Lecture 2
Parallel Algorithms

Julian Shun
February 8, 2024

Lecture material taken from “Parallel Algorithms” by Guy Blelloch and Bruce Maggs and 6.172, developed by Charles Leiserson and Saman Amarasinghe

© 2018–2024 MIT Algorithm Engineering Instructors
Announcement

• Presentation sign-up sheet has been posted
• Problem set will be released on Canvas this week, due on Monday 3/4
• First paper review due Tuesday 10am
Why do semiconductor vendors provide chips with multiple processor cores?

Because of Moore’s Law and the end of the scaling of clock frequency.
Clock speed is bounded at ~4GHz.
Projected power density, if clock frequency had continued its trend of scaling 25%-30% per year.

Each generation of Moore’s Law potentially doubles the number of cores.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)
Parallel Languages

- Pthreads
- Cilk, OpenMP
- Message Passing Interface (MPI)
- CUDA, OpenCL

Today: Shared–memory parallelism
- Cilk and OpenMP are extensions of C/C++ that support parallel for-loops, parallel recursive calls, etc.
- Do not need to worry about assigning tasks to processors as these languages have a runtime scheduler
- Cilk has a provably efficient runtime scheduler
PARALLELISM MODELS
Basic multiprocessor models

Local memory machine

Modular memory machine

Parallel random-access Machine (PRAM)

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
Network topology

Bus

Mesh

2-level multistage network

Hypercube

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
Network topology

• Algorithms for specific topologies can be complicated
 • May not perform well on other networks
• Alternative: use a model that summarizes latency and bandwidth of network
 • Postal model
 • Bulk–Synchronous Parallel (BSP) model
 • LogP model
PRAM Model

- All processors can perform same local instructions as in the RAM model
- All processors operate in lock-step
- Implicit synchronization between steps
- Models for concurrent access
 - Exclusive-read exclusive-write (EREW)
 - Concurrent-read concurrent-write (CRCW)
 - How to resolve concurrent writes: arbitrary value, value from lowest-ID processor, logical OR of values, sum of values
 - Concurrent-read exclusive-write (CREW)
 - Queue-read queue-write (QRQW)
 - Allows concurrent access in time proportional to the maximal number of concurrent accesses
Work–Span model

- Similar to PRAM but does not require lock-step or processor allocation

Work = number of vertices in graph (number of operations)
Span (Depth) = longest directed path in graph (dependence length)
Parallelism = Work / Span
A work-efficient parallel algorithm has work that asymptotically matches the best sequential algorithm for the problem

Computation graph

Goal: work-efficient and low (polylogarithmic) span parallel algorithms
• Spawning/forking tasks
 • Model can support either binary forking or arbitrary forking
 • Cilk uses binary forking, as seen in 6.172
 • Converting between the two changes work by at most a constant factor and span by at most a logarithmic factor
 ■ Keep this in mind when reading textbooks/papers on parallel algorithms
 • We will assume arbitrary forking unless specified

Binary forking

Arbitrary forking
Work-Span model

• State what operations are supported
 • Concurrent reads/writes?
 • Resolving concurrent writes
Scheduling

• For a computation with work W and span S, on P processors a greedy scheduler achieves

$$\text{Running time} \leq \frac{W}{P} + S$$

• For a computation with work W and span S, on P processors Cilk’s work–stealing scheduler achieves

$$\text{Expected running time} \leq \frac{W}{P} + O(S)$$

• Work–efficiency is important since P and S are usually small
PARALLEL SUM
Parallel Sum

• Definition: Given a sequence $A = [x_0, x_1, \ldots, x_{n-1}]$, return $x_0 + x_1 + \ldots + x_{n-2} + x_{n-1}$

What is the span?
$S(n) = S(n/2) + O(1)$
$S(1) = O(1)$
$\Rightarrow S(n) = O(\log n)$

What is the work?
$W(n) = W(n/2) + O(n)$
$W(1) = O(1)$
$\Rightarrow W(n) = O(n)$
PREFIX SUM
Prefix Sum

- Definition: Given a sequence $A = [x_0, x_1, \ldots, x_{n-1}]$, return a sequence where each location stores the sum of everything before it in A, $[0, x_0, x_0 + x_1, \ldots, x_0 + x_1 + \ldots + x_{n-2}]$, as well as the total sum $x_0 + x_1 + \ldots + x_{n-2} + x_{n-1}$

- Example:

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Total sum = 13

- Can be generalized to any associative binary operator (e.g., \times, min, max)
Sequential Prefix Sum

Input: array A of length n
Output: array A’ and total sum

cumulativeSum = 0;
for i=0 to n−1:
 A’[i] = cumulativeSum;
 cumulativeSum += A[i];
return A’ and cumulativeSum

• What is the work of this algorithm?
 • O(n)

• Can we execute iterations in parallel?
 • Loop carried dependence: value of cumulativeSum depends on previous iterations
Parallel Prefix Sum

\[
A = \begin{bmatrix}
0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
x_0 + x_1 & x_2 + x_3 & x_4 + x_5 & x_6 + x_7 \\
\end{bmatrix}
\]

Recursively compute prefix sum on \(B \)

\[
B' = \begin{bmatrix}
0 & x_0 + x_1 & x_0 + x_1 + x_2 & x_0 + x_1 + x_2 + x_3 & x_0 + x_1 + x_2 + x_3 + x_4 & x_0 + x_1 + x_2 + x_3 + x_4 + x_5 & x_0 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \\
\end{bmatrix}
\]

\[
A' = \begin{bmatrix}
0 & x_0 & x_0 + x_1 & x_0 + x_1 + x_2 & x_0 + x_1 + x_2 + x_3 & x_0 + x_1 + x_2 + x_3 + x_4 & x_0 + x_1 + x_2 + x_3 + x_4 + x_5 & x_0 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \\
\end{bmatrix}
\]

For even values of \(i \): \(A'[i] = B'[i/2] \)
For odd values of \(i \): \(A'[i] = B'[(i-1)/2] + A[i-1] \)

Total sum = \(x_0 + \ldots + x_7 \)
Parallel Prefix Sum

Input: array A of length n (assume n is a power of 2)
Output: array A’ and total sum

PrefixSum(A, n):
 if n == 1: return ([0], A[0])
 for i=0 to n/2-1 in parallel:
 (B’, sum) = PrefixSum(B, n/2)
 for i=0 to n-1 in parallel:
 if (i mod 2) == 0: A’[i] = B’[i/2]
 else: A’[i] = B’[(i-1)/2] + A[i-1]
 return (A’, sum)

What is the span?
S(n) = S(n/2)+O(1)
S(1) = O(1)
→ S(n) = O(log n)

What is the work?
W(n) = W(n/2)+O(n)
W(1) = O(1)
→ W(n) = O(n)
FILTER
Filter

- Definition: Given a sequence \(A = [x_0, x_1, \ldots, x_{n-1}] \) and a Boolean array of flags \(B = [b_0, b_1, \ldots, b_{n-1}] \), output an array \(A' \) containing just the elements \(A[i] \) where \(B[i] = \text{true} \) (maintaining relative order).

- Example:

\[
\begin{align*}
A &= [2, 4, 3, 1, 3] \\
B &= [T, F, T, T, T, F] \\
A' &= [2, 3, 1]
\end{align*}
\]

- Can you implement filter using prefix sum?
Filter Implementation

\[
\begin{align*}
A &= \begin{bmatrix} 2 & 4 & 3 & 1 & 3 \end{bmatrix} \\
B &= \begin{bmatrix} T & F & T & T & F \end{bmatrix} \\
&= \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \end{bmatrix} \\
B' &= \begin{bmatrix} 0 & 1 & 1 & 2 & 3 \end{bmatrix} \\
A' &= \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}
\end{align*}
\]

//Assume \(B'[n] = \) total sum
parallel-for \(i=0 \) to \(n-1 \):
if(\(B'[i] \neq B'[i+1] \)):
\(A'[B'[i]] = A[i] \);
Allocate array of size 3

Prefix sum
Total sum = 3
PARALLEL BREADTH-FIRST SEARCH
Parallel BFS Algorithm

- Can process each frontier in parallel
 - Parallelize over both the vertices and their outgoing edges
Parallel BFS Code

```c
BFS(Offsets, Edges, source) {
  parent, frontier, frontierNext, and degrees are array
  parallel_for(int i=0; i<n; i++) parent[i] = -1;
  frontier[0] = source, frontierSize = 1, parent[source] = source;
  while(frontierSize > 0) {
    parallel_for(int i=0; i<frontierSize; i++)
      degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]];
    perform prefix sum on degrees array
    parallel_for(int i=0; i<frontierSize; i++) {
      v = frontier[i], index = degrees[i], d = Offsets[v+1]–Offsets[v];
      for(int j=0; j<d; j++) {
        //can be parallel
        ngh = Edges[Offsets[v]+j];
        if(parent[ngh] == -1 && compare–and–swap(&parent[ngh], -1, v)) {
          frontierNext[index+j] = ngh;
        } else {
          frontierNext[index+j] = -1;
        }
      }
    }
    filter out “-1” from frontierNext, store in frontier, and update frontierSize to be
    the size of frontier (all done using prefix sum)
  }
}
```
BFS Work–Span Analysis

- Number of iterations \leq diameter Δ of graph
- Each iteration takes $O(\log m)$ span for prefix sum and filter (assuming inner loop is parallelized)

$$\text{Span} = O(\Delta \log m)$$

- Sum of frontier sizes = n
- Each edge traversed once \rightarrow m total visits
- Work of prefix sum on each iteration is proportional to frontier size $\rightarrow \Theta(n)$ total
- Work of filter on each iteration is proportional to number of edges traversed $\rightarrow \Theta(m)$ total

$$\text{Work} = \Theta(n+m)$$
Performance of Parallel BFS

- Random graph with \(n=10^7 \) and \(m=10^8 \)
 - 10 edges per vertex
- 40-core machine with 2-way hyperthreading

- 31.8x speedup on 40 cores with hyperthreading
- Sequential BFS is 54% faster than parallel BFS on 1 thread
POINTER JUMPING AND LIST RANKING
Pointer Jumping

- Have every node in linked list or rooted tree point to the end (root)

```
for j = 0 to ceil(log n) - 1:
    parallel-for i = 0 to n - 1:
        temp[i] = P[P[i]];
    parallel-for i = 0 to n - 1:
        P[i] = temp[i];
```

What is the work and span?

- Work: \(W = O(n \log n) \)
- Span: \(S = O(\log n) \)
List Ranking

• Have every node in linked list determine its distance to the end

```
parallel-for i=0 to n-1:
  if P[i] == i then rank[i] = 0
  else rank[i] = 1

for j=0 to ceil(log n)-1:
  temp, temp2;
  parallel-for i=0 to n-1:
    temp[i] = rank[P[i]];
    temp2[i] = P[P[i]];
  parallel-for i=0 to n-1:
    rank[i] = rank[i] + temp[i];
    P[i] = temp2[i];
```
Work–Span Analysis

parallel-for i=0 to n-1:
 if P[i] == i then rank[i] = 0
 else rank[i] = 1

for j=0 to ceil(log n)-1:
 temp, temp2;
 parallel-for i=0 to n-1:
 temp = rank[P[i]];
 temp2 = P[P[i]];
 parallel-for i=0 to n-1:
 rank[i] = rank[i] + temp;
 P[i] = temp2;

What is the work and span?

W = O(n log n)
S = O(log n)

Sequential algorithm only requires O(n) work
Work–Efficient List Ranking

ListRanking(list P)

1. If list has two or fewer nodes, then return //base case
2. Every node flips a fair coin
3. For each vertex u (except the last vertex), if u flipped Tails and P[u] flipped Heads then u will be paired with P[u]
 A. rank[u] = rank[u] + rank[P[u]]
 B. P[u] = P[P[u]]
4. Recursively call ListRanking on smaller list
5. Insert contracted nodes v back into list with rank[v] = rank[v] + rank[P[v]]
Work–Efficient List Ranking

Apply recursively

Expand

Contract
Work–Span Analysis

- Number of pairs per round is \((n-1)/4\) in expectation
 - For all nodes \(u\) except for the last node, probability of \(u\) flipping Tails and \(P[u]\) flipping Heads is \(1/4\)
 - Linearity of expectations gives \((n-1)/4\) pairs overall

- Each round takes linear work and \(O(1)\) span

- Expected work: \(W(n) \leq W(7n/8) + O(n)\)

- Expected span: \(S(n) \leq S(7n/8) + O(1)\)

- Can show span with high probability with Chernoff bound

\[
W = O(n) \\
S = O(\log n)
\]