sk
P ← GetPaths(Sj:Ns

k , Nv, N)

p∗ ← arg maxp∈P
∑k+N

i=k

[
I
(
xi; z

Sji
i |z0:i−1, z

S1:j−1
i

i

)
− λCj

i

]

Sjk:k+N ← p∗

end for

This algorithm will be much more efficient than the brute force evaluation of

the dynamic program. The complexity is reduced because we only condition on the

specific paths that were previously selected. This way on the jth iteration each sensor

node is only conditioning on the measurements from the j − 1 specific paths that

were previously selected, rather than on all of the possible paths from the previous j

sensor nodes. This results in the complexity being O(N2
sN

N
v) rather than O(NNsN

v).

In the next subsection we will discuss some ways to reduce the complexity from the

exponential NN
v term.

Since we are optimizing over the whole N -step planning horizon rather than over

single stages we expect this multistep algorithm will perform better than the single

stage approximation algorithms. We also expect it to outperform the decoupled

algorithm because mutual information between the other sensors’ measurements is

taken into consideration. This allows the greedy algorithm to choose more efficient

paths that are collecting new information rather than redundant measurements as

the decoupled algorithm can tend to do.

67

5.2.4 General Simplifications

There are a couple of simplifications that can be applied to all of our approximation

algorithms. While we were able to address the exponential dependence on the number

of sensor nodes Ns, all of the multistep algorithms still had an NN
v complexity term.

This term represents the work required to brute force evaluate every possible path

from each of the nodes. Notice these paths are going to be very dense and most of

them will be very similar to a large number of their neighboring paths. Also note that

we utilize a rolling time horizon so we replan after taking each step. Therefore we

don’t need to be concerned about sampling so densely at the farthest regions of our

planning horizon, because we will replan multiple times as we get closer to it. Using

rapidly exploring random trees or some other more efficient method of selecting the

set of paths we optimize over is an easy way to eliminate the O(NN
v) term from the

complexity.

A second simplification arises from submodularity. Notice that in several of the

algorithms when we iterate, we will end up evaluating the same nodes or paths over

and over again. Because of submodularity we know that the amount of information

that a measurement contributes to the cumulative total will decrease as we get more

and more measurements. In the greedy algorithms we iterate and at each step we

condition on the measurements selected in the previous steps. Therefore our objective

function for any measurement will only go down on each iteration. It will never

increase more than it was on the previous step. This means that once the objective

function hits zero for a given node or path (i.e. the costs outweigh the information

gain) then we can exclude that node or path from consideration for the rest of the

current planning session.

This basically reduces the effective number of sensors that we are working with.

This will be extremely beneficial in allowing our algorithms to scale to larger networks.

Consider our tracking experiment in a very large network, where only a small subset

of the sensors will be within close enough range to obtain measurements. All of the

nodes that are out of range over our planning horizon will end up with an optimal

68

objective function equal to zero, meaning they should just stay right where they are

for now. Fortunately, this will be noticed on the first iteration and they can be

excluded from the rest of the computation. This reduces the effective network size to

always being only the small cluster of nodes that are currently in range.

69

70

Chapter 6

Simulation

6.1 Autonomous Robotic Kayaks

Our mobile sensor network tracking problem and simulation was motivated by and

based on a real network of autonomous robotic kayaks or SCOUTs (Surface Craft for

Oceanographic and Undersea Testing) developed at the MIT Department of Ocean

Engineering [9]. The SCOUT vehicles were specifically designed for experimentation

with multi-robot cooperative autonomy. Each SCOUT houses a battery powered

propulsion system, a complete main computer system, GPS, and Wi-Fi or other RF

communications system. Each of these vehicles is a highly capable sensor node with

the ability to autonomously move to a location, take measurements, process data,

plan future controls, and communicate results.

These type of autonomous vehicles are routinely utilized in tracking applications.

A team of SCOUTs are often deployed on the surface to help track and localize a

submersible vehicle that doesn’t have access to GPS data for self localization. Addi-

tionally they can be utilized in a more traditional tracking application where we want

to identify and track any vehicle that enters a region of interest, such as a harbor.

The SCOUT vehicles are controlled by a well developed software stack known

as MOOS-IvP [2]. MOOS-IvP is a collection of open source software modules that

handle all of the control and autonomous behaviors for the vehicles. For example

there are modules for collision avoidance and waypoint traversal.

71

Figure 6-1: MIT SCOUT autonomous kayak [9].

Figure 6-2: Main on board computer and 802.11b (Wi-Fi) radio [9].

72

Our simulation models a team of these autonomous kayaks executing a tracking

exercise. We focus solely on the sensor path planning and tracking estimation portion

of the problem. So the output of our simulation needs to provide a set of locations or

waypoints for each of the sensors and an estimate of the current position and velocity

of the object being tracked. In practice, collision avoidance and other such behaviors

would be handled by separate MOOS-IvP modules.

6.2 Tracking Simulation

In order to make more concrete comparisons of performance and accuracy of the

algorithms discussed in discussed in Chapter 5, we implemented each of them in

our computer simulation. The simulations were performed in MATLAB and the

programming code for the simulation is included in Appendix A.

We simulated a tracking exercise in which a team of mobile sensor nodes are

tracking a single moving target. The algorithms in this thesis will extend to multiple

target tracking problems, but doing so would require the data association problem

to be solved. In order to avoid the completely separate issues of data association we

limit ourselves to tracking a single target object.

Our tracking exercise was carried out in a two dimensional region of 100x100 units.

We track a target that enters the region along a random trajectory at a uniform

random location on the border of the region. The target then proceeds across the

region in a random walk according to the dynamics described in Section 4.1.1. We

randomly generated 100 target trajectories and tested each of the algorithms against

the same 100 targets in separate simulations. So each algorithm ran through 100

complete simulations, and we average the results for our analysis.

For each simulation the kayaks start at uniform random locations within the

bounded region. Each kayak represents a single sensor node that can take range

measurements according to the measurement model in Section 4.1.2. As mentioned

in Chapter 4, we utilize a hexagonal grid to model the discretized control space for

each kayak. So at each time step the kayak can move to one of its six nearest neigh-

73

bors on the hexagonal grid or it can choose to remain at its current location. The

simulations consisted of 200 time steps. At each step each sensor node takes a mea-

surement. Then it produce an N -step plan of its movement for future time steps.

However, we use a rolling time horizon so only the first move of the plan is executed,

before we replan at the next time step. Each mobile sensor node has its motion costs

constrained to a budget of 3N , where N is the length of the planning horizon.

The path planning for each sensor was carried out according to the respective

algorithms described in Chapter 5. The actual estimate of the target position and

velocity was maintained via a particle filter as described in Section 4.2. We use the

entropy of the belief state as modeled by the particle filter as the primary performance

metric. The cost was simply calculated by summing up the total distance moved by

all sensor nodes during the experiment.

Figures 6-3 and 6-4 show a typical simulation at the beginning and midway

points respectively. The kayaks are represented by the ellipsoids randomly distributed

through the region. We plot a random selection of the particles to help visualize the

current state of the particle filter estimate. We also denote the true location of the

target with a + symbol and we take the mean position over all particles and denote

it with a × symbol.

In Figure 6-3 we see the state shortly after the simulation has commenced. Very

few measurements have been taken and the kayaks have not had a chance to move

into the optimal measurement locations. The cloud of particles is widely dispersed

giving a clear indication that the current estimate is not well formed and has very

high entropy.

In Figure 6-4 we see the state of the simulation midway through. Now kayaks

have been able to move into the ideal positions and take sufficient measurements to

obtain a much more accurate estimate. Note the particle cloud is now very small

and dense and the mean position estimate coincides with the true target position, all

indicating an accurate estimate with low entropy. Also note that the kayak move-

ments have been very efficient. Only those kayaks that are nearby and able to obtain

accurate measurements have moved into new positions. Also note that the first kayak

74

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180
0

500

1000

M
ot

io
n

C
os

t

0 20 40 60 80 100 120 140 160 180
0

5

10

E
st

im
at

e
E

nt
ro

py

Figure 6-3: Typical simulation at the beginning before kayaks have had the chance
to move into position or take very many measurements. The cloud of dots are sample
particles from the current particle filter. The true position of the target is marked by
a + and the current mean of all particles is marked with a ×.

75

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180
0

500

1000

M
ot

io
n

C
os

t

0 20 40 60 80 100 120 140 160 180
0

5

10

E
st

im
at

e
E

nt
ro

py

Figure 6-4: Later on in a typical simulation after kayaks have had the chance to move
into position and take more measurements.

76

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Comparison of Estimation Entropy

Time Steps

E
st

im
at

e
E

nt
ro

py

Greedy
Decoupled
Brute Force
Decoupled−MS
Greedy−MS

Figure 6-5: A comparison of average estimation entropy over the full 200 time steps
of the simulations. We use ”-MS” to indicate multistep algorithms that plan over a
rolling N = 10 time step horizon.

that engaged the target stopped following when it was no longer needed and natu-

rally allowed the other kayaks to take over. We will see later that in unconstrained

information only algorithms we don’t naturally achieve these types of efficiencies.

6.3 Comparative Analysis

Figure 6-5 shows the estimate entropy over the 200 time steps of the experiment,

where averages were taken over the full 100 simulations. We simulated the single time

step planning algorithms for the decoupled, greedy, and brute force algorithms. We

also simulated multiple time step planning algorithms for the greedy and decoupled

algorithms. We used a planning horizon of N = 10 steps for the simulations in Figure

6-5. All the algorithms follow a similar pattern where the entropy is reduced rapidly

77

early on as the first measurements come in. Also because the target is initially moving

towards the sensors as it enters the region, the sensor nodes are easily able position

themselves for the optimal measurements by moving towards a spot that will intercept

the target’s current trajectory. We see the entropy increase slightly at the end as the

target moves past the sensor nodes and they have to handle a more challenging chase

style problem as it moves away out of the region.

As predicted the multistep algorithms are able to achieve better estimates by

planning ahead and moving accordingly. The greedy multistep being the most note-

worthy by outperforming the others by approximately 30% on average. Notice that

the decoupled algorithm performs well initially but then falls behind the rest of the

algorithms by the end of the simulation. This behavior can be explained by the

fact that the decoupled algorithm will tend to result in sensors moving such that

they take redundant measurements because they don’t consider the measurements of

other sensors during planning. The longer the planning horizon the more this error

is compounded and it becomes more likely that multiple sensors will try to move to

locations that provide redundant information and to miss alternate sites that would

provide new information. This results in poorly placed sensors and a higher entropy

estimate. Whereas the greedy algorithm considers the future measurements of the

other sensors, resulting in the appropriate value being placed on locations that will

result in new unique information about the target object.

Also note that we use Ns = 5 sensors for these experiments to allow us to compute

the brute force solution over a single time step. From the results we see that the single

step greedy algorithm is able to achieve very similar performance but only requires

O(NvN
2
s) calculations versus O(NNs

v) for the brute force method. Also even with only

Ns = 5 sensors the brute force method took approximately 30 minutes to complete

a single 200 step simulation making it infeasible for real-time planning with current

processors.

It is important to remember that estimation performance is only half the story

for our problem. We were interested in balancing estimation quality against our cost

constraints. In Figure 6-6, we see how the algorithms compare when measured against

78

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700
Comparison of Cumulative Motion Cost

Time Steps

C
um

ul
at

iv
e

C
os

t

Greedy
Decoupled
Brute Force
Decoupled−MS
Greedy−MS

Figure 6-6: A comparison of the average cumulative motion costs over the full 200
time steps of the simulation. We use ”-MS” to indicate multistep algorithms that
plan over a rolling N = 10 time step horizon.

79

cumulative motion costs. With the exception of the decoupled multistep algorithm all

of the algorithms performed almost identically on the cumulative cost criteria. This

isn’t too surprising since all of the algorithms were approximating the same dynamic

program with the same objective function. So the distinction came down to which

algorithms are more successful at selecting good measurements sites for the costs that

they do incur.

As predicted the decoupled multistep algorithm incurs higher motion costs. Note

that this is especially true at the very beginning. This again is because of a failure

to consider future measurements of the other sensors. Initially when there are no

measurements, because of submodularity, any new measurement will have premium

value. Since every sensor assumes it is the only one taking a measurement, it overes-

timates the value of that measurement and can justify incurring a much higher cost

(i.e. moving towards the target from farther away). Early on most of the sensors

tend to move towards the target, until enough measurements are taken and the esti-

mate improves enough that some of the sensors realize that their measurements won’t

provide valuable information and they make the correct choice to stop wasting their

resources.

Also note from Figure 6-6 that the greedy multistep algorithm incurs a slightly

higher cost than the single step algorithms. This makes sense because planning ahead

allows the greedy algorithm to identify opportunities where slightly more movement

can result in much better measurements. Looking at Figure 6-5 again we see that

this slight increase in cost facilitated a much larger increase in estimate accuracy.

Because of the added complexity of the cost constrained optimization problem, it

is common to consider information only solutions without regard for the costs of tak-

ing measurements. Figure 6-7 and Figure 6-8 demonstrate the contrast between using

an information only solution and using a cost constrained solution as we provide. As

would be expected, in Figure 6-7 we see that we can achieve better estimation perfor-

mance by changing to a mutual information only objective. In our tracking problem

we could achieve approximately 40% better estimation quality by using the same

greedy algorithm without cost constraints. However, as Figure 6-8 shows, achieving

80

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

3

4

5
Comparison of Estimation Entropy

Time Steps

E
st

im
at

e
E

nt
ro

py

Greedy−MS
Unconstrained Greedy−MS

Figure 6-7: A comparison of average estimate entropy for cost constrained versus
unconstrained solutions.

81

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Comparison of Cumulative Motion Cost

Time Steps

C
um

ul
at

iv
e

C
os

t

Greedy−MS
Unconstrained Greedy−MS

Figure 6-8: A comparison of average cumulative motion costs for cost constrained
versus unconstrained solutions.

82

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180
0

500

1000

M
ot

io
n

C
os

t

0 20 40 60 80 100 120 140 160 180
0

5

10

E
st

im
at

e
E

nt
ro

pyFigure 6-9: Typical simulation for the unconstrained greedy multistep algorithm.
Notice that without cost constraints all of the kayaks tend to move towards the
target.

that extra 40% in estimate quality incurs over 300% more in costs. In other words,

our cost constrained solution would allow a mobile sensor network to work for over 3

times as long with only slightly degraded estimation performance.

We can see more explicitly how the unconstrained information only algorithms

behave and understand why it is so costly by looking at an example simulation of the

unconstrained greedy multistep algorithm. In Figure 6-9 we see the typical behavior

of the unconstrained algorithm. Notice that all of the kayaks have moved towards the

target object and surrounded it to obtain as much information as possible. Having

all of the kayaks constantly moving in sync with the target requires a great deal

of energy. Each additional kayak may provide only a small amount of additional

information from its measurements but it is incurring a large cost to obtain it.

83

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cumulative Motion Cost

A
ve

ra
ge

 E
nt

ro
py

Estimation Entropy vs Motion Cost

Greedy
Decoupled
Brute Force
Decoupled−MS
Greedy−MS
Unconstrained Greedy−MS

Figure 6-10: A comparison of average estimate entropy versus cumulative motion
costs.

In Figure 6-10 we plot the average estimation entropy versus the cumulative mo-

tion costs for each of the algorithms. The ideal algorithm would have very low es-

timation entropy and very low cost and so it would occupy the lower left quadrant

of this plot. From this figure it is clear that the greedy multistep algorithm is supe-

rior to the single step and decoupled approximations. It achieves significantly better

estimation accuracy without incurring additional cost. From the figure we also see

again that an unconstrained formulation can achieve superior estimation accuracy

but at a significantly higher cost. It should be noted that as the motion cost budget

is increased, (i.e. the cost constraints are loosened) the greedy multistep algorithm

will gradually move towards the unconstrained solution. So if there is extra budget

for the costs it will naturally be utilized to increase the estimation accuracy.

84

Chapter 7

Conclusion

7.1 Significant Findings

In this thesis we presented a constrained dynamic programming framework for plan-

ning mobile sensor node placements in a tracking problem. We developed a series of

approximate dynamic programming algorithms that allowed this NP -hard problem

to be solved in an efficient manner. We then verified and compared our algorithms

via simulation in a tracking exercise.

We showed that traditional single step greedy algorithms used in static sensor

networks don’t readily translate over to mobile sensor networks where we want to

plan sensor placements over some future time horizon. Our most significant contri-

bution and finding was the extension of the greedy heuristic algorithm towards the

greedy selection of length N paths rather than individual sensor node placements.

By selecting sensor paths we can greedily optimize over the whole planning horizon

rather than only over a single step.

Our simulations verified validity of our approach. First, we confirmed that for

single time step planning the greedy algorithm performed nearly as well as the op-

timal single step results found via brute force calculation. Second, we showed that

our greedy multistep algorithm was able to outperform myopic single step planning

algorithms by choosing more informative sensor placements. Also it was able to do

so at roughly the same cost as single step algorithms. Third, we showed that our

85

cost constrained approach allowed us to significantly reduce the cost expended mov-

ing sensors around without significantly reducing the estimation quality compared to

unconstrained solutions.

7.2 Lessons Learned

7.2.1 Intelligent Path Selection

Our formulation was structured around the concept that we would have some discrete

set of controls possible at each time step. We then generate potential sensor paths

by exploring all of the possible controls at each time step. While this formulation is

natural and intuitive, it also ends up being excessive for our purposes. If we look at

all of the resultant paths generated by such an approach many of them will be nearly

identical to groups of other paths, where the entire paths overlap with the exception

of one or two nodes being different. This means we have a very dense set of candidate

paths and we must consider many nearly redundant paths.

Also note that we are utilizing a rolling time horizon and we replan after each time

step. Therefore, as we get to the later time steps along our path it is less important to

sample the set of possible positions so densely, because we are going to replan several

times before we get to those points. Another way of thinking about this is that we

only need the later steps in our paths to be sufficient enough to get us pointed in

the right direction. As we get closer to those points we will replan and can explore a

more exhaustive set of possibilities in that area.

Our multistep planning algorithm relies on making a greedy selection over a set

of possible paths. Since this algorithm is primarily concerned with optimizing over

paths rather than optimizing on a per-stage basis, it would behoove us to be more

intelligent about selecting which paths we wish to consider. Specifically we want

the minimum set of paths such that they thoroughly represent the potential sensor

configurations over the planning horizon. The work on randomized path planning

and exploration from robotics could be brought to bear on this problem.

86

7.2.2 Efficient Implementation

During the implementation of the the greedy multistage algorithm we ran into chal-

lenges with memory requirements because we had to consider the future measurement

of the other sensor nodes. Each time we incorporate a new measurement it changes

the covariance matrix for our Kalman filter as shown in Equation (4.13). Therefore

if we are going to consider the future measurements from other sensors we end up

needing these covariance matrices for all of the other measurements at all of the time

steps. Storing all of these covariances can be prohibitive.

Fortunately, at each time step we can recreate the needed covariance using the

Kalman filter update equations. At each step we simply incorporate the measure-

ments for that time step from the previously selected paths. At most this requires

Ns updates of the Kalman filter equation (Equation (4.13)) at each time step. This

allows us to avoid an O(NsN
N
v) memory requirement by making O(NsN) simple

calculations.

7.3 Future Work

We now have the theoretical framework for our approximate dynamic programming

algorithms in place and we have verified them via simulation. The next step will be to

extend this work with a real implementation and real experiments. As a first step the

simulation could be used to provide waypoints for a real team of SCOUT kayaks, and

likewise receive real measurements from the kayaks. The next step would be then to

create a full MOOS-IvP module that could perform the tracking and path planning

algorithms on board. Then fully autonomous experiments could be performed with

all computation and communication happening on board the kayaks.

As noted in the lessons learned section there is still work to be done on the

theoretical side as well. The most promising avenue would be to explore methods of

creating the set of candidate paths for the greedy multistep algorithm to consider.

Randomized path planning algorithms are promising in their ability to rapidly and

efficiently sample space surrounding each sensor node. Another advantage of this

87

approach is that we could adjust the number of paths we wish to consider based the

amount of time we have between steps and the length of our planning horizon. This

would allow our planning to be as quick or as thorough as time permits.

The algorithms presented don’t rely specifically on the structure of the tracking

problem. It would be valuable to explore other problem spaces where mobile sensor

nodes are deployed in sensing and estimation exercises. We would like to explore ex-

tending the greedy path selection paradigm to these other mobile sensing frameworks.

88

Appendix A

Simulation MATLAB Code

function [cost,reward,weightedCost,config,Pfinal] = ...

exhaustiveSearch(sensor,numBearings,Hlin,P,R,C ,entR,...

lambdai,lambdac,rat,curConfig,curCost,curReward,curWeightedCost)

% Performs an exhaustive (aka brute force) search over all possible

% solutions to the dynamic program over the next time step.

if sensor == 0

cost = curCost;

reward = curReward;

weightedCost = curWeightedCost;

config = curConfig;

Pfinal = P;

else

tmpWeightedCost = inf;

for bearing = 1:numBearings

% Calculate MI from sensor

H = Hlin(:,:,sensor,bearing,1);

S = H*P*H' + R(sensor);

sensorMI = 0.5*(log(2*pi*exp(1)) + log((S))) - entR(sensor);

89

sensorCost = rat*C (sensor,bearing,1);

% Add in information and cost for this sensor and bearing

newWeightedCost = curWeightedCost ...

+ lambdac*sensorCost - lambdai*sensorMI;

% Update the model

Si = 1/S;

Pnew = P - P*H'*Si*H*P;

curConfig(sensor,bearing) = true;

[cost,reward,weightedCost,config,Pfinal] = exhaustiveSearch(...

sensor-1,numBearings,Hlin,Pnew,R,C ,entR,lambdai,lambdac,rat,...

curConfig,curCost+sensorCost,curReward+sensorMI,newWeightedCost);

if weightedCost < tmpWeightedCost

tmpCost = cost;

tmpReward = reward;

tmpWeightedCost = weightedCost;

tmpConfig = config;

tmpP = Pfinal;

end

curConfig(sensor,bearing) = false;

end

cost = tmpCost;

reward = tmpReward;

weightedCost = tmpWeightedCost;

config = tmpConfig;

Pfinal = tmpP;

end

90

function [cost,reward,weightedCost,config,P] = ...

greedySearch(numSensors,numBearings,Hlin,...

P,R,C ,entR,lambdai,lambdac,rat)

% Performs single time step greedy approximation. Sequentially

% selects the the sensor that provides the minimum weightedCost,

% until a path has been selected for each sensor.

consider = true(numSensors,numBearings);

config = false(numSensors,numBearings);

reward = 0;

cost = 0;

weightedCost = 0;

while (any(consider)),

% Calculate the information gain from each sensor

sensorCost = NaN + zeros(numSensors,numBearings);

sensorMI = NaN + zeros(numSensors,numBearings);

for j = 1:numSensors

for k = 1:numBearings,

if (consider(j,k)),

% Calculate MI from sensor

H = Hlin(:,:,j,k,1);

S = H*P*H' + R(j);

sensorMI(j,k) = 0.5*(log(2*pi*exp(1))+log(S)) - entR(j);

sensorCost(j,k) = rat*C (j,k);

end;

end;

end;

% Select the sensor with the lowest cost

[C,index] = min(lambdac*sensorCost - lambdai*sensorMI);

[c,k] = min(C);

j = index(k);

91

% If the best option has a positive cost (i.e. the cost of

% taking the measurement is more than the information gained)

% then abort

if (c > 0),

break;

end;

% Update the model

H = Hlin(:,:,j,k,1);

Si = 1/(H*P*H' + R(j));

P = P - P*H'*Si*H*P;

% Mark sensor to be utilized

config(j,k) = true;

% Update the list of sensors to consider

consider(j,:) = false;

% Add in information and cost for this sensor and bearing

reward = reward + sensorMI(j,k);

cost = cost + sensorCost(j,k);

weightedCost = weightedCost ...

+ lambdac*sensorCost(j,k) - lambdai*sensorMI(j,k);

end

92

function [cost,reward,weightedCost,config,Pfinal,pathLog] = ...

greedySearchNStep(model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,...

N,timeStep,locStep,sensor,bearing,pathLog,config,...

curCost,curReward,curWeightedCost)

% Performs the multiple time step greedy approximation algorithm.

% All possible length N paths are expanded for each node. At each

% iteration the path with the lowest weightedCost is selected.

% Completes, when a path has been selected for each sensor.

numSensors = model.numSensors;

numBearings = model.numNeighbors;

F = model.F;

Qd = model.Qd;

% Finished recursing, return path results

if timeStep == N

cost = curCost;

reward = curReward;

weightedCost = curWeightedCost;

Pfinal = P;

pathLog(timeStep) = locStep;

% Start initial recursion by going in each direction from each sensor

elseif timeStep == 0

bestWeightedCost = inf;

% for any sensor that hasn't already chosen a path

for j = find(¬any(config'))
for k = 1:numBearings

[pathCost,pathReward,pathWeightedCost,config,pathPfinal,pathLog] ...

= greedySearchNStep(model,Hlin,P,R,C ,entR,lambdai,lambdac, ...

rat,N,timeStep+1,1,j,k,pathLog,config,...

curCost,curReward,curWeightedCost);

% set current best path

if pathWeightedCost < bestWeightedCost

93

% erase old best path

if bestWeightedCost 6= inf;

pathLog(bestSensor,bestBearing,:) = 0;

end

bestWeightedCost = pathWeightedCost;

bestSensor = j;

bestBearing = k;

else

% not best path so erase from log

pathLog(j,k,:) = 0;

end;

end;

end;

% Mark sensor to be utilized

config(bestSensor,bestBearing) = true;

% If all sensors have not chosen a path yet then run through

% the algorithm again with the remaining sensors

if ¬all(any(config'))
[cost,reward,weightedCost,config,Pfinal,pathLog] = ...

greedySearchNStep(model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,N,...

0,0,0,0,pathLog,config,0,0,0);

else % every sensor has chosen a path, so finish

Pfinal = P; % reset to original P

reward = 0;

cost = 0;

weightedCost = 0;

% Only taking first step along the path for each sensor

for j = find(any(config')) % each sensor

k = find(config(j,:)); % chosen bearing

H = Hlin(:,:,j,k,1);

S = H*Pfinal*H' + R(j);

Si = 1/S; %

Pfinal = Pfinal - Pfinal*H'*Si*H*Pfinal;

94

% Add in information and cost for this sensor and bearing

sensorReward = 0.5*(log(2*pi*exp(1))+log(S)) - entR(j);

sensorCost = rat*C (j,k,1);

reward = reward + sensorReward;

cost = cost + sensorCost;

weightedCost = weightedCost ...

+ lambdac*sensorCost - lambdai*sensorReward;

end;

% end of recursion with final values being returned

end;

else

% Recurse by going forward in the same direction or by staying still

pathLog(sensor,bearing,timeStep) = locStep;

% Use previously fixed measurements at this timestep

% plus this potential measurement

curConfig = config;

curConfig(sensor,bearing) = true; % add current sensor and bearing

chosenSensors = any(curConfig');

H = zeros(1,model.numState,numSensors);

for j = find(chosenSensors)

k = find(curConfig(j,:)); % chosen bearing

H(:,:,j) = Hlin(:,:,j,k,pathLog(j,k,timeStep));

S = H(:,:,j)*P*H(:,:,j)' + R(j);

sensorReward = 0.5*(log(2*pi*exp(1))+log(det(S))) - entR(j);

sensorCost = rat*C (j,k,pathLog(j,k,timeStep));

curReward = curReward + sensorReward;

curCost = curCost + sensorCost;

curWeightedCost = curWeightedCost ...

+ lambdac*sensorCost - lambdai*sensorReward;

95

%update model and move forward one time step

Si = 1/S;

P = P - P*H(:,:,j)'*Si*H(:,:,j)*P;

end

P = F*P*F' + Qd;

% continue along the same bearing (locStep+1)

[tmpCost,tmpReward,tmpWeightedCost,config,tmpPfinal,pathLog] = ...

greedySearchNStep(model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,...

N,timeStep+1,locStep+1,sensor,bearing,pathLog,config,...

curCost,curReward,curWeightedCost);

% stay still for the next time step (locStep+0)

[cost,reward,weightedCost,config,Pfinal,pathLog] = ...

greedySearchNStep(model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,...

N,timeStep+1,locStep,sensor,1,pathLog,config,...

curCost,curReward,curWeightedCost);

if tmpWeightedCost < weightedCost

cost = tmpCost;

reward = tmpReward;

weightedCost = tmpWeightedCost;

Pfinal = tmpPfinal;

end

end

96

function [cost,reward,weightedCost,config,P] = independentSearch(...

numSensors,numBearings,Hlin,P,R,C ,entR,lambdai,lambdac,rat)

% Performs the single time step decoupled approximation. Each sensor

% independently selects the measurement with the lowest weightedCost

% for the next time step

config = false(numSensors,numBearings);

reward = 0;

cost = 0;

weightedCost = 0;

sensorCost = NaN + zeros(numSensors,numBearings);

sensorMI = NaN + zeros(numSensors,numBearings);

% Calculate the information gain from each sensor

for j = 1:numSensors

for k = 1:numBearings,

% Calculate MI from sensor

H =(Hlin(:,:,j,k,1));

S = H*P*H' + R(j);

sensorMI(j,k) = 0.5*(log(2*pi*exp(1))+log(S)) - entR(j);

sensorCost(j,k) = rat*C (j,k);

end;

end;

% Select the sensor with the lowest cost

[C,I] = min(lambdac*sensorCost - lambdai*sensorMI,[],2);

for j = 1:numSensors

% Mark sensor to be utilized

k = I(j);

config(j,k) = true;

% Update the model

97

H = Hlin(:,:,j,k,1);

S = H*P*H' + R(j);

Si = 1/S; % if numMeas > 1, this would have to be inv(.)

P = P - P*H'*Si*H*P;

% Add in information and cost for this sensor and bearing

sensorReward = 0.5*(log(2*pi*exp(1))+log(S)) - entR(j);

reward = reward + sensorReward;

cost = cost + sensorCost(j,k);

weightedCost = weightedCost ...

+ lambdac*sensorCost(j,k) - lambdai*sensorReward;

end;

98

function [cost,reward,weightedCost,config,Pfinal] = ...

independentSearchNStep(model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,N,...

timeStep,locStep,sensor,bearing,curConfig,...

curCost,curReward,curWeightedCost)

% Performs multiple time step decoupled approximation algorithm. Each

% sensor indepentently expands potential paths and chooses the path

% with the minimum pathWeightedCost.

numSensors = model.numSensors;

numBearings = model.numNeighbors;

F = model.F;

Qd = model.Qd;

config = false(numSensors,numBearings);

reward = 0;

cost = 0;

weightedCost = 0;

% Finished recursing, return path results

if timeStep == N

cost = curCost;

reward = curReward;

weightedCost = curWeightedCost;

config = curConfig;

Pfinal = P;

% Start initial recursion by going in each direction from each sensor

elseif timeStep == 0

pathWeightedCost = zeros(1,numBearings);

for j = 1:numSensors

for k = 1:numBearings,

[pathCost,pathReward,pathWeightedCost(k),pathConfig,pathPfinal] ...

= independentSearchNStep(model,Hlin,P,R,C ,entR,...

lambdai,lambdac,rat,N,1,1,j,k,...

curConfig,curCost,curReward,curWeightedCost);

99

end;

% Select the path for each sensor with the lowest cost

% sum over all N steps

[C,k] = min(pathWeightedCost);

% Mark sensor to be utilized

config(j,k) = true;

% Assuming only taking first step along the path

% Update the model

H = Hlin(:,:,j,k,1);

S = H*P*H' + R(j);

Si = 1/S;

Pfinal = P - P*H'*Si*H*P;

% Add in information and cost for this sensor and bearing

sensorReward = 0.5*(log(2*pi*exp(1))+log(S)) - entR(j);

sensorCost = rat*C (j,k,1);

reward = reward + sensorReward;

cost = cost + sensorCost;

weightedCost = weightedCost ...

+ lambdac*sensorCost - lambdai*sensorReward;

end;

% Recurse by going forward in the same direction or by staying still

else

% Calculate MI from sensor

H = Hlin(:,:,sensor,bearing,locStep);

S = H*P*H' + R(sensor);

sensorReward = 0.5*(log(2*pi*exp(1))+log(S)) - entR(sensor);

sensorCost = rat*C (sensor,bearing,1);

curReward = curReward + sensorReward;

curCost = curCost + sensorCost;

100

curWeightedCost = curWeightedCost ...

+ lambdac*sensorCost - lambdai*sensorReward;

%update model and move forward one time step

Si = 1/S;

P = P - P*H'*Si*H*P;

P = F*P*F' + Qd;

% continue along the same bearing

[tmpCost,tmpReward,tmpWeightedCost,config,tmpPfinal] = ...

independentSearchNStep(model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,...

N,timeStep+1,locStep+1,sensor,bearing,curConfig,...

curCost,curReward,curWeightedCost);

% stay still for the next time step

[cost,reward,weightedCost,config,Pfinal] = independentSearchNStep(...

model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,...

N,timeStep+1,locStep,sensor,bearing,curConfig,...

curCost,curReward,curWeightedCost);

if tmpWeightedCost < weightedCost

cost = tmpCost;

reward = tmpReward;

weightedCost = tmpWeightedCost;

Pfinal = tmpPfinal;

end

end

101

function [reward,cost,selection,seqEnt,model] = ...

dynamicProgram(P,mu,model,N,lambdai,lambdac,rat,searchType)

% Implements an approximate dynamic program that utilizes the

% algorithm indicated by searchType.

%

% Returns the reward and cost obtained in the optimization

% and the selected sensors positions for the next time step

%

% P contains initial covariance (previous decision time step)

% mu contains initial linearization mean (prev decis step)

% model contains dynamics and sensing model parameters

% N is the horizon length

% lambdai is largange multiplier for information

% lambdac is lagrange multiplier for cost

% Extract model parameters from structure

numState = model.numState;

numSensors = model.numSensors;

numNeighbors = model.numNeighbors;

F = model.F;

Qd = model.Qd;

Qdi = inv(Qd);

% Propagate mean and covariance to new time step

mu = F*mu;

P = F*P*F' + Qd;

% Extend nominal trajectory

x0 = zeros(numState,N);

mu0 = mu;

for i = 1:N,

x0(:,i) = mu0;

mu0 = F*mu0;

end

% Find locations of virtual nodes neighboring the current nodes,

102

% including the virtual node representing the current position.

numBearings = numNeighbors; % all neighbors and staying still

vSensorNodeLoc = zeros(2,numSensors,numBearings,N);

% motion costs

C = zeros(numSensors,numBearings,N);

dist = sqrt(sum(model.neighborLocDiff.*model.neighborLocDiff));

for j = 1:numSensors,

for k = 1:N,

vSensorNodeLoc(:,j,:,k) = repmat(model.sensor{j}.location,1,...
numBearings) + k*model.neighborLocDiff;

C (:,:,k) = repmat(k*dist,numSensors,1);

end

end

% Calculate linearizations of measurement model for each virtual node

% along given target trajectory

Hlin = zeros(1,numState,numSensors,numBearings,N);

HlinCurrent = zeros(1,numState,numSensors);

R = zeros(1,numSensors);

entR = zeros(1,numSensors);

for j = 1:numSensors,

for k = 1:numBearings,

for l = 1:N,

numMeas = size(model.sensor{j}.R,1);
if (numMeas 6= 1),

error('Code assumes numMeas == 1 always');

end;

Hlin(:,:,j,k,l) = powerMeasLin(x0(:,l),vSensorNodeLoc(:,j,k,l));

end;

end;

HlinCurrent(:,:,j) = powerMeasLin(x0(:,1),model.sensor{j}.location);
R(:,j) = model.sensor{j}.R;
entR(:,j) = model.sensor{j}.entR;

end;

103

% Constant for use in entropy calculations

log2pie = log(2*pi*exp(1));

% Calculate covariance matrix if we take all measurements to get

% an upper bound

Pi = inv(P);

aPriInf = log(det(Pi));

for j = 1:numSensors,

for k = 1:numBearings,

for l = 1:N,

H = Hlin(:,:,j,k,l);

Ri = 1/R(j); % Assumes numMeas = 1, inv(.) otherwise

Pi = Pi + H'*Ri*H;

end;

end;

end;

aPostInf = log(det(Pi));

maxMI = 0.5*(aPostInf-aPriInf);

curMI = 0;

curCost = 0;

config = false(numSensors,numBearings);

switch searchType

case 'exhaustive',

% Brute force search over all possible sensor node configurations

[curCost,curMI,weightedCost,config,P] = ...

exhaustiveSearch(numSensors,numBearings,Hlin,P,R,C , ...

entR,lambdai,lambdac,rat,config,0,0,0);

case 'greedy',

% Greedy single step approximation algorithm

[curCost,curMI,weightedCost,config,P] = greedySearch(numSensors,...

numBearings,Hlin,P,R,C ,entR,lambdai,lambdac,rat);

104

case 'greedyNStep',

% Greedy multistep approximation algorithm over time horizon of N

pathLog = zeros(numSensors,numBearings,N);

[curCost,curMI,weightedCost,config,P,pathLog] = ...

greedySearchNStep(model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,N,...

0,0,0,0,pathLog,config,0,0,0);

case 'unconstrainedNStep',

% Greedy multistep over time horizon of N without cost constraints

pathLog = zeros(numSensors,numBearings,N);

[curCost,curMI,weightedCost,config,P,pathLog] = ...

greedySearchNStep(model,Hlin,P,R,zeros(size(C)),entR,...

lambdai,lambdac,rat,N,0,0,0,0,pathLog,config,0,0,0);

case 'independent',

% Decoupled single step algorithm

[curCost,curMI,weightedCost,config,P] = independentSearch(...

numSensors,numBearings,Hlin,P,R,C ,entR,lambdai,lambdac,rat);

case 'independentNStep',

% Decoupled multistep algorithm over time horizon N

[curCost,curMI,weightedCost,config,P] = independentSearchNStep(...

model,Hlin,P,R,C ,entR,lambdai,lambdac,rat,N,...

0,0,0,0,config,0,0,0);

end

%selectedVNodes = repmat(config,1,N);

selectedVNodes = config;

% Calculate entropy

seqEnt = 0.5*(numState*log2pie + log(det(P)));

reward = curMI;

cost = 0;

105

for i = 1:numSensors

cost = cost + C (i,selectedVNodes(i,:),1);

end

% update bearings and move sensors to the selected locations

for j = 1:numSensors,

newLoc = vSensorNodeLoc(:,j,selectedVNodes(j,:,:)==true);

% if no neighbors had viable moves then stay still

if isempty(newLoc)

newLoc = model.sensor{j}.location;
end

% if sensor moved then update bearing and location

if newLoc 6= model.sensor{j}.location,
dx = newLoc(1) - model.sensor{j}.location(1);
dy = newLoc(2) - model.sensor{j}.location(2);
model.sensor{j}.bearing = acos(dx/sqrt(dxˆ2+dyˆ2));

if dy < 0, % bearing is in 3rd or 4th quadrant

model.sensor{j}.bearing = 2*pi - model.sensor{j}.bearing;
end;

% move the location only the distance that can be traveled

% in one time step.

scale = model.maxSpeed*model.T/sqrt(dxˆ2+dyˆ2);

model.sensor{j}.location = ...

model.sensor{j}.location + scale*[dx,dy]';

end;

end;

% mark all sensors as selected

selection = true(1,numSensors);

106

function [motionCostLog,leaderLog,estEntLog,posErrorLog,lambdaLog,...

constrLog] = estimationPlanner(model,sim,searchType,N,...

costConstr,fname,doPlots)

% Maintains a particle filter to represent the current estimate of the

% target state. Calls the dynamic program for planning the sensor

% node configuration for the next time step.

if (exist('mov','var')),

mov = close(mov);

clear mov;

end

lambdac = 2e-4;

lambdai = 1;

rat = 1;

lambdacIncrFact = 1.2;

lambdacDecrFact = 1.2;

lambdacMax = 5e-2;

lambdacMin = 1e-5;

disp(['Simulation commenced ' datestr(now,'HH:MM:SS dd mmm yy')]);

numParticle = 1000;

% Assign variables outside model

F = model.F;

numState = model.numState;

Qd = model.Qd;

Qdch = model.Qdch;

QdchInv = model.QdchInv;

numNoise = size(model.Qdch,2);

Pk = Qd;

% Particle distribution is centered around truth mean, with noise added

107

initCov = diag([10 1 10 1]); % Covariance of particles

initCovCh = chol(initCov)';

x = repmat(sim.xtlog(:,1),1,numParticle) + ...

+ initCovCh*randn(numState,numParticle);

w = ones(1,numParticle)/numParticle;

clear initCov initCovCh;

% Define masks for positions and velocities in state

posMask = logical([1 0 1 0]);

velMask = logical([0 1 0 1]);

% Extract sensor locations and bearings from model

numSensors = model.numSensors;

sensorLoc = zeros(2,numSensors);

sensorBear = zeros(1,numSensors);

for k = 1:numSensors,

sensorLoc(:,k) = model.sensor{k}.location;
sensorBear(:,k) = model.sensor{k}.bearing;

end;

numPlot = 200; % Plot the first numPlot particles

% Prepare figure for result visualization

if (get(0,'ScreenDepth') > 0 && doPlots),

fig = figure(1);

%fname = '';

if (exist('fig','var')),

clf;

set(gcf,'Renderer','painters','DoubleBuffer','on',...

'Position',[960 340 540 800]);

movegui(gcf,'northeast');

% Prepare movie

if (exist('fname','var') && ¬isempty(fname)),
if exist(fname,'file')==2

delete(fname);

end;

108

palette=[0 0 1; 0 1 0; 0 1 1; 1 0 0;...

1 0 1; 1 1 0; 0 0.5 0; gray(9)];

fr.colormap = palette;

mov=avifile(fname,'colormap',fr.colormap,'compression','RLE',...

'fps',5,'keyframe',0.25,'quality',100);

clear palette fname;

end;

end;

end;

FN = F;

for i = 1:N-1,

FN = F*FN;

end;

Z = cell(numSensors,1);

numStep = sim.numStep;

motionCostLog = NaN + zeros(1,numStep);

estEntLog = motionCostLog;

posErrorLog = motionCostLog;

leaderLog = motionCostLog;

lambdaLog = motionCostLog;

constrLog = motionCostLog;

% Run simulation until time lapses or target leaves region populated

% with sensors

for t = 1:numStep,

tic;

xt = sim.xtlog(:,t);

% Calculate mean and covariance at old time and propagate to new

% time

109

mu = x*w';

P = (x.*repmat(w,numState,1))*x' - mu*mu';

% Generate measurements for each sensor

for k = 1:numSensors,

sim.sensor{k}.z(:,t) = feval(model.sensor{k}.model,...
sim.xtlog(:,t),model.sensor{k}.location) + ...

+ model.sensor{k}.Rch*randn(model.sensor{k}.numMeas,1);
end;

% Use constrained DP method

[reward,cost,selection,seqEnt,model] = ...

dynamicProgram(P,mu,model,N,lambdai,lambdac,rat,searchType);

if (¬isnan(costConstr)),

% Update dual variables

if (cost > costConstr),

lambdac = min(lambdac*lambdacIncrFact,lambdacMax);

else

lambdac = max(lambdac/lambdacDecrFact,lambdacMin);

end;

lambdaLog(t) = lambdac;

constrLog(t) = cost - costConstr;

else

minEnt = min(seqEnt);

% Update dual variables

if (minEnt > infConstr),

lambdai = min(lambdai + lambdaiIncr,lambdaiMax);

else

lambdai = max(lambdai-lambdaiDecr,lambdaiMin);

end;

110

lambdaLog(t) = lambdai;

constrLog(t) = minEnt - infConstr;

end;

% Add in cost of moving nodes

if (t == 1),

motionCostLog(t) = cost;

else

motionCostLog(t) = motionCostLog(t-1) + cost;

end;

% Retrieve measurement for the chosen sensor

for i = 1:numSensors,

if (selection(i)),

Z{i} = sim.sensor{i}.z(:,t);
else

Z{i} = [];

end;

end;

% Update particles with sensor

if (sum(selection) == 0),

% No update -- just propagate

x = F*x + Qdch*randn(numNoise,numParticle);

else

% Propagate and update

[x,w] = particleUpdate(x,w,model,Z);

end;

% Update particle covariance

Pk = F*Pk*F' + Qd;

% Estimate entropy of position for performance measure

[partSubset,psw] = resample(x,w,numPlot);

[estEntLog(t),ml] = difEntropy(partSubset(posMask,:),psw);

111

posErrorLog(t) = sqrt(sum((ml-xt(posMask)).ˆ2));

% Only resample after number of effective particles decreases

Neff = 1/sum(w.ˆ2);

if (Neff < 0.25*numParticle),

[x,w] = resample(x,w,numParticle);

Pk = Qd; % Reset particle covariance

end;

graphicX = zeros(3,numSensors);

graphicY = zeros(3,numSensors);

scale = 1/15*(model.trackingRegion(2)-model.trackingRegion(1));

for k = 1:numSensors,

% update sensor locations and bearings

sensorLoc(:,k) = model.sensor{k}.location;
sensorBear(:,k) = model.sensor{k}.bearing;

% create a graphic for each sensor

diffX = scale*[cos(sensorBear(k)), ...

-1/2*cos(sensorBear(k)), ...

1/2*cos(sensorBear(k)),]';

diffY = scale*[sin(sensorBear(k)), ...

1/2*sin(sensorBear(k)), ...

-1/2*sin(sensorBear(k))]';

graphicX(:,k) = sensorLoc(1,k)+diffX;

graphicY(:,k) = sensorLoc(2,k)+diffY;

end;

% Plot sensor field and targets

if (exist('fig','var')),

% Plot everything

clf;

subplot('position',[0.15 0.45 0.8 0.533]);

handx = plot(partSubset(1,:),partSubset(3,:),'g.');hold on;

hands = plot(sensorLoc(1,¬selection),sensorLoc(2,¬selection),'k.');

112

handol = ellipse(3*ones(1,numSensors),1*ones(1,numSensors)...

,sensorBear,sensorLoc(1,:),sensorLoc(2,:),'r');

handxe = plot(ml(1),ml(2),'rx','MarkerSize',12,'LineWidth',2);

handxt = plot(xt(1),xt(3),'k+','MarkerSize',12,'LineWidth',2);

hold off;

axis square;

axis(model.trackingRegion);

set(handol,'MarkerSize',10,'MarkerFaceColor',[1 0 0],...

'MarkerEdgeColor',[1 1 1]);

subplot('position',[0.15 0.05 0.8 0.15]);

plot((0:numStep-1),motionCostLog,'r-');

ylabel('Motion Cost');

axis([0 (numStep-1) 0 1000]);

subplot('position',[0.15 0.25 0.8 0.15]);

plot((0:numStep-1),estEntLog,'r-');

ylabel('Estimate Entropy');

axis([0 (numStep-1) 0 10]);

drawnow;

if (exist('mov','var')),

frrgb = getframe(gcf);

fr.cdata = rgb2ind(frrgb.cdata,fr.colormap);

size(fr.cdata);

mov = addframe(mov,fr);

end;

end;

if mod(t,numStep/10) == 0

set(gcf,'PaperPositionMode','auto');

print('-dpdf',['figures/sim-t-' num2str(t)]);

end

end;

if (exist('mov','var')),

113

mov = close(mov);

clear mov;

end;

return;

114

function [model,sim] = makeModel(numSensors,regionSize,...

targetSpeed,sensorSpeed,timeScale)

% Make the model for the sensor nodes and target object

numNeighbors = 7; %including self (ie staying still)

maxStep = 200;

model.maxSpeed = sensorSpeed;

model.T = timeScale;

% set up grid of virtual nodes

model.d = sensorSpeed*timeScale; % grid spacing

% Differential distance of neighboring virtual nodes in a hexagonal grid

model.neighborLocDiff = model.d*[0,0; 1,0; 1/2,sqrt(3)/2; ...

-1/2,sqrt(3)/2; -1,0; -1/2,-sqrt(3)/2; 1/2,-sqrt(3)/2]';

% Define measurement model

model.numSensors = numSensors;

model.numNeighbors = numNeighbors;

model.sensor = cell(numSensors,1);

model.trackingRegion = [0 regionSize 0 regionSize];

regionSize = diag([model.trackingRegion(2) - model.trackingRegion(1);

model.trackingRegion(4) - model.trackingRegion(3)]);

regionOffset = [model.trackingRegion(1); model.trackingRegion(3)];

sensorLoc = regionSize*rand(2,numSensors) ...

+ repmat(regionOffset,1,numSensors);

sensorBearing = 2*pi*rand(1,numSensors);

for k = 1:numSensors,

model.sensor{k}.location = sensorLoc(:,k);

model.sensor{k}.bearing = sensorBearing(k);

model.sensor{k}.model = @powerMeas;

model.sensor{k}.linearize = @powerMeasLin;

model.sensor{k}.numMeas = 1;

model.sensor{k}.R = 1;

model.sensor{k}.Rch = chol(model.sensor{k}.R)';

115

model.sensor{k}.RchInv = inv(model.sensor{k}.Rch);
model.sensor{k}.entR=0.5*(model.sensor{k}.numMeas*log(2*pi*exp(1)) ...

+ log(det(model.sensor{k}.R)));
end

% Initial target position

numState = 4;

speed = targetSpeed;

sim.xtlog = zeros(numState,maxStep+1);

% start in at a random spot

sim.xtlog(1,1) = model.trackingRegion(1+round(rand(1)));

sim.xtlog(3,1) = model.trackingRegion(3+round(rand(1)));

% velocity towards the interior of the region

sim.xtlog(2,1) = speed*(-2*sim.xtlog(1,1)/regionSize(1,1)+1);

sim.xtlog(4,1) = speed*(-2*sim.xtlog(3,1)/regionSize(2,2)+1);

% Define continuous time dynamics model

Fs = [0 1; 0 0];

Z = zeros(2,2);

Fc = [Fs Z; Z Fs];

% Convert to equivalent discrete time model

model.F = expm(Fc*model.T);

model.numState = numState;

q = 0.01;

% Calculated by hand from Maybeck p171 eq 4-127b

Qs = q*[model.Tˆ3/3 model.Tˆ2/2; model.Tˆ2/2 model.T];

model.Qd = [Qs Z; Z Qs];

model.Qdch = chol(model.Qd)';

model.QdchInv = inv(model.Qdch);

model.numNoise = size(model.Qdch,2);

clear Fs Z Fc q Qs;

% Add noise to true target location

116

% xt = xt + initCovCh*randn(numState,1);

% Create structure for storing measurements

sim.sensor = cell(numSensors,1);

for k = 1:numSensors,

sim.sensor{k}.z = zeros(model.sensor{k}.numMeas,maxStep+1);
end;

% Create target trajectory

t = 1;

while (t ≤ maxStep),

t = t + 1;

% Propagate truth model

sim.xtlog(:,t) = model.F*sim.xtlog(:,t-1) +

model.Qdch*randn(model.numNoise,1);

end

% Trim unused measurement positions

sim.xtlog = sim.xtlog(:,2:t);

for k = 1:numSensors,

sim.sensor{k}.z = sim.sensor{k}.z(:,2:t);
end;

sim.numStep = t-1;

117

function z = powerMeas(x,loc)

% Produce simulated range measurement between x and loc

b = 100;

a = 20*b;

posMask = [1 3];

numParticle = size(x,2);

dif = x(posMask,:) - repmat(loc,1,numParticle);

z = a./(b + sum(dif.ˆ2,1));

118

function H = powerMeasLin(x,loc)

% Create the linearized version of the measurement model

% Get 'a' and 'b' from their current values in powerMeas

alpha = powerMeas([0 0 0 0]',[0 0]');

gamma = powerMeas([30 0 0 0]',[0 0]');

b = 900*gamma/(alpha-gamma);

a = b*alpha;

posMask = [1 3];

numParticle = size(x,2);

numState = size(x,1);

H = zeros(1,numState,numParticle);

dif = x(posMask,:) - repmat(loc,1,numParticle);

% This is the derivative of h(x) with respect to the interim result

% c = dif'.dif

dhdc = -a./(b + sum(dif.ˆ2,1)).ˆ2;

for i = 1:numParticle,

H(:,posMask,i) = dhdc(i)*2*dif(:,i)';

end;

119

function [x,w] = particleUpdate(x,w,model,Z)

% Update the each of the particles in the particle filter for the next

% time step.

F = model.F;

Qd = model.Qd;

QdchInv = model.QdchInv;

numState = model.numState;

numParticle = size(x,2);

numSensors = length(Z);

% Propagate particles noise-free, and set kernel size

x = F*x;

Pk = Qd;

% Linearize measurement model for each particle

lengths = zeros(1,numSensors);

for (i = 1:numSensors),

if (¬isempty(Z{i})),
lengths(i) = length(Z{i});

end;

end;

numMeas = sum(lengths);

% Calculate model linearizations and predicted (mean) measurements for

% each particle

Hlin = zeros(numMeas,numState,numParticle);

zp = zeros(numMeas,numParticle);

R = zeros(numMeas,numMeas);

z = zeros(numMeas,1);

j = 1;

for (i = 1:numSensors),

if (¬isempty(Z{i})),
Hlin(j:j+lengths(i)-1,:,:) = ...

feval(model.sensor{i}.linearize,x,model.sensor{i}.location);
zp(j:j+lengths(i)-1,:) = ...

120

feval(model.sensor{i}.model,x,model.sensor{i}.location);
R(j:j+lengths(i)-1,j:j+lengths(i)-1) = model.sensor{i}.R;
z(j:j+lengths(i)-1) = Z{i};
j = j + lengths(i);

end;

end;

% Perform KF update for each linearization

xn = zeros(numState,numParticle);

for (i = 1:numParticle),

% Perform kalman filter update using the linearization

H = Hlin(:,:,i);

K = Pk*H'*inv(H*Pk*H' + R);

xupd = x(:,i) + K*(z - zp(:,i));

Pupd = Pk - K*H*Pk;

Pupdch = chol(Pupd)';

% Generate a new particle location drawn from the distribution

% given by the kalman filter update

wd = randn(numState,1); % noise

xn(:,i) = xupd + Pupdch*wd;

wn(i) = w(i)*exp(0.5*sum(wd.ˆ2))*prod(diag(Pupdch));

end;

RchInv = inv(chol(R)');

% Recalculate predicted measurements for updated particle values

zp = zeros(numMeas,numParticle);

j = 1;

for i = 1:numSensors,

if (¬isempty(Z{i})),
zp(j:j+lengths(i)-1,:) = ...

feval(model.sensor{i}.model,xn,model.sensor{i}.location);
j = j + lengths(i);

121

end;

end;

% Perform the reweighting

err1 = RchInv*(repmat(z,1,numParticle) - zp);

err2 = QdchInv*(xn - x);

wn = wn .* exp(-0.5*(sum(err1.ˆ2,1) + sum(err2.ˆ2,1)));

% Renormalize

wns = sum(wn);

if (wns > 0),

w = wn/wns;

else

w(:) = 1/numParticle;

warning('All particle weights truncated to zero; reset uniformly.');

end;

x = xn;

122

function [xnew,wnew] = resample(x,w,numParticle)

%RESAMPLE Resample a selection of particles

% Format: [xnew,wnew] = resample(x,w,numParticle)

% columns of x contain particles

% w contains weights

% numParticle indicates the number of particles to resample from x

% xnew and wnew output resampled particles and uniform weights

% respectively

% Uses semi-deterministic method

numState = size(x,1);

xnew = zeros(numState,numParticle);

cum = cumsum(w);

% Make sure cumulative distribution sums to at least one (may be less

% due to numerical round-off)

if (cum(end) < 1),

cum(end) = 1;

end;

% Use semi-deterministic resampling method -- pick particle locations

% to be regularly spaced

loc = (rand + (0:(numParticle-1)))/numParticle;

i = 1;

for (j = 1:numParticle),

% Move along until we reach new particle location

while (loc(j) > cum(i)),

i = i + 1;

end;

% Generate the particle

xnew(:,j) = x(:,i);

end;

% Assign new weights equally

wnew = ones(1,numParticle)/numParticle;

123

function [h,ml] = difEntropy(x,w)

%Differential entropy estimate for particle representation

% Columns of x contain samples of variable

% w contains sample weights

% h returns entropy estimate

% ml returns coarse maximum likelihood estimate

% Rule of thumb kernel size is used

numParticle = size(x,2);

dimx = size(x,1);

% Calculate kernel sizes using rule of thumb

ex = x*w';

ex2 = x.ˆ2*w';

sigx = sqrt(numParticle/(numParticle-1)*(ex2 - ex.ˆ2));

hx = sigx*numParticleˆ(-1/(4+dimx));

% Calculate kernel matrix for x

Kx = zeros(numParticle,numParticle);

for (i = 1:dimx),

rm = repmat(x(i,:)/hx(i),numParticle,1);

Kx = Kx + (rm - rm').ˆ2;

end;

Kx = exp(-0.5*Kx)/sqrt(prod(2*pi*hx.ˆ2));

% Calculate entropy estimate

den = (Kx*w');

mask = w > 0;

h = -sum(w(mask)' .* log(den(mask)));

% Return ML estimate for x as the one with the largest sample point

% value

[v,i] = max(den);

ml = x(:,i);

return;

124

Bibliography

[1] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, D. Sci, T. Organ, and S.A.
Adelaide. A tutorial on particle filters for online nonlinear/non-GaussianBayesian
tracking. IEEE Transactions on signal processing, 50(2):174–188, 2002.

[2] M.R. Benjamin, J.J. Leonard, H. Schmidt, and P.M. Newman. An overview
of MOOS-IvP and a brief users guide to the IvP Helm autonomy software.
Massachusetts Institute of Technology, MIT CSAIL, Tech. Rep. TR-2009-28-07,
2009.

[3] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 2000.

[4] W.F. Caselton and J.V. Zidek. Optimal monitoring network designs. Statistics
& Probability Letters, 2(4):223–227, 1984.

[5] C. Chekuri and M. Pal. A recursive greedy algorithm for walks in directed
graphs. In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual
IEEE Symposium on, pages 245–253, 2005.

[6] A.S. Chhetri, D. Morrell, and A. Papandreou-Suppappola. Scheduling multiple
sensors using particle filters in target tracking. In 2003 IEEE Workshop on
Statistical Signal Processing, pages 549–552, 2003.

[7] T.M. Cover and J.A. Thomas. Elements of information. John Wiley & Sons,
NY, USA, 1991.

[8] Noel A. C. Cressie. Statistics for Spatial Data. Wiley, 1991.

[9] J. Curcio, J. Leonard, and A. Patrikalakis. SCOUT-a low cost autonomous
surface platform for research in cooperative autonomy. In OCEANS, 2005. Pro-
ceedings of MTS/IEEE, pages 725–729, 2005.

[10] E. Ertin, J. Fisher, and L. Potter. Maximum mutual information principle for
dynamic sensor query problems. In Information Processing in Sensor Networks,
pages 558–558. Springer, 2003.

[11] C. Guestrin, A. Krause, and A.P. Singh. Near-optimal sensor placements in gaus-
sian processes. In Proceedings of the 22nd international conference on Machine
learning, pages 265–272. ACM, 2005.

125

[12] G.M. Hoffmann and C.J. Tomlin. Mobile sensor network control using mutual
information methods and particle filters. IEEE Transactions on Automatic Con-
trol, 2009.

[13] C.W. Ko, J. Lee, and M. Queyranne. An exact algorithm for maximum entropy
sampling. Operations Research, 43(4):684–691, 1995.

[14] A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in
graphical models. In Proc. of Uncertainty in AI. Citeseer, 2005.

[15] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor place-
ments: Maximizing information while minimizing communication cost. In Pro-
ceedings of the 5th international conference on Information processing in sensor
networks, page 10. ACM, 2006.

[16] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaus-
sian processes: Theory, efficient algorithms and empirical studies. The Journal
of Machine Learning Research, 9:235–284, 2008.

[17] P.S. Maybeck. Stochastic models, estimation, and control (volume 1 & 2), vol-
ume 2. Navtech Book, 1994.

[18] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21(2):239–245, May 1979.

[19] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approxima-
tions for maximizing submodular set functionsI. Mathematical Programming,
14(1):265–294, 1978.

[20] K. Pister, J. Kahn, and B. Boser. Smart dust. keynote address, IPSN, 3, 2003.

[21] G.J. Pottie and W.J. Kaiser. Wireless integrated network sensors. Communica-
tions of the ACM, 43(5):51–58, 2000.

[22] N. Ramakrishnan, C. Bailey-Kellogg, S. Tadepalli, and V.N. Pandey. Gaussian
processes for active data mining of spatial aggregates. In Proceedings of the
SIAM International Conference on Data Mining, 2005.

[23] N. Roy and C. Earnest. Dynamic action spaces for information gain maximization
in search and exploration. In American Control Conference, 2006, page 6, 2006.

[24] A. Singh, A. Krause, C. Guestrin, and W. Kaiser. Efficient informative sensing
using multiple robots. Journal of Artificial Intelligence Research, 34(1):707–755,
2009.

[25] B. Warneke, M. Last, B. Liebowitz, and K.S.J. Pister. Smart dust: Communi-
cating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

126

[26] J.L. Williams. Information theoretic sensor management. PhD thesis, Mas-
sachusetts Institute of Technology, 2007.

[27] J.L. Williams, J.W. Fisher, and A.S. Willsky. Approximate dynamic program-
ming for communication-constrained sensor network management. IEEE Trans-
actions on signal Processing, 55(8):4300–4311, 2007.

[28] J.L. Williams, J.W. Fisher III, and A.S. Willsky. Performance guarantees for
information theoretic active inference. AI & Statistics (AISTATS), 2007.

[29] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration
for tracking applications. IEEE Signal Processing Magazine, 19(2):61–72, 2002.

127

	Introduction
	Sensor Networks
	Optimal Sensing Under Constraints
	Contributions
	Outline

	Optimal Sensing
	Types of Sensor Networks
	Smart vs. Dumb Sensors
	Static vs. Mobile Sensors

	Measurement Quality
	Conditional Entropy
	Maximum Entropy
	Mutual Information Metric

	Measurement Costs
	Multistep Planning

	Related Work
	Information Theoretic Sensor Management
	Bounded Cost Optimizations
	Finite Horizon Planning
	Comparison With Our Work

	Problem Formulation
	Modeling
	Target Object Model
	Sensor Model
	Cost Model

	Tracking Estimator

	Approximate Dynamic Programming Algorithms
	Dynamic Programming Approach
	Objective Function
	Constrained Dynamic Programming
	Linearized Gaussian Approximation

	Approximation Algorithms
	Brute Force
	Decoupled
	Greedy
	General Simplifications

	Simulation
	Autonomous Robotic Kayaks
	Tracking Simulation
	Comparative Analysis

	Conclusion
	Significant Findings
	Lessons Learned
	Intelligent Path Selection
	Efficient Implementation

	Future Work

	Simulation MATLAB Code

