Lecture 3
Cache-Oblivious Algorithms and Data Structures

Charles E. Leiserson
February 14, 2023
Multicore Cache Hierarchy

Each level of cache is larger and cheaper per bit than the previous level, but also slower.
Cache Specs for Typical High-End Multicore

<table>
<thead>
<tr>
<th>Level</th>
<th>Size/core</th>
<th>Associativity</th>
<th>Latency (cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>up to 160 GiB</td>
<td></td>
<td>85–240</td>
</tr>
<tr>
<td>L3</td>
<td>1.375 MiB</td>
<td>11</td>
<td>50–70</td>
</tr>
<tr>
<td>L2</td>
<td>1 MiB</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>L1-D</td>
<td>32 KiB</td>
<td>8</td>
<td>4–5</td>
</tr>
<tr>
<td>L1-I</td>
<td>32 KiB</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Intel Xeon Platinum 8280L (Cascade Lake)

- Launched April 2019 for $17,906 — cheaper now.
- 2.7 GHz clock, Turbo Boost up to 4 GHz
- 28 cores/chip + 2-way hyperthreading
- 2190 GFLOPS
- 64 B cache lines/blocks
- Up to 8-way multiprocessing
Ideal–Cache Model

Parameters

- Two-level hierarchy.
- Cache size of M bytes.
- Cache-line length of B bytes.
- Fully associative.
- Optimal, omniscient replacement.

Performance Measures

- **work** T (ordinary running time)
- **cache misses** Q
Reading an Array Sequentially

\[
\text{sum} = 0; \\
\text{for} \ (\text{int} \ i=0; \ i<n; \ ++i) \ \\
\text{sum} \ += \ A[i];
\]

Cache misses: \(Q(n) = \Theta(n/B) \)
Segment Caching Lemma

Lemma. Suppose that a program reads a set of \(r \) data segments, where the \(i \)th segment consists of \(s_i \) contiguous bytes in memory, and suppose that

\[
\sum_{i=1}^{r} s_i = N < M/3 \text{ and } N/r \geq B .
\]

Then all the segments fit into cache, and the number of misses to read them all is at most \(3N/B \).

Proof. A single segment \(s_i \) incurs at most \(s_i/B + 2 \) misses, and hence we have

\[
\sum_{i=1}^{r} \left(\frac{s_i}{B} + 2 \right) = \frac{N}{B} + 2r
\]

\[
= \frac{N}{B} + \frac{(2rB)}{B}
\]

\[
\leq \frac{N}{B} + 2N/B
\]

\[
= \frac{3N}{B} .
\]
Tall Caches

Example: Intel Xeon Platinum 8280L
• Cache-line length $B = 64$ bytes.
• L1-cache size $M = 32$ kibibytes.

Tall-cache assumption
$B^2 < cM$ for some sufficiently small constant $c \leq 1$.
What’s Wrong with Short Caches?

Tall-cache assumption

\[B^2 < cM \]

for some sufficiently small constant \(c \leq 1 \).

An \(n \times n \) submatrix stored in row-major order may not fit in a short cache even if \(n^2 < cM \)!
Lemma. Suppose that an \(n \times n \) submatrix \(A \) is read into a tall cache satisfying \(B^2 < cM \), where \(c < 1/3 \) is constant, and suppose that \(cM \leq n^2 < M/3 \). Then \(A \) fits into the cache, and the number of misses to read all of \(A \)'s elements is at most \(3n^2/B \).

Proof. We have \(r = n, s_i = n, N = n^2 \). Since \(B^2 < cM \leq n^2 \), we have \(B \leq n = N/r \). And since \(N < M/3 \), the segment caching lemma applies. ■
CACHE ANALYSIS OF MATRIX MULTIPLICATION
void Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i=0; i < n; i++)
 for (int64_t j=0; j < n; j++)
 for (int64_t k=0; k < n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

Analysis of work

$T(n) = \Theta(n^3)$.
Analysis of Cache Misses

void Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i=0; i < n; i++)
 for (int64_t j=0; j < n; j++)
 for (int64_t k=0; k < n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

Assume row major and tall cache

Case 1
n ≥ M/B.
Analyze matrix B.
Assume LRU.
Q(n) = Θ(n³), since matrix B misses on every access.
Analysis of Cache Misses

Case 2

\[M^{1/2} \leq n < M/B. \]

Analyze matrix B.

Assume LRU.

\[Q(n) = n \cdot \Theta(n^2/B) = \Theta(n^3/B), \]

since matrix B can exploit spatial locality.

Assume row major and tall cache

```c
void Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i=0; i < n; i++)
        for (int64_t j=0; j < n; j++)
            for (int64_t k=0; k < n; k++)
                C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```
Analysis of Cache Misses

```c
void Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i=0; i < n; i++)
        for (int64_t j=0; j < n; j++)
            for (int64_t k=0; k < n; k++)
                C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```

Assume row major and tall cache

Case 3

\[n < cM^{1/2}. \]

Analyze matrix \(B \).

Assume LRU.

\[Q(n) = \Theta(n^2/\mathcal{B}), \]

by the submatrix caching lemma.
TILING
Tiled Matrix Multiplication

```c
void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i1=0; i1<n/s; i1+=s)
        for (int64_t j1=0; j1<n/s; j1+=s)
            for (int64_t k1=0; k1<n/s; k1+=s)
                for (int64_t i=i1; i<i1+s && i<n; i++)
                    for (int64_t j=j1; j<j1+s && j<n; j++)
                        for (int64_t k=k1; k<k1+s && k<n; k++)
                            C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```

Analysis of work

- **Work** $T(n) = \Theta((n/s)^3(s^3)) = \Theta(n^3)$.
Tiled Matrix Multiplication

void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i1=0; i1<n/s; i1+=s)
 for (int64_t j1=0; j1<n/s; j1+=s)
 for (int64_t k1=0; k1<n/s; k1+=s)
 for (int64_t i=i1; i<i1+s && i<n; i++)
 for (int64_t j=j1; j<j1+s && j<n; j++)
 for (int64_t k=k1; k<k1+s && k<n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

Analysis of cache misses

- Tune s so that the tiles just fit into cache $\Rightarrow s = \Theta(M^{1/2})$.
- Submatrix caching lemma implies $\Theta(s^2/B)$ misses per tile.
- $Q(n) = \Theta((n/s)^3(s^2/B)) = \Theta(n^3/BM^{1/2})$.
- Optimal [HK81].
Tiled Matrix Multiplication

void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i1 = 0; i1 < n / s; i1 += s)
 for (int64_t j1 = 0; j1 < n / s; j1 += s)
 for (int64_t k1 = 0; k1 < n / s; k1 += s)
 for (int64_t i = i1; i < i1 + s && i < n; i++)
 for (int64_t j = j1; j < j1 + s && j < n; j++)
 for (int64_t k = k1; k < k1 + s && k < n; k++)
 C[i*n+j] += A[i*n+k]*B[k*n+j];
}

Analysis of cache misses
• Tune \(s \) so that the tiles just fit into cache \(\Rightarrow s = \Theta(M^{1/2}) \).
• Submatrix caching lemma implies \(\Theta(s^2/B) \) misses per tile.
• \(Q(n) = \Theta((n/s)^3(s^2/B)) = \Theta(n^3/BM^{1/2}) \).
• Optimal [HK81].
Two-Level Cache

- Two “voodoo” tuning parameters s and t.
- Multidimensional tuning optimization cannot be done with binary search.
Two-Level Cache

void Twice_Tiled_Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i2=0; i2<n; i2+=s) {
 for (int64_t j2=0; j2<n; j2+=s) {
 for (int64_t k2=0; k2<n; k2+=s) {
 for (int64_t i1=i2; i1<i2+s && i1<n; i1+=t) {
 for (int64_t j1=j2; j1<j2+s && j1<n; j1+=t) {
 for (int64_t k1=k2; k1<k2+s && k1<n; k1+=t) {
 for (int64_t i=i1; i<i1+s && i<i2+t && i<n; i++) {
 for (int64_t j=j1; j<j1+s && j<j2+t && j<n; j++) {
 for (int64_t k=k1; k<k1+s && k<k2+t && k<n; k++) {
 C[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

© 2018–2023 MIT Algorithm Engineering Instructors
Three-Level Cache

- Three “voodoo” tuning parameters.
- Twelve nested `for` loops.
- Multitenancy environment: Don’t know the effective cache size when other jobs are running ⇒ easy to mistune the parameters!
DIVIDE & CONQUER
Recursive Matrix Multiplication

Divide–and–conquer on $n \times n$ matrices.

$$C_{11} C_{12} = A_{11} A_{12}$$

$$C_{21} C_{22} = A_{21} A_{22}$$

$$= \times$$

$$B_{11} B_{12}$$

$$= +$$

$$B_{21} B_{22}$$

8 multiply–adds of $(n/2) \times (n/2)$ matrices.
Recursive Code

// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
 int64_t n, int64_t rowsize) {
 if (n == 1)
 C[0] += A[0] * B[0];
 else {
 int64_t d11 = 0;
 int64_t d12 = n/2;
 int64_t d21 = (n/2) * rowsize;
 int64_t d22 = (n/2) * (rowsize+1);

 Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
 Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
 Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
 Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
 Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
 Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
 Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
 Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
 }
}
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
 int64_t n, int64_t rowsize) {
 if (n == 1)
 C[0] += A[0] * B[0];
 else {
 int64_t d11 = 0;
 int64_t d12 = n/2;
 int64_t d21 = (n/2) * rowsize;
 int64_t d22 = (n/2) * (rowsize+1);
 Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
 Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
 Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
 Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
 Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
 Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
 Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
 Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
 }
}
Analysis of Work

// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B, int64_t n, int64_t rowsize) {
 if (n == 1)
 C[0] += A[0] * B[0];
 else {
 int64_t d11 = 0;
 int64_t d12 = n/2;
 int64_t d21 = (n/2) * rowsize;
 int64_t d22 = (n/2) * (rowsize+1);

 Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
 Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
 Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
 Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
 Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
 Rec_Mult(C+d21, A+d21, B+d21, n/2, rowsize);
 Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
 Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
 Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
 }
}

\[
T(n) = 8T(n/2) + \Theta(1) = \Theta(n^3)
\]
Analysis of Work

T(n) = 8 T(n/2) + 1

recursion tree

T(n)
Analysis of Work

\[T(n) = 8T\left(\frac{n}{2}\right) + 1 \]
Analysis of Work

$T(n) = 8T(n/2) + 1$

recursion tree

$T(n/4)$ $T(n/4)$... $T(n/4)$
Analysis of Work

\[T(n) = 8 \cdot T\left(\frac{n}{2}\right) + 1 \]

Recursion tree

\[\#\text{leaves} = 8^{\lg n} = n^{\lg 8} = n^3 \]

Note: Same work as looping versions.

\[T(n) = \Theta(n^3) \]
Analysis of Cache Misses

// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
 int64_t n, int64_t rowsize) {
 if (n == 1)
 C[0] += A[0] * B[0];
 else {
 int64_t d11 = 0;
 int64_t d12 = n/2;
 int64_t d21 = (n/2) * rowsize;
 int64_t d22 = (n/2) * (rowsize+1);

 Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
 Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
 Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
 Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
 Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
 Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
 Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
 Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
 }
}

Q(n) = \begin{cases}
 \Theta(n^2/\mathcal{B}) & \text{if } n^2 < c \mathcal{M} \text{ for suff. small const } c \leq 1, \\
 8Q(n/2) + \Theta(1) & \text{otherwise.}
\end{cases}
Analysis of Cache Misses

\[Q(n) = \begin{cases} \Theta(n^2/B) & \text{if } n^2 < cM \text{ for suff. small const } c \leq 1, \\ 8Q(n/2) + 1 & \text{otherwise.} \end{cases} \]

recursion tree \hspace{1cm} Q(n)
Analysis of Cache Misses

\[
Q(n) = \begin{cases}
\Theta(n^2/B) & \text{if } n^2 < cM \text{ for suff. small const } c \leq 1, \\
8Q(n/2) + 1 & \text{otherwise.}
\end{cases}
\]
Analysis of Cache Misses

\[
Q(n) = \begin{cases}
\Theta(n^2/B) & \text{if } n^2 < cM \text{ for suff. small const } c \leq 1, \\
8Q(n/2) + 1 & \text{otherwise.}
\end{cases}
\]
Analysis of Cache Misses

\[Q(n) = \begin{cases} \Theta(n^2/B) & \text{if } n^2 < cM \text{ for suff. small const } c \leq 1, \\ 8Q(n/2) + 1 & \text{otherwise.} \end{cases} \]

\[\lg n - \frac{1}{2} \lg(cM) \]

recursion tree

\[\Theta(cM/B) \]

Same cache misses as with tiling!

\[Q(n) = \Theta(n^3/BM^{1/2}) \]
Cache–Oblivious Algorithms

• Cache–oblivious algorithms [FLPR99]
 • No voodoo tuning parameters.
 • No explicit knowledge of caches.
 • Passively autotune.
 • Handle multilevel caches automatically.
 • Good in multitenancy environments.
Cache–Aware Search Tree (Static)

Cache misses: $Q(n) = \Theta(lg \ n)$
Cache–Oblivious Search Tree (Static)

Cache misses: $Q(n) = \Theta(\log_B n)$
Other C–O Algorithms

Matrix Transposition/Addition
Straightforward recursive algorithm. $\Theta(1 + mn/B)$

Strassen’s Algorithm
Straightforward recursive algorithm. $\Theta(n + n^2/B + n^{\log 7}/BM^{(\log 7)/2 - 1})$

Fast Fourier Transform
Variant of Cooley–Tukey [CT65] using cache–oblivious matrix transpose. $\Theta(1 + (n/B)(1 + \log_M n))$

LUP–Decomposition
Recursive algorithm due to Sivan Toledo [T97]. $\Theta(1 + n^2/B + n^3/BM^{1/2})$
Ordered-File Maintenance

INSERT/DELETE anywhere in file while maintaining O(1)-sized gaps. Amortized bound [BDFC00], later improved in [BCDFC02].

B-Trees

<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT/DELETE</td>
<td>O(1 + \log_{B+1} n + (\lg^2 n) / B)</td>
</tr>
<tr>
<td>SEARCH</td>
<td>O(1 + \log_{B+1} n)</td>
</tr>
<tr>
<td>TRAVERSE</td>
<td>O(1 + k/B)</td>
</tr>
</tbody>
</table>

Solution [BDFC00] with later simplifications [BDIW02], [BFJ02].

Priority Queues

<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT/DELETE</td>
<td>O(1 + (1/B) \log_{\frac{M}{B}}(n/B))</td>
</tr>
</tbody>
</table>

Funnel-based solution [BF02]. General scheme based on buffer trees [ABDHMM02] supports INSERT/DELETE.
Other C–O Algorithms

Matrix Transposition/Addition $\Theta(1+mn/B)$
Straightforward recursive algorithm.

Strassen’s Algorithm $\Theta(n + n^2/B + n^{\log 7}/BM^{(\log 7)/2 - 1})$
Straightforward recursive algorithm.

Fast Fourier Transform $\Theta(1 + (n/B)(1 + \log_M n))$

LUP–Decomposition $\Theta(1 + n^2/B + n^3/BM^{1/2})$
Recursive algorithm due to Sivan Toledo [T97].
Ordered–File Maintenance

INSERT/DELETE anywhere in file while maintaining O(1)–sized gaps. Amortized bound \([BDFC00]\), later improved in \([BCDFC02]\).

B–Trees

- \textbf{INSERT/DELETE:} \(O(1 + \frac{(\lg^2 n)}{B})\)
- \textbf{SEARCH:} \(O(1 + \frac{\lg^2 n}{B})\)
- \textbf{TRAVERSE:} \(O(1 + \frac{k}{B})\)

Solution \([BDFC00]\) with later simplifications \([BDIW02]\), \([BFJ02]\).

Priority Queues

- Funnel–based solution \([BF02]\). General scheme based on buffer trees \([ABDHMM02]\) supports \(O(1 + \frac{1}{B}) \log_{M/B}(n/B)\).
Construction of a k–funnel

Subfunnels in contiguous storage.
Buffers in contiguous storage.
Refill buffers on demand.
Space = $O(k^2)$.

$k^{3/2}$
\sqrt{k}
k
\sqrt{k}
\sqrt{k}

buffers

Cache misses
$= O(k + (k^3/\mathcal{B})(1+\log_M k))$.

Tall–cache assumption: $\mathcal{M} = \Omega(\mathcal{B}^2)$.